
310

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Astrophysical-oriented Computational multi-Architectural Framework: Design and

Implementation

Dzmitry Razmyslovich

Institute for Computer Engineering (ZITI),

University of Heidelberg,

Mannheim, Germany

Email: dzmitry.razmyslovich@ziti.uni-heidelberg.de

Guillermo Marcus

NVIDIA Corporation,

Berlin, Germany

Email: gmarcus@nvidia.com

Abstract—In this paper, we present the design details and
the implementation aspects of the framework for simplifying
software development in the astrophysical simulations branch
- Astrophysical-oriented Computational multi-Architectural Fra-
mework (ACAF). This paper covers the design decisions involved
in reaching the necessary level of abstraction as well as estab-
lishing the essential set of objects and functions covering some
aspects of application development for astrophysical problems.
The implementation details explain the programming mecha-
nisms used and the key objects and interfaces of the framework.
The usage example demonstrates the concept of separating the
different programming aspects between the different parts of
the source code. The benchmarking results reveal the execution
time overhead of the program written using the framework being
just 1.6% for small particle systems and approximating to 0%
for bigger particle systems. At the same time, the execution
with different cluster configurations displays that the program
performance scales almost according to the number of cluster
nodes in use. These prove the efficiency and usability of the
framework implementation.

Keywords–Astrophysics; Heterogeneous; Framework; Cluster;
GPGPU.

I. INTRODUCTION

Astrophysical simulation tasks have usually high computa-
tional density, therefore it is common to use hardware accelera-
tors for solving them. Also, the astrophysical simulations have
a huge amount of data to calculate, which makes it reasonable
to use computer clusters. But the data dependencies of the
simulation algorithms limit the usage of big clusters because
of high data communication rate. Therefore, the astrophysical
simulations tasks are normally solved using heterogeneous
clusters [1][2][3][4]. According to TOP500, the top-rated het-
erogeneous clusters use Graphics Processing Units (GPU) or
Field Programmable Gate Arrays (FPGA) as computational
accelerators.

The most important computational astrophysical problems
include N-Body simulations, Smoothed Particle Hydrodynam-
ics (SPH), Particle-Mesh and Radiative Transfer. All of them
are usually approximated for the calculation purposes with
respective particle physics problems. Where particle physics is
a branch of physics which deals with existence and interactions
of particles, that refer to some matter or radiation. Therefore,
computational astrophysics data represents a collection of
particles - a particle system. Each particle contains a number of
parameters like position in 3D space, speed, direction, mass,
etc. A collection of certain values for all parameters of all
particles is named a state of a particle system. At the same

time, the computational tasks embrace numerical solving of
a number of equations, which evaluate the state of a particle
system [5].

This means, astrophysicists should deal a lot with devel-
oping simulation programs capable to run on heterogeneous
clusters. This requires certain expertise in the following sub-
jects:

• astrophysics, since the problem consists of simulating
the astrophysical objects;

• network programming for cluster utilizing;

• parallel programming and hardware accelerators pro-
gramming including the usage of specific interfaces
and languages;

• micro-electronics for designing FPGA boards.

This takes much time and demands professional exper-
tise from astrophysicists, which restricts scientists to perform
calculation experiments on clusters easily and distracts them
from the main goal. So, the aim of our research is to simplify
software development for astrophysical simulations imple-
mentation reducing programming knowledge requirement.
The solution we suggest is the ACAF. ACAF stands for
Astrophysical-oriented Computational multi-Architectural Fra-
mework. The ACAF is a toolkit for development of astrophys-
ical simulation applications. The target data to be processed
with the ACAF is a set of states of a particle system.

Technically, developing of a distributed multi-architectural
application could be divided into a set of the following aspects:

• balance loading;

• data communication between nodes;

• data communication between the devices inside of
each node;

• computational interfaces for different architectures;

• programming languages for different interfaces (like
Open Multi-Processing (OpenMP) for Central Pro-
cessing Unit (CPU); Open Computing Language
(OpenCL), Compute Unified Device Architecture
(CUDA), Open Accelerators (OpenACC) for GPU
and Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) for FPGAs).

All these aspects should be taken into account in order to
develop an application and all of them should be examined
for the current system in order to reach high computational
performance. Hence, it makes sense to have the ACAF, which



311

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

facilitates astrophysical research by providing the user with a
set of objects and functions fulfilling the following require-
ments:

• the structure of an object and the semantics of a func-
tion should be plain and similar to the objects often
used by scientists in other programming environments
and in theoretical problem descriptions;

• the objects and functions should cover most of the
heterogeneous programming aspects;

• there should be a possibility to extend the tools in use
as well as to provide the alternative implementations
of existing tools;

• the design of the framework should clearly split the
algorithmic (mathematical, physical) part from the
heterogeneous programming techniques;

• the definition of the distribution of data and computa-
tion over the cluster nodes should be user-friendly;

• the programming language for the framework imple-
mentation should be flexible enough to fulfill the pre-
vious requirements, the language should have as less
run-time expenses (such as using Virtual Machines
and etc) as possible, ideally the language should be
similar to the one used by scientists at the current
moment;

• finally, it would be an additional advantage to pre-
serve a possibility to reuse the existing computational
libraries.

The rest of the paper is divided into 7 sections. Section
II highlights the currently existing standards, frameworks and
languages for the software development targeted heterogeneous
systems. Section III consists of 3 subsections, each of them
presenting some design motivations and solutions we have
used to reach the goal. Sections IV and V uncover some
implementation details of the framework. In Section VI, the
usage example of the current framework implementation is
given. Section VII describes the benchmarking performed to
evaluate the result framework. Finally, Section VIII concludes
the paper with an outlook to the most important advantages of
the ACAF.

II. CURRENT STATE OF ART

This section covers mostly used and important frameworks,
libraries, languages and standards, which can optimize or
simplify development of the specific astrophysical cluster
applications.

A. Standards

This section gives an overview of the currently used
programming standards and standard APIs for generic parallel
heterogeneous programming. All the standards were designed
for generic problems and therefore contain and require the
implementation details, which are irrelevant or obvious for the
astrophysical simulation applications. Nonetheless, studying
the existing standards helps to identify the relevant level of
abstraction and the relevant set of functions and structures.

• MPI [6] is a standardized message-passing system
designed to function on a wide variety of parallel
computers. MPI is widely used on many computer
clusters for parallel computations on several machines.

MPI can also be used for parallel computations on
a single node by running multiple instances of the
program. MPI provides the user with functions to
efficiently exchange data in the parallel systems.
MPI has nothing to do with the code parallelization:
the program can be implemented with or without
accelerators usage, with or without parallelizing and
optimizing execution code. MPI offers an interface-
independent network communication, which enables
the possibility to eliminate the usage of any particular
network protocols. Moreover, MPI provides not only
plain data copy functions, but also a lot of collective
data functions, like data reduction, data gathering.
Using of MPI the user can abstract the network
communication in the efficient way.
Another advantage of MPI is the existence of a number
of extensions, which often can enhance the network
communication even further, such as enabling Infini-
Band usage, parallel files handling (including HDF5
files) etc. The most interesting extension in terms of
heterogeneous clusters programming is MVAPICH2.

• MVAPICH2 [7] is a novel MPI design, which inte-
grates CUDA-enabled GPU data movements transpar-
ently into MPI calls. This means that the user can
often eliminate additional steps for transferring data
firstly to the host memory and then to GPU memory
and backward. Since MVAPICH2 involves not only
an efficient encapsulation of the function calls, but
also utilization of the motherboard and GPU chips
capabilities, the final effect can reasonably improve
the performance.
Hence, the user should still guarantee the correct life-
time management of GPU memory. The user should
manually trigger the execution of the GPU code. And
if the calculations should be done simultaneously on
GPU and CPU or several GPU, MVAPICH2 can only
be utilized by dividing the calculation on different
devices of the same host into separate MPI processes.
Another limitation of MVAPICH2 lies in supporting
only CUDA-enabled GPUs.
So, MPI and MVAPICH2 are important libraries for
developing programs for heterogeneous clusters, but
these libraries cover only a single aspect - commu-
nication between nodes and devices. Moreover, the
libraries actually just abstract and simplify the network
protocol usage. At the same time, the user should
take care of allocation, distribution of the data, code
execution, synchronization and so on. Therefore, these
libraries cannot be seen as a solution for the problem
we have identified. Still, while they can be used
for efficient implementing of the framework in our
research.

• CUDA stands for Compute Unified Device Architec-
ture and is a parallel computing platform and an API
model created by Nvidia. CUDA is currently used only
for Nvidia GPUs. CUDA API model enables the user
to utilize GPU for general-purpose computations on a
single node.
The program written with CUDA API consists usually
of 2 parts:

◦ a kernel code, which is going to be executed on



312

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the GPU. Usually, the kernel code represents
the actual mathematical calculations, since the
mathematical part is the target of the accelera-
tors usage approach. The kernel code is written
in a variety of the C language - CUDA C.

◦ a host code, which performs initialization,
GPU memory management (including allo-
cation, transferring and deallocation), kernel
uploading and execution.

The user of CUDA API should control all aspects of
the program lifetime. Having several GPU on the same
node implies explicitly controlling each device and the
corresponding memory space. Performing additional
parallel calculations on CPU should be implemented
as a standalone solution, because CUDA has nothing
to do with CPU programming.
This means that CUDA is a utility for general-purpose
GPU programming. It provides a possibility to effi-
ciently develop general-purpose programs for Nvidia
GPU devices. But being a generic tool implies that
CUDA offers the user as much programming aspects
as possible and requires as many implementation
details as it is actually necessary. So, CUDA should
be a part of the solution in our research. Still, it has
not been designed to abstract the aspects we need to
be covered.

• OpenMP [8] is a standard API for shared-memory pro-
gramming in C/C++/Fortran languages, which enables
easy and efficient development of the parallelized
code using compiler directives. OpenMP parallelizes
the program by distributing the execution of some
code in the threads pool. OpenMP API is system
independent, while the compiler is responsible for the
correct system-dependent implementation.
In order to run some piece of code in parallel, the
user should mark this code with an OpenMP pragma,
it could be either a for loop, iterations of which will
be distributed, or a number of sections each of which
will run in a single thread. The necessary initialization
calls and actual multi-threaded calls will be placed
by the compiler preprocessor. Additionally, the user
can specify which data should be local for a thread,
which data should be shared between threads (also,
some other basic data operations are available such as
scattering, gathering and reduction).
Using OpenMP pragma instructions, it becomes very
easy to parallelize the code for multi-threaded ex-
ecution. Often, if a loop has no data dependencies
between iterations, it is enough just to place a sin-
gle pragma before loop and recompile the program.
Conversely, the parallelization of a complex code
requires certain mastering in OpenMP programming,
but it is usually much easier to use OpenMP for pure
calculations rather than to use the thread management
system-dependent calls.
The current widely supported version 3.1 (Microsoft
Visual Studio 2008-2015 support only version 2.0)
is designed to execute the parallel parts of the code
using only CPUs. This limits the actual profit of using
OpenMP as a solution for the identified problem.
But there are several extensions of OpenMP, which

enable also accelerators usage. These extensions will
be described in the following subsections.

• OpenACC is a standard for the programming of com-
putational accelerators originally proposed by Nvidia
(currently only CUDA-enabled GPU are supported).
OpenACC uses the similar API as OpenMP and is
also based on the preprocessor pragmas. Additionally
to the standard OpenMP pragmas, OpenACC offers
the instructions to control data allocation, data flow,
accelerator kernels and accelerator parallel blocks.
Using OpenACC in case of independent loop iterations
the programming of computational accelerators can be
done by adding a single pragma to the code. If no
accelerators are present in the machine, CPU will be
used for executing the code. In 2013, OpenACC was
merged into the general OpenMP standard - OpenMP
version 4.0. OpenACC as well as OpenMP 4.0 are
currently supported by a limited number of compilers.

• OpenHMPP (HMPP for Hybrid Multicore Parallel
Programming) is a programming standard for hetero-
geneous computing based on HMPP API developed
by CAPS Enterprise. This API also uses preproces-
sor compiler directives for marking the code to run
it on the hardware accelerator. The basic idea of
OpenHMPP lies in defining a codelet - a pure calcu-
lation function which is intended to be performed by
the hardware accelerator. Additionally, the user should
define the data transfer points and codelet call points.
At the current moment OpenHMPP is supported only
by 2 compilers: CAPS Enterprise compilers and Path-
Scale ENZO compiler suite.
Unfortunately, OpenMP and its extensions do not
solve the problem as well. OpenMP API model defi-
nitely reduces the requirements in parallel program-
ming skills abstracting the numerous function calls
in easy-readable pragmas. Still, this model does not
hide a lot of implementation details, which are out-of-
interests for scientific programmers: device data allo-
cation, data transferring, runtime synchronization, etc.
On the other side, the API hides the device selection
possibilities, which may be necessary for the advanced
programmers. Additionally, this API does not cover
at all any kind of network communications and is
designed solely for a single node. This means that
for heterogeneous computing clusters the user should
manually manage MPI (or other) calls mixing them
with OpenMP (OpenACC or OpenHMPP) pragmas to
run the application on all the nodes, which furthermore
complicates the final code.

• OpenCL [9] is an open standard for general pur-
pose parallel programming across different heteroge-
neous processing platforms: CPU, GPU and others.
The OpenCL programming model is quite similar to
CUDA, but implies the usage aspects of different
accelerators. As well as for CUDA, OpenCL program
consists of 2 parts:

◦ a kernel code, which is going to be executed
on accelerators written in OpenCL C language.

◦ a host code, which performs initialization,
memory management (including allocation,
transferring and deallocation), kernel compila-



313

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tion, uploading and execution.

And as well as for CUDA, using OpenCL requires
the user to control all aspects of the program life-
time. But in contrast to CUDA, OpenCL provides a
possibility to run the kernel code on different GPU
and other different accelerators such as DSPs (Digital
Signal Processors), FPGAs (Field-Programmable Gate
Arrays) etc. Also, OpenCL offers a simplified memory
model for multi-accelerator contexts.
Nevertheless, OpenCL is designed for single machine
implementations. There were some projects (such as
CLara [10], the project is stalled at OpenCL 1.0),
which implement a proxy for the remote devices
providing an access to them over the network. This
implies that the host code of a proxy is not able to
provide some logic, to store some temporary buffers,
to optimize the network data exchange. Rather, the
project implies working with remote devices in the
same way as with local devices, which can lead to
the unnecessarily frequent and time-expensive data
transfers. This limits the utilization of OpenCL for het-
erogeneous clusters programming. Still, the OpenCL
use is possible in conjunction with MPI or other
communication interface.
Moreover, OpenCL is a standard for parallel pro-
gramming of computational accelerators. This means
that OpenCL is not supposed to simplify the ac-
celerators programming (still it fulfills this task for
some platforms). Instead, it provides a standard way
to incorporate the accelerators power into the end-
user applications. Therefore, OpenCL could be an
important part of the solution for our problem.

• SyCL [11] is a new C++ single-source heterogeneous
programming model for OpenCL. SyCL takes an
advantage of C++11 features such as lambda functions
and templates. SyCL provides high level programming
abstraction for OpenCL 1.2 and OpenCL 2.2. This
means that SyCL simplifies the integration of OpenCL
into the programming code, making the heterogeneous
programming available without learning some specific
language extensions (such as the OpenCL C language
or the CUDA C language). Moreover, SyCL tends to
be included in the upcoming C++17 Parallel STL stan-
dard. Still, being an enhancement of OpenCL standard,
SyCL does not introduce any network interoperability
restricting the heterogeneous programming model to
a single machine.

B. Libraries, Frameworks and Languages

This sections covers numerous libraries and frameworks
used or possible to be used for solving the code complexity
problem of heterogeneous applications. [12]

• Cactus [13] is an open-source modular environment,
which enables parallel computation across different
architectures. Modules in Cactus are called “thorns”.
A thorn encapsulates all user-defined code. The user
has a choice either to combine the solution of the
problem configuring one or several existing thorns or
write a new thorn. Thorns are able to communicate
with each other using the predefined API functions. A
thorn consists of at least a folder and 4 administrative

files written in Cactus Configuration Language: in-
terface.ccl, param.ccl, schedule.ccl, configuration.ccl.
Each of these files describes some particular properties
of the configuration:

◦ interface.ccl is similar to a C++ class definition
providing the key implementation features of
the thorn;

◦ param.ccl tips which data is necessary for
running the thorn and which data is provided
by the thorn;

◦ schedule.ccl defines under which circum-
stances the thorn is executed;

◦ configuration.ccl specifies which milestones
are required to run the thorn and which mile-
stone provides the thorn. In the built configura-
tion, each milestone can be provided not more
than once, while the code base can have sev-
eral thorns providing the same milestone. The
example milestones are: LAPACK, OpenCL,
IOUtil.

The rest of the thorn implementation should be or-
ganized into the files written with the following lan-
guages: Fortran90, C, C++, CUDA C, OpenCL C.
The thorn implementation should include the functions
defined in interface.ccl. The files will be compiled
and linked together during the building of particular
configuration. In functions and kernels, the user should
explicitly utilize the predefined Cactus macros and in-
structions, which are to be replaced with the necessary
language constructions before compiling the program.
Cactus code has a built-in support of MPI. The latest
version of Cactus includes the thorns for utilizing
accelerators with the help of CUDA and OpenCL.
Having these thorns, the user is able to program the
accelerators calling the simplified interface functions
for copying data and executing kernels. The network
communication and the data transfer with accelerators
can also be implicitly managed by Cactus using the
distributed data types.
Nevertheless, having the distributed data types does
not solve the problem completely, because imple-
menting a new thorn is quite a complicated task.
The user has no ability to combine different devices
into the same solution, since the thorns are always
synchronized. Cactus is only designed to solve time
iterative problems.

• Charm++ [14] is a message-driven parallel language
implemented as a C++ library. The usual Charm++
program consists of a set of objects called “chares”. A
chare is an atomic function, which performs some cal-
culations. Chares communicate with each other using
messages. The task of the programmer in Charm++
context lies in dividing the problem into work pieces,
which can be executed with virtual processors. And
the Charm++ library schedules these work pieces
among the available processing units.
A chare implementation should be written in C++
language. It represents several classes, which inherit
some Charm++ classes. A typical chare has at least
2 classes: the main chare class, which initializes the
environment and sets the necessary variables, and



314

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a worker class, which contains calculation routines.
Since the source code of chares is written in C++
language, it is possible to use any 3rd party libraries
including the accelerating libraries such as CUDA,
OpenCL etc. But using these libraries anyway involves
the manual management of all the aspects of acceler-
ators programming.
Another possibility to utilize GPU lies in using an
additional Charm++ library - Charm++ GPU Man-
ager. This library provides the user with simplified
functions to interact with CUDA-enabled GPUs. The
user should define a work request for GPU Manager
providing a CUDA kernel, input and output arguments
to be transferred to the GPU. The GPU Manager
ensures the overlapping of transfers and executions
on the GPU and runs a GPU kernel asynchronously.
Even with the help of the GPU Manager, writing GPU-
enabled programs with Charm++ remains a complex
task. Charm++ is a message-driven platform, therefore
the user should program the chares keeping in mind
all the possible input and output messages. The user
should control all the aspects of GPU programming.
With a help of GPU Manager, the user can save on
some function calls. Still, he should fully control the
workflow.

• Chapel [15] is a parallel programming language.
Chapel provides the user with a high-level parallel pro-
gramming model which supports data parallelism, task
parallelism and nested parallelism. Being designed
as a new standalone language, Chapel allows to use
a high level of parallelism abstraction. This results
in a compactly written code, which is at the same
time highly optimized, since the compiler controls all
the aspects. Chapel was initially designed for multi-
core Cray machines. But thanks to the high level of
abstraction, Chapel was extended to support also the
heterogeneous systems.
At the same time, being a standalone language, Chapel
has limited possibilities for extending the functionality
and for interoperating with other languages. Since
Chapel is an open source project, everybody can
change the compiler grammar for having new com-
mands. Additionally, Chapel provides interoperability
with the C language, which consists of implementing
special binary bindings. Also, Chapel is able to gen-
erate a C interface and compile the source code into
the shared library, so the code written in Chapel can
be called from other C programs.
Hence, Chapel is a powerful language, which allows
the user to write parallel programs with several lines
of code. Since the compiler is responsible for all
the aspects of deploying a parallel program: data
transferring, load balancing, device’s execution calls
etc, it becomes difficult to control the workflow of
the program. Moreover all the optimizations and ex-
tensions should be done on the language grammar
level, which involves even higher expertise in parallel
computing.

• Flash Code [16], [17] is a modular Fortran90 frame-
work targeted to computer clusters. It uses MPI to
distribute calculations over the cluster nodes and

inside the node over CPU cores. The Flash Code
was initially developed for simulating thermonuclear
flashes. But due to the modularity of the system, a
lot of other modules were implemented, which led to
wider application range. The current version of Flash
Code has a huge delivered code base: ca. 3500 Fortran
files.
The Flash Code was designed much earlier than het-
erogeneous clusters became widely-used. Therefore,
the framework has no built-in support for any hard-
ware accelerators and relies on particular modules to
optimize the calculations as much as possible. Flash
Code has different module types. Each module type
is responsible for one or another system aspect being
usually quite atomic (solvers, grids, etc). This means
that a module can be implemented using any acceler-
ating techniques and libraries. Moreover, a module can
be implemented as a standalone dynamic library with
the necessary Fortran90 bindings to the Flash code.
But the modularity of the framework implies the
unnecessary data transferring in case of heterogeneous
systems. The framework cannot consider the device
memory, therefore, data should always be loaded into
the device on the entry of the module and unloaded
on the exit, even if the next module needs it to be in
the device memory. Moreover, the constant variables
and arrays should be transferred to the device at
each iteration. These disadvantages can impair the
performance gap achieved by using heterogeneous
systems.
Moreover, the modularity of the Flash Code does not
incorporate the abstraction of the parallel program-
ming. So, writing a new module requires the profi-
ciency in parallel programming, including: hardware
accelerators utilization; MPI usage; data distribution
and synchronization techniques; etc.

• Some other frameworks and languages. AMUSE [18]
is a Python framework designed to couple existing
libraries for performing astrophysical simulations in-
volving different physical domains and scales. The
framework uses MPI to involve cluster nodes. Con-
versely, the utilization of any hardware accelerators
should be a part of libraries coupled in a particular
configuration.
Swarm [19] is a CUDA library for parallel n-body
integrations with a focus on simulations of planetary
systems. The Swarm framework targets single ma-
chines with Nvidia GPUs as hardware accelerators.
The framework provides the user with a possibility to
extend the calculations algorithm. But the final system
is not scalable and cannot utilize the power of a cluster.
So, the framework is only designed to solve some
specific problems.
The Enzo [20] project is a adaptive mesh refinement
simulation code developed by a community. The code
is modular and can be extended by users. Enzo does
not support network communication. Still, it contains
several modules developed to utilize Nvidia GPUs
using CUDA.
Among other languages, which are not so widely used,
we should mention: Julia [21] language, X10 [22]



315

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

language, Fortress language. All these languages were
initially designed for CPU clusters. Some of them
provide ports or extensions for hardware accelerators.
These ports and extensions usually have no abstraction
for the accelerator memory space communications.
Finally, some other widely-used, but very domain-
specific libraries are: WaLBerla [23], RooFit [24],
MLFit [25].

III. ACAF DESIGN AND STRUCTURE

A. 3 Concepts Design

The design of the ACAF should be both user-friendly for
astrophysicists and easily extendable for computer scientists.
Therefore, we have designed the ACAF basing on 3 concepts
(see Figure 1).

Figure 1. The 3-concepts design.

1) The computational concept describes the principal
algorithm used for calculating. In other words, the
computational concept is a mathematical, physical
and astrophysical background of the problem solution
and the environment necessary to execute the solu-
tion of the problem on some particular device. This
concept bases on a set of efficient high-parallel multi-
architectural algorithms. So that each algorithm had
an efficient implementation for each architecture and
device in use. And all implementations for the same
algorithm could work together on different platforms.

2) The data concept describes logical and physical
representation of the data used in a solution, as well
as the distribution of this data. This concept lies both
in a set of data-structures providing an efficient way
of managing the data of the astrophysical objects; and
a set of functions for manipulating these structures.

3) The communication concept describes data transfers
and synchronization points between computing units.

The concept lies in efficient data-distribution mecha-
nisms, which guarantee the presence of the necessary
data in the required memory space and in the required
order. This means that the communication concept is
responsible for transferring data from one memory
space to another and for transforming it according
to the user-defined, architecture-defined or device-
defined rules.

Design of the computational concept is a technical problem
lying in the space of a properly implemented set of pro-
gramming interfaces to access the necessary functions on the
necessary platforms.

Conversely, the design of the data concept and the com-
munication concept can be coupled into a special distributed
database. Here and further, we understand under the database
its basic definition: a database is an organized collection of
data. This database should provide the user with an interface
for managing data. Besides, it should manipulate the data
according to the requirements and properties of computational
units and algorithms. Hence, the database should fulfill the
following requirements:

• operating with a set of structures efficient for repre-
senting astrophysical data: tuples, trees (oct-trees, k-d
trees), arrays;

• operating with huge amount of data;

• the native support of hardware accelerators like GPUs
and FPGAs;

• the data should be efficiently distributed between both
cluster nodes and the calculating devices inside of
each node;

• the database should be programmatically scalable: the
user should be able to extend the number of features
in use - architectures; devices; data-structures; data
manipulation schemes and functions; communication
protocols;

• the database should store the data according to the
function, device and platform requirements.

This means that this special database can be seen as a
partitioned global address space (PGAS), which is already
addressed in several existing solutions like Chapel and X10.
But in our approach, we incorporate into the database not only
partitioning of the address space, also other properties specified
above.

Hence in this work, we address only the communication
and data concepts - the design and implementation of a
distributed database. The computational concept is designed
to contain only the algorithms and functions, necessary to
present the capabilities of the database.

B. Database Design

The target data for the ACAF database is a set of states of
some particle system. According to the definition of a particle
system (see Section I), there is no need for our database
to store various data of various types. All parameters of a
particle are some physical properties of it. So in computer
representation, the parameters are usually either integer, float
or double (integral) values. Hence in our database, only these
types of data are considered. A state of some particle system



316

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

can be represented in some computer memory space as an
array of structures, where members of a structure are particle
parameters, e.g., integral data types. Therefore, the ACAF
database is targeted to store only arrays of integral data
elements.

As soon as a particle system usually includes some millions
of particles, it is common and necessary to use computer
clusters and accelerators to simulate its states. So, the aim of
the ACAF is to simplify implementing the simulations tasks
targeted to be run on heterogeneous computer clusters utiliz-
ing as much computational power as possible. The efficient
utilization of any computational device (e.g., processing unit)
becomes possible only when all the parameters necessary for
computation reside in the cheapest memory space in terms of
access latency. The efficient use of low-level memory spaces
(processor registers and near by caches of the unit) is a part
of both compiler implementation and the operating system
scheduler. At the same time, the programmer’s task is to ensure
the presence of data in the nearest high-level memory space
(usually device Random-access memory (RAM)). Moreover, it
is necessary to store data in high-level memory spaces in the
format acceptable with computational algorithms. Hence, raw
arrays are preserved in our database. This provides the direct
access to the parameters of a particle.

The ability of the ACAF database to distribute data between
cluster nodes and devices enables the scalability of data
amount. So, the amount of data to be processed is only limited
to the mutual storage capabilities of cluster nodes and devices.

Distributing data between cluster nodes and devices implies
division and synchronization of data according to the particular
implementation of the computational concept. At the same
time, data synchronization in heterogeneous computer clusters
implies interoperability of different programming technologies
used on different computational devices. Since the ACAF
database is targeted to utilize GPUs, CPUs, FPGAs and a
network, the technologies we have used include:

• OpenCL and pthreads for CPUs;

• OpenCL and CUDA for GPUs;

• OpenCL for FPGAs;

• MPI for a network.

Interoperability of the technologies mentioned above means
the following functionality of the ACAF database: copying
and/or converting of memory buffers from one technology into
another; synchronizing the memory buffer content distributed
between different technologies.

Basing on this information, we have extracted the important
constructing blocks of the ACAF database design. These
blocks are described in the following subsections. And the full
block diagram is shown in Figure 2.

a) Configuration: One of the input data the user should
provide to the database is the configuration of the hetero-
geneous cluster utilization. The database is to be able to
discover automatically the available and supportable hardware
and technologies during the initialization phase. But only the
user can define how to utilize the hardware. Particularly, the
user should specify:

• which network communication interface should be
used, if any;

• which technology should be associated to one or
another device;

• which amount of items should be distributed to the
devices;

• some other miscellaneous device-dependent and
technology-dependent parameters necessary for the
execution.

The configuration is the same for all the running instances
of the project in the cluster.

b) Context: The configuration defines the context for
the database and the framework. The context consists of
the device/technology pairs and the network interface. The
device is a certain C++ object uniquely identifying a certain
hardware device on the particular machine. The technology
is an interface, which declares the necessary functions to
execute the instructions on the supported devices. Only the
supported devices can be coupled with a particular technology.
The technology defines by itself the full set of the supported
devices. Finally, the network interface declares the function set
to perform network communication.

In contrast to the configuration, the context represents the
actual set of devices available in the current system, as well
as the actual device/technology coupling which is possible in
the current framework version and setup.

c) Distribution: The context together with the config-
uration defines the distribution - a collection of the device/-
size and network node/size pairs. So, the distribution keeps
information on the quantity of logical items to be stored on a
certain device. At the same time, the network node sizes are
automatically calculated and broadcasted over the predefined
network interface. The correlation of the logical items count
and the actual physical memory allocation is not a part of the
distribution. The user can define several different distributions
within the same configuration and use them for different aims.

d) Storage Objects: On the other hand, the context as
well defines the storage objects - the instances of the storage
interface, which declares the functional schema of operating
with some physical memory space. Each storage object corre-
sponds to some memory space (physical or virtual) and some
programming interface for accessing this memory space. For
example, the storage object can represent GPU memory space
using OpenCL memory access functions, the main (RAM)
memory space using the C++ memory functions or some
remote network location accessible through the predefined
network interface.

This means that the storage objects work with the low-
level memory interactions. The storage objects do not know
anything about the content of a particular memory block. The
objects operate with byte-sized memory buffers.

e) Input and Output Data Definition: Another input the
user provides is the definition of the input and output data
of the algorithm. This definition describes the format of the
data, the access, communication and synchronization schema,
as well as the correspondence of the logical items count and
the actual internal data items count.

f) Content Objects: Hence, the data description defines
the content objects - the logic how to work with memory. Par-
ticularly, a content object determines the following properties
of the data:



317

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Diagram of ACAF database design.

• the type of the whole data collection;

• the types of the elements;

• the arrangement of the elements in the collection;

• the policy for reading the elements from a memory
block;

• the policy for writing the elements;

• the possible directions and mechanisms of transferring
the data;

• the correlation between the logical sizes defined by
the distribution and the actual physical sizes of data.

g) Buffers: Finally, the content objects, the storage
objects and a distribution define altogether the memory buffers.
A memory buffer represents a range in certain memory space
allocated by the storage object with the data arranged accord-
ing to the content object. The size of the data is determined by
the distribution with regard to the content factor. At the same
time, a memory buffer object itself only contains the reference
to the memory region, the size of this region and the storage
object, which manages this region.

C. Design of Framework

In order to implement and test the abilities of the proposed
database design, it is necessary to develop the computational

concept of the heterogeneous programming problem. The
computational concept is the mathematical representation of
an astrophysical simulation. This means that this concept can
be described with an algorithm, which evolves the state of the
particle system and is able to operate on the data stored in the
memory buffers of the database.

The mathematical background of an astrophysical simula-
tion is a part of any astrophysical research, because this part
represents the mathematical approximation of physical laws.
The physical laws are a subject of the research:

• which laws are involved;

• which influence has a certain law, which of them are
important and which of them can be ignored;

• how the laws work together;

• how a particular law should be approximated in order
to be precise enough.

This means that the computational concept alone requires
good programming skills from the astrophysicists, because
the precision of the simulation depends on the particular
implementation of the mathematical algorithm. The main
difficulty in implementing the mathematical algorithm for a
heterogeneous cluster lies in the necessity to implement the
same algorithm several times for different technologies, which
use different technology-dependent programming languages.



318

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consequently, it becomes reasonable to have some
technology-independent programming language, which can be
used for implementing the mathematical algorithm and can be
afterward translated into the technology-dependent binaries.
But as it was already mentioned, in this work we concen-
trate on the database implementation. Therefore, the proposed
language is left for the future work. Still in this section,
we provide the architectural design of the whole framework,
including the computational concept.

The design of the framework is schematically presented in
Figure 3 together with the elements of the database design (see
Section III-B). Such design includes all the elements necessary
to run an astrophysical simulation on a heterogeneous cluster.

a) Algorithm: Hence, for performing a simulation, the
computational algorithm should be also provided by the user.
The algorithm represents the mathematical approximations of
the physical laws, which are aimed to evolve the state of the
particle system.

b) Implementations: The computational algorithm to-
gether with the context object defines a set of the technology-
dependent and device-targeted implementations. Each imple-
mentation of this set represents a particular set of instructions,
which can be executed on the target device. This means that
each implementation is bound to the technology used in the
current context for the device.

IV. IMPLEMENTATION DESIGN

In order to guarantee the correctness of the framework
implementation and foresee the possible problems, we have
firstly translated the proposed component-based framework
design (see Figure 3) into the implementation design using
the UML diagram. The detailed description of the classes
including some implementation details is provided in Section
V. This section gives the overview of the key mechanisms
and techniques used in the implementation described in the
following subsections.

A. Device Detection Mechanism

As it was described in Subsection III-B the first input data
the framework expects from the user is the configuration. It
provides the information how to utilize the hardware presented
in the cluster. But such a hardware-related specification can be
quite complex due to the big variety of components presented
in the cluster and different possibilities to use these compo-
nents.

Therefore, in order to simplify and minimize the data
necessary for the framework from the user, it was decided
to implement the device detection mechanism. The idea of
this mechanisms lies in detecting the available computational
devices on each node and finding out which technologies can
be used for programming these devices. Finally, the detection
mechanism is to foresee some extending possibility for future
devices and technologies.

Taking all these requirements into account, the mechanism
is divided into 2 logical parts - a collection of indepen-
dent Architecture subclasses and a collection of independent
Technology subclasses. Each Architecture subclass and each
Technology subclass has a descriptive unique string identifier
available for the user (this identifier is not the C++ subclass
name).

Each Architecture subclass represents a device type (CPU,
GPU, FPGA and etc.) and provides an ability to enumerate all
the devices in the current system of this type. The particular
enumeration technique depends on the implementation of the
subclass and the type of the device. In the current framework,
there are 2 subclasses implemented:

• CPUArchitecture enumerates CPU in the system.
Since we have targeted the current implementation
to work with Linux-based clusters, the CPUArchi-
tecture class relies on the information provided in
/proc/cpuinfo file. The class parses the file on the
initialization step and instantiates the Device objects.

• GPUArchitecture enumerates CPU in the system. This
class scans the whole PCI bus of the system in order
to find the devices of the VGA type, which are in fact
GPUs. For each of these devices a Device object is
instantiated.

Each Technology subclass represents a programming inter-
face to interact with the devices. So, the framework requires
that each subclass marks the devices supported by this inter-
face. The marking process can be done in one of the following
ways:

• The subclass checks the devices enumerated on the
previous step by Architecture subclasses and for each
device makes some tests in order to clarify the com-
patibility.

• The subclass scans the system for the available devices
supported by this technology. (Usually, the interfaces
provide the functions, which directly list the devices.)
And then the subclass matches the devices enumerated
by Architecture subclasses and the devices listed by
the technology.

The described device detection mechanism is a part of the
framework initialization. This means that when the framework
is successfully initialized, it has a list of device objects, where
each object corresponds to a certain Architecture subclass and
is supported by some Technology subclasses (none is also
possible).

B. Configuration File

Having the device detection mechanism is not enough to
make the correct decision how to utilize the devices of the
cluster. Notwithstanding the fact that some heuristic-based
decision is still possible, the user should be able to influence
the utilization schema. Therefore, it is necessary to have a
configuration file to specify the following parameters:

1) which of the supported technologies should be se-
lected for the context for each device available in the
system;

2) the fallback behavior in case of the unsuccessful
association between devices and technologies;

3) the desired network interface, if any;
4) one or several distributions, where each distribution

describes a partitioning of the logical units between
the devices and the nodes of the cluster.

Taking into account the device information available after
the framework initialization, it becomes possible to simplify



319

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Diagram of the Astrophysical-oriented Computational multi-Architectural Framework design.

the specification of the device-technology association by re-
questing the user to provide the association using the following
possibilities (in the order of the processing priority):

1) the technology name or the keyword “none” and an
array of the full device names (as it was acquired by
some Architecture subclass);

2) the architecture name and the technology name or the
keyword “none”.

In order to simplify the usage and the implementation of
the configuration file specification it was decided to use the
libconfig[26] format for the file. The file has the following
structure:

• the top-level section “context”, which includes the
device-technology association specified above, includ-
ing the optional parameter “skip”, which indicates
if the unsuccessfully associated devices are to be
skipped;

• the top-level optional parameter “network”, which
specifies the network interface to be used;

• the top-level section “distribution”, which contains one
or several named subsections;

• each named distribution subsection consists of device-
specific blocks: the full device name or the architec-
ture name, size and block vectors.

C. Context, Database and Distribution Initialization

Using the automatically listed devices set and the user-
provided configuration file, the context object can be ini-
tialized. The context initialization is based on parsing the
configuration file and traversing the devices list, which was
previously generated by the device detection mechanism. The
result of the context initialization is a device-technology map.
Only the devices listed in the map will be used later for
the calculation. Another part of the context initialization is
configuring the network interface according to the specification
in the configuration file.

Using the initialized context, the database object can be
initialized. The database initialization lies in the instantiation
of the storage objects, responsible for device- and network-
targeted transactions. The device-targeted storage objects are
instantiated by the associated technology. And the network-
targeted storage objects are instantiated by the network in-
terface. Each storage object is an instance of some Storage
subclass (for different targets there are also other intermedi-
ate interfaces in the class hierarchy such as DeviceStorage,
LocalStorage, NetworkStorage). Each storage object is fully
responsible for providing the communication schema with its
target. The result of the database initialization is a set of
storage objects.

Finally, the initialized context and database make it possi-
ble to instantiate the distribution objects. A distribution object



320

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

describes a certain partitioning of an astrophysical simulation
problem between the different computational devices of the
cluster. The partitioning is based on logical units. The dis-
tribution objects are composed using the initialized context
and the user-provided configuration file. The initialized context
lists the devices, which will be used for the computation,
while a particular subsection of the distribution section in the
configuration file specifies the association of the devices to
some size vector measured in the logical units. The logical
units in the distribution object can represent either the actual
particles count or some relative count, which can be converted
to the particles count in the user-code using some factor.

The distribution initialization is divided into 2 steps:

1) at the first step, each network node initializes its local
distribution for its own devices;

2) at the second step, the network nodes synchronize
the sizes in order to gather the full distribution
information.

D. Content Objects And Buffers Instantiation

As it was described in Subsection III-B, the user also
provides the information about the input and output data of
the algorithm. This information is provided by instantiating
the objects of some Content subclass. Each Content subclass
provides a certain typical logical access schema. This schema
includes the following characteristics:

• the data container type - one-dimensional array, multi-
dimensional array, oct-tree and so on;

• the unit type - some scalar values (such as mass,
temperature), some vector values (position, velocity,
acceleration) or something else;

• the ownership of the data in the multi-storage context
- which copy has the correct values for a certain range
in case of the data being duplicated in several memory
spaces;

• the synchronization mechanism in the multi-storage
context - how the data should be transferred in case
of the data being duplicated and kept up-to-date.

Another part of the content object instantiation is the
memory allocation for storing the parts of data. Therefore,
each content instantiation includes the units distribution object
as a parameter. The units distribution object is generated from
the regular distribution object using some factor. Having the
units distribution, the content object is able to request the
database to allocate the necessary amount of memory in the
storage associated with the device. The result of this allocation
is returned as an instance of a certain Buffer subclass. This
instance includes internally the buffer physical size, the pointer
to the managing storage object, the address of the actual buffer
(an address form depends on the buffer type) and other storage-
specific parameters.

E. The Definition of The Computational Concept

As it was described in Subsection III-C, the computational
concept represents the mathematical algorithm of the particle
system evaluation based on physical laws of the particles
interaction. In the framework context, this mathematical algo-
rithm is represented as a collection of Kernel class instances.

Each instance is parametrized with a collection of technology-
targeted implementations and execution parameters.

The technology-targeted implementations are created using
the device-technology association available in the context and
the technology-specific programming code. For the current
implementation of the framework, the user should provide
all the technology-specific programming code snippets for
the technologies in use. The code will be compiled and
prepared for each device associated with the technology, the
resulting executable binary is represented by an object of
some Implementation subclass. This object encapsulates all the
parameters necessary to run the code on a certain device. All
the device-targeted instances of Implementation subclasses for
the particular mathematical computation are incorporated and
managed by a single Kernel object.

The execution parameters can be either scalar values or
content objects. The scalar values are byte-copied to the target
device memory space. And for each specified content object,
the buffer allocated in the device memory is used.

F. Simulation Execution Principles

Taking all the described mechanisms into account, the user
should perform the following steps for executing a simulation
using the framework:

1) provide a configuration file using libconfig[26] syn-
tax;

2) create the necessary content objects for all non-scalar
distributed algorithm parameters;

3) write technology-specific execution code for all the
technologies in use;

4) create the necessary kernel objects;
5) write the main execution logic using content objects

and kernel objects in C++ language.

The last step usually consists of a time evolving loop. For
each iteration of this loop, some kernels are executed and
some content objects are synchronized. Alternatively, some
output data can be generated. But since the loop is written
in C++ language it can include as many different instructions
as necessary.

G. Considered Limitations

The proposed design considers the following limitations in
the functionality and utilization of the framework:

• The design targets exclusively the data-parallel prob-
lems. Therefore, the implemented framework cannot
be directly utilized for the task-parallel problems. This
limitation is grounded from the properties of the as-
trophysical simulation problems described in Section
I. Moreover, the heterogeneous cluster computing is
usually effective only for the data-parallel problems.

• The design and implementation of the framework
targets x86-64 systems running a Linux Operating
System. This limitation is formed by the statistics
of TOP500 supercomputers, which shows that as of
November 2015 90.6% of the supercomputers are x86-
64 machines and 98.8% of the supercomputers run a
Linux Operating System [27].



321

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The design of the framework preserves the separation
of the computational resources by their type (Archi-
tecture subclasses) and the utilization schema (Tech-
nology subclasses). This separation forces the user
to consider the specifics of the devices and to write
the separate code for different devices in the current
implementation. On the other hand, this limitation
enables the user to finely tune the computation code
for each device according to the utilization schema and
enhances the extendability of the framework in terms
of the supported device types and utilization schemes.

V. CLASSES DESCRIPTION

The suggested database is implemented as a part of the
framework - the ACAF. The implementation is done in C++
language and is organized as a collection of classes. Some of
them are template classes. We concentrate on the key classes
used in the ACAF in this section.

A. Device

The Device class is one of the central classes in the
framework implementation. An instance of this class represents
a device in the current system. The class has the following
private member fields:

• the vendor name as a string field and the vendor
identifier as a variant architecture-dependent field;

• the device name as a string field and the device
identifier as a variant architecture-dependent field;

• the pointer to the instance of the Architecture subclass,
which has created this device object;

• the map of supported technologies and technology-
specific identifiers of the device;

• the set of some architecture-defined, technology-
defined or custom device properties.

Functionally, the Device class is simple and does not
perform any tasks. All modification operations of the device
are not public and can be called only by the friend classes. A
single exception is adding of custom properties.

B. Architecture

The Architecture class is a common interface for all dif-
ferent computational device architectures. Under the device
architecture we understand the design architecture of the de-
vice processing unit, which can be used for the computational
purposes (e.g., CPU, GPU, FPGA etc.). The interface declares
the common member functions and member fields for all the
architecture subclasses. The main function of any Architecture
subclass lies in enumerating the devices of some specific type.
The framework relies on the unambiguous correspondence of
the devices and the supported architectures: there is no such
device, which can belong to more than one architecture.

Additionally, the Architecture class defines the static mech-
anism guarantying that each subclass is instantiated only once
in the scope of one running process. This mechanism is
based on the statical singleton instantiation of the Architecture
subclasses during the framework library loading. All instances
are stored in the static name-object map. Only the instances
in the map will be taken into account by the framework.

To support some other computational architectures as the
predefined ones, the user should implement another subclass
of the Architecture class. The new subclass should provide the
framework with the actual implementations of 2 pure virtual
methods of the interface:

• getName - returns the name of the architecture;

• rescan - rescans the entire system in order to detect all
available devices of the current architecture type; and
stores the appropriate Device instances in the member
variable.

The current framework implementation includes 2 sub-
classes of the Architecture class: CPUArchitecture and GPUAr-
chitecture.

C. Technology

The Technology class is a common interface for all com-
putational technologies. The interface declares the common
member functions and member fields for all the computational
technology subclasses. Any Technology subclass implements
the following interface functions:

• getName - returns the name of the technology;

• rescan - scans the entire system to identify the devices
supported by the technology and matches the devices,
which were previously listed by some Architecture
subclass. The matched instances are marked as sup-
ported with the technology. The particular matching
mechanism depends on the technology type and the
implementation: some technology can enumerate the
devices directly, the other check the devices listed by
the architectures to fulfill some criteria;

• getStorage - for each supported device the subclass
should provide an instance of some Storage subclass,
which is able to manage the device memory space;

• implement - for each supported device the sub-
class should provide an instance of some Technol-
ogy::Implementation subclass, which is able to exe-
cute some programming code or some binary on the
device. Usually, each Technology subclass provides
also an implementation of the appropriate Technol-
ogy::Implementation subclass.

The Technology class guarantees the singleton instantiation
of the subclasses during the framework loading in the same
way as the Architecture class.

Extending of the supported computational technologies can
be done by implementing another subclass of the Technology
class. The new subclass should provide the framework with
the actual implementations of the 4 pure virtual methods
mentioned above.

The current framework implementation includes 3 sub-
classes of the Technology class: PthreadTechnology, Open-
CLTechnology and CUDATechnology.

D. Network

The Network class is a common interface for different net-
work interfaces. The interface declares the common member
functions and member fields for all the network subclasses.
The main function of any Network subclass lies in defining
the communication between the different nodes of the network.



322

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Network object is a singleton for each running instance of
the program. This means that only one instance of a particular
Network subclass can exist in the scope of a single running
process.

To support some other network interfaces as the predefined
ones, the user should implement another subclass of the
Network class. The new subclass should provide the framework
with the actual implementations of the 10 pure virtual methods
of the interface:

• getNodesCount -returns the total number of the nodes
in the network;

• getMyNodeIdx - returns the current node identifier;

• allgather - gathers the whole buffer from all the nodes;

• alltoall - gathers the whole buffer from all the nodes
and redistributes it again between all the nodes;

• send bcast - sends a broadcasting message to all the
nodes in the same network as the current node;

• recv bcast - receives a broadcasting message from the
node;

• send - sends the content of some buffer to the remote
buffer;

• recv - receives the content of the remote buffer in some
local buffer;

• init - initializes the instance of the class;

• instantiate - for each node in the network creates an
instance of some NetworkStorage subclass and adds it
to the database.

The current framework implementation includes 1 subclass
of the Network class: MPINetwork.

E. Context

The Context class represents a map of device-technology
pairs. Each pair describes the utilization schema of the device
presented in the system. The context is a singleton object
for each running instance of the program. The context is
initialized using the global ACAF::config based configuration.
The Context class also hosts an instance of the Database class.
When the initialization of the context is finished, the member
database will be also initialized.

F. Storage

The Storage class is the interface for all the framework
entities, which represent the engines for writing and reading
the data to/from some memory space. All actual storage
entities should inherit this class directly or indirectly in order
to be correctly processed by the other framework entities. The
interface class contains the declarations of the basic functions
and also the trivial implementations for some of them. The
interface class holds a collection of all owned memory buffers
as a map of buffer-content pairs. All created buffers represent
some pieces of memory with no connection to the particular
format of the stored data (Content class). The most important
methods of the class include:

• init - initializes the current instance of the class. The
basic implementation adds the current instance to the
database set of storage objects. All subclasses should
call the parent init function in order to make sure that
all the parts of the class are correctly initialized.

• create - creates a new buffer object for the specified
content object and the necessary physical buffer size.
Every Storage subclass creates an instance of some
particular buffer class, which fits the aims and the
functionality of the class.

• find - for the specified content finds the buffers owned
by this storage object.

• isSame - checks if the current instance represents the
same memory space as the instance passed over the
arguments.

Usually, the actual storage objects do not inherit the
Storage class directly, but inherit special subclasses, designed
to simplify the implementation. Still, the user is able to extend
the framework according to the research needs and implement
the new storage types inheriting either the Storage class itself
or some of its subclasses.

Storage::Buffer is an inner class of the Storage class. It
declares the main interface for the buffer objects. A buffer
object is a wrapper for some region in some memory space.
The Storage::Buffer class declares the general functions for all
the buffer subclasses. It is supposed that the actual memory
space wrapped with the particular buffer object is used only
by the “parent” storage class and its subclasses. Therefore,
the Storage::Buffer class does not declare any memory access
functions. The interface has one pure virtual function - isSame,
which checks if the current buffer object wraps the same
memory region as the object passed over the arguments.

G. Content

The Content class is a base interface for all the classes,
which represent the data layout for some physical memory
block. Each final implementation of the Content interface
stores the full set of the buffers. This corresponds to the whole
data range processed in the application. The interface declares
some common functions for all the content objects:

• fill - fills the whole data range with some constant
value;

• random - fills the whole data range with some random
values;

• synchronize - synchronizes the content of the buffers
in the current node with the other network nodes;

• isSame - checks if the current content object represents
the same data as the one passed over the function
arguments.

Each Content object is bound to some Context instance,
since it defines which devices and network nodes are taken
into account. It is supposed that Content objects should only be
instantiated by some Database instance. But the user is able to
implement any other classes, which correspond to the Content
class concept, extending the possibilities of the framework.
The current framework implementation provides 2 contents: a
local array and a synced array.

H. Database

The Database class represents the central storage for all the
data-related objects in the framework environment. Primary the
database holds the following objects:

• a set of the Storage objects, where each object refers
to some memory space (see Subsection V-F);



323

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• a map of the named Content objects, where each
object represents some data layout schema used in the
user application (see Subsection V-G).

And if the storage objects are created by some other
entities of the framework and just added to the appropriate
Database instance, the Content objects are directly instantiated
by the Database instance. For this purposes, the class defines
a template function create, which takes a particular subclass
of the Content class as a template argument. Also, the create
function needs a name for the content and an instance of the
UnitsDistribution class to initialize the newly created content
object and to add it to the named map.

I. Kernel

The Kernel class represents a function running distribu-
tively with all its implementations for the available devices
and all the necessary function arguments. The Kernel class is
an end-user class. This means that the framework user is able
to instantiate as many objects as necessary. The class provides
the following manipulation functions:

• add - creates and adds an implementation of the
kernel. The actual creation of the implementation
object is forwarded further to the specified technology
instance. The creation of the implementation object
is done separately for each device assigned to the
specified technology. Only the devices in the context
of the kernel are taken into account.

• set - adds a value or a Content object to the list of
the arguments of the kernel. A scalar argument value
is passed to each implementation as it is. And the
Content object is passed to each implementation in
the form of the buffer corresponding to the device,
where the implementation is executed.

• start - triggers the concurrent execution of all the
available implementations of the kernel.

The order of the described functions reflects the usual work
flow with a kernel object:

1) The user creates a named kernel object.
2) The user adds several implementations of the kernel

for different technologies.
3) The user sets the necessary execution parameters of

the kernel.
4) The user starts the kernel execution.

J. Extending the ACAF

The user has an opportunity to extend the functionality of
the ACAF by implementing the other ancestor classes of the
following entities:

• Architecture - to support other device types;

• Technology - to support other programming technolo-
gies;

• Network - to support other network protocols;

• Content - to support other logical data organizations.

VI. USAGE EXAMPLE

A running example of ACAF usage is represented with
several parts: the configuration, the mathematical algorithm
implementation and the environmental host code. The provided
example represents the code necessary for running distributed
NBody simulation on a cluster using MPI for network commu-
nication, pthread technology for CPU code and OpenCL tech-
nology for GPU code. Any changes in the resource utilization
can be made by modifying the configuration file without any
need to recompile the program.

A. Configuration File

A configuration file contains the network protocol, the
context specification and possible distribution descriptions (see
Figure 4).

Figure 4. The configuration example.

As it was described in Subsection III-B, the example
configuration file provides the framework with the hardware
utilization schema. Particularly, line-by-line the example file
defines the following:

1) The “network” parameter defines that MPI should be
used for the network communication within the clus-
ter network. The calculation will be distributed over
all the active nodes of the cluster. Eliminating this
parameter will lead to the single-node computation.

2) The “context” parameter provides the textual context
definition. All the CPU devices will be utilized by the
pthread technology; all the GPU devices will be uti-
lized by the OpenCL technology; all the other devices
or the devices of the previous type not supported by
these technologies will be skipped without producing
any errors. Changing the “skip” parameter to value
“false” will lead to the errors if there are any CPUs
or GPUs not-supported by the assigned technologies.

3) The “distribution” section defines one entity with
the name “default”, which prescribes the following
partitioning of the problem:

a) Each GPU device processes 1024 items per
iteration, calculating 256 items per work
group.

b) Each CPU device processes 256 items per
iteration, calculating 4 items per thread job.

B. Algorithm Code (OpenCL and pthread)

According to the technologies specified in the configuration
file and the host code initialization routine, the mathematical
algorithm should be implemented for one or several tech-
nologies. In our example, the algorithm is implemented for
OpenCL (see Figure 5) and pthread (see Figure 6) tech-
nologies, using respectively OpenCL C language and C++
language. The code of OpenCL implementation is represented
as a separate file, while pthread implementation code is a part



324

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the environmental host code and passed to ACAF as a
pointer to the function.

Figure 5. The OpenCL algorithm example.

Figure 6. The pthread algorithm example.

C. Environmental Host Code

Finally, the environmental host code represents the main
function with initialization instructions, content creations, ker-
nel instantiations and kernel running calls written in C++
programming language with the usage of the classes described
in Section IV (see Figure 7).

This main function implementation provides the basic
necessary code to initialize correctly the environment, to
instantiate the entities, to perform the particle system evolving
loop and to clean up the objects.

• The initialization step includes 2 function calls:
MPI Init and acaf::initialize. According to the MPI
user manual, the MPI Init should always be the first
function call of the application. Therefore, it is im-
possible to integrate it as a part of the framework
initialization.

• The instantiation of the entities includes: the distribu-
tion creation using the configuration file; the contents
creation and initialization (the masses are set to 1;
the positions are randomized in the range between
(−1,−1,−1) and (1, 1, 1); the velocities are set to

Figure 7. The main function example.

(0, 0, 0)); the kernel creation and adding the available
implementations and arguments.

• The particle system evolving loop consists of syn-
chronous execution of the kernel, synchronizing the
positions and proceeding to the next time frame.

• Finally, the clean up of the environment also in-
cludes 2 function calls symmetric to the initialization:
MPI Finalize and acaf::finalize.

VII. BENCHMARKING

To evaluate the framework using some measurable met-
rics, benchmarking with different parameters was performed.
Benchmarking includes executing the usage example with
different number of particles, different configurations (with or
without some devices, with or without network utilization).
The execution times for all different runs are combined in
Figures 8, 9 and 10.



325

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The full comparison chart of running the code on a different
number of nodes.

Figure 9. The lower range comparison chart of running the code on a
different number of nodes.

The comparison charts show that the most efficient way
to run the computation on the heterogeneous cluster using the
ACAF is a distributed computation performed on GPU only.
The deeper analysis of the execution times of the simulation
within the different numbers of nodes shows:

• the average ratio of the execution times between
2 nodes configuration and 1 node configuration is
1.971x;

• the average ratio of the execution times between
4 nodes configuration and 2 nodes configuration is
1.97x;

• the average ratio of the execution times between
4 nodes configuration and 1 node configuration is
3.882x.

These ratios are quite near the ideal ratios 2, 2 and 4. This
proofs the efficiency of the distribution mechanisms based in
the design and implemented in the framework. The average
ratios mentioned above consider only the distribution-effective

Figure 10. The comparison chart of running the code with different
hardware configurations.

execution times, particularly, the cases with at least 81920
particles. For the lower amount of particles, the network
transferring overhead drops the whole performance of the
computation.

The comparison of different device configurations (GPU
only, CPU and GPU, CPU only) shows that the GPU com-
putation is 40x times faster, than CPU computation. This
speed-up factor also explains that combining CPU and GPU
computations makes no sense for the lower number of particles
being 10x times slower as the GPU computation and 4x faster
as the CPU computation.

Additionally, the comparison of the framework perfor-
mance against the bare code performance was done. This
comparison shows what is the overhead of using the frame-
work. The bare simulation code consists of the network-
distributed computations performed on GPU using the same
OpenCL kernel. Figure 11 represents the percent overhead of
the execution time of the usage example to the execution time
of the bare implementation scaled over the particles number
in the example system.

Figure 11. The comparison chart of the ACAF-based implementation to the
bare implementation.

According to this chart, we can state that the time overhead
of using ACAF approximates 0 for the bigger particle systems
and is equal to 4 seconds for the case of 1310720 particles.



326

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The tests were carried out on the following test platform:
the 7-nodes cluster with 4 processing nodes, each of them
has the NVIDIA GeForce GTX 285 GPU with 2GB of RAM,
the Intel Xeon E5504 CPU and 6GB of RAM. The nodes run
Linux OS. For each test the calculation was equally distributed
over all 4 processing nodes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the design details, the im-
plementation aspects and some benchmarking results for the
Astrophysical-oriented Computational multi-Architectural Fra-
mework. The ACAF is targeted to simplify the software
development for astrophysical simulations implementation by
providing the user with the set of objects and functions
covering some aspects of application developing.

In the current work, we focused on the communication and
the data concepts of software development problem designing
the special distributed database. The database is aimed to
process particle systems with float and/or double (integral)
parameters. The database aims to store data in high-level
memory spaces in the format acceptable with computational
algorithms.

The current database implementation utilizes pthreads,
OpenCL and CUDA technologies to run the calculation on
CPU and GPU devices and MPI interface to distribute and
exchange data over the network. The implementation uses 2
types of content: local array and synced array. Extending of
the database functionality can be easily done by implementing
the certain program interfaces.

We can conclude that the current ACAF implementation
facilitates the development of network-enabled heterogeneous
NBody force simulation program. With the help of ACAF, the
user is able to write an application without the expertise neither
in the network programming nor in the parallel programming
of some devices (CPU, GPU). ACAF requires the user to do
the following tasks:

• Write the configuration file, which specifies the de-
vices and nodes to be used and defines the distribution
of the data.

• Implement the mathematical, physical part of the
program.

• Write the environmental code, which does the ini-
tialization, data definition, data initialization, kernel
instantiation and defines the main particle system
evaluation loop.

The following advantages can be mentioned as a result of
comparing the final framework design and its implementation
with the other approaches mentioned in Section II-B and the
bare simulation code implementation :

1) The design of the framework prescribes the clear
separation of the data mechanisms from the compu-
tational code and the environmental code. The data
operations are managed by the data-relevant entities
of the framework: Database, Storage, Content. This
enables a possibility to encapsulate the necessary
complex data operations: distribution of the data, its
transferring, its synchronizing and etc.

2) The data operations are also separated logically ac-
cording to the type of the operation: data allocating

and transferring is managed by Storage classes, data
interpretation and logic operations on the data are
managed by Content classes, while the Database
class guarantees the correct functionality and provides
some misc functions. Such splitting helps to extend
only the necessary framework parts.

3) The framework also splits the simulation implemen-
tation into several logical parts, which makes the
coding task transparent:

• the configuration file specifies the devices and
nodes to be used and defines the distribution
of the data;

• the kernel implementations represent mathe-
matical and physical parts of the code;

• the environmental code does the initializa-
tion, data definition, data initialization, kernel
instantiation and defines the main particle
system evaluation loop.

4) The framework is designed as a C++ framework. This
means that the user and the framework developer have
an access to a big range of different powerful system
calls and a variety of computational libraries and
tools. So, the user has a choice either to reimplement
the algorithm using the framework tools or to reuse
the existing solution. Moreover, the availability of
the system calls provides an option of performance-
targeted tuning of the final application.

5) The framework encapsulates the device-specific oper-
ations using the Architecture and Technology classes.
The encapsulation of the operations implies that the
final user should not know and use some device-
specific functions, libraries and tools. The framework
classes separate also the functional aspects of the
work with some device: Architecture class enables the
devices of some specific type to be recognized and
used by the framework; Technology class focuses on
the device utilization schema. This separation facili-
tates the extension possibilities of the framework: the
developer is able to target one of the aspects.

6) The framework also encapsulates the network-
distributed communications and computations. This
encapsulation enables the final users to avoid the
network-related operations and to switch easily be-
tween the single-node configuration and the multi-
nodes configuration.

Meanwhile, the current implementation of the framework
has the following limitations and disadvantages:

1) The framework requires the knowledge and usage
of the technology-targeted computational languages
to utilize the computational devices, like OpenCL
C and CUDA C for utilizing GPU. The computa-
tional kernel used by the framework to execute the
actual calculations, should be implemented by the
user for each technology combined in the current
computational context. To avoid the necessity of
having the individual kernel implementations for each
technology, it is mandatory to design and implement
some common parallel programming language, which
can be further translated into the technology-specific
languages. Still, it is crucial to preserve an ability to



327

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

use the native technology-specific programming lan-
guages in order to be able to finely tune a particular
computational code.

2) Additionally to the technology-targeted programming
languages requirement, the reentrance of the user-
defined computational code is necessary, which com-
plicates the implementation of the kernel for different
devices. At the same time, the wrongly implemented
kernel executed simultaneously on different data can
lead to hard-recognizable incorrect results.

3) In comparison to the other approaches described
in Subsection II-B, the proposed framework design
still requires a lot of coding work to be done. The
amount of coding can be reduced by implementing
the Domain-Specific Language as a layer over the
framework functionality.

4) The framework targets exclusively the data-parallel
problems, particularly, the particle problems. The
framework does not fit for the task-parallel prob-
lems. Utilizing the framework for some other data-
parallel problems rather than the particle problems
may require an implementation of some other Content
subclasses.

5) There is no possibility to provide immediately some
user-driven testing of the framework, since the main
advantage of many other approaches (like Flash Code
framework, see Subsection II-B) is availability of
many different ready-to-use modules, the combina-
tion of which leads to the necessary solution. This
means that the implemented framework misses the
set of built-in modules/functions/classes, which will
serve the same purpose.

6) Also the chosen programming language C++ is not
an optimal one, because the most of the astrophysi-
cists work at the current moment with Fortran90.
This means that the actual using of the framework
will imply the change of the working programming
language.

The future work on the framework can be performed by
extending it with the following features:

• The tree-structure content classes, which can be di-
rectly utilized for advanced SPH and NBody simu-
lations. Such classes will significantly enhance the
usability of the framework. The usage of the octree
structures in the particle problems is the effective
method in case of a big number of particles.

• The current implementation of the pthread technology
provides an ability to implement a kernel within a
pointer to the function of the particular semantic. Such
usage schema is not optimal for the big projects with
many different kernels. Therefore, it makes sense to
have the dynamic calls to the functions for the pthread
technology. The most reasonable way to implement
the dynamic calling to the functions consists of using
the third-party library “dyncall”. The library also en-
capsulates the dynamic function semantic additionally
to encapsulating the dynamic calls. This means that
the arguments to the function will be passed directly
without wrapping them into the acaf::variant vector
collection.

• The actual error handling mechanism relies on the
initialization order of the error codes. This means that
the particular integer error codes are dynamic and can
differ within several runs of the same code on different
machines. Such inconstant error codes complicate the
integration of the framework into the complex appli-
cations, since the client application cannot process
the errors by the integer codes. Therefore, the error
handling should be revised to make the integer error
codes more persistent.

• The current content classes provide only the full data
range synchronization. This limitation prevents the
framework usage for the very big data on the cluster
with poor local storage capacities, when the full range
of all the necessary data cannot be stored at once in
the local memory. In this case, the computation of
a single iteration is usually split into several steps.
To support such processing schema, the framework
needs the content classes for the partially synchronized
arrays.

• Another useful feature for the framework is the sup-
port of astrophysical-native file formats: Hierarchical
Data Format version 5 (HDF5), Flexible Image Trans-
port System (FITS), etc. Such support will make it
possible to initialize the data and report the results
in the necessary formats without an additional effort
from the user.

• Finally, the most valuable modification of the frame-
work lies in designing and implementing of the Do-
main Specific Language, which is to encapsulate the
current numerous framework function calls into the
language commands. This modification will make the
usage of the framework even more transparent and
will significantly decrease the amount of the necessary
coding work. Still, the language should preserve an
ability to switch to the direct framework calls and to
provide the kernel implementation in the technology-
native programming languages.

REFERENCES

[1] D. Razmyslovich, G. Marcus, and R. Männer, “Towards an
astrophysical-oriented computational multi-architectural framework,” in
COMPUTATION TOOLS 2016 : The Seventh International Conference
on Computational Logics, Algebras, Programming, Tools, and Bench-
marking. IARIA, 2016, pp. 19 – 26.

[2] N. Nakasato, G. Ogiya, Y. Miki, M. Mori, and K. Nomoto,
“Astrophysical Particle Simulations on Heterogeneous CPU-GPU
Systems,” Jun. 2012. [Online]. Available: http://arxiv.org/abs/1206.1199

[3] R. Spurzem et al., “Astrophysical particle simulations with large custom
GPU clusters on three continents,” Computer Science - Research and
Development, vol. 26, no. 3-4, Apr. 2011, pp. 145–151. [Online]. Avail-
able: http://www.springerlink.com/index/10.1007/s00450-011-0173-1

[4] T. Hamada and K. Nitadori, “190 TFlops Astrophysical N-body Sim-
ulation on a Cluster of GPUs,” in 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, no. November. IEEE, Nov. 2010, pp. 1–9.

[5] S. Braibant, G. Giacomelli, and M. Spurio, Particles and fundamental
interactions: an introduction to particle physics, 2nd ed. Springer,
2011.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (2Nd Ed.): Portable
Parallel Programming with the Message-passing Interface. Cambridge,
MA, USA: MIT Press, 1999.



328

International Journal on Advances in Intelligent Systems, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and
D. Panda, “Mvapich2-gpu: optimized gpu to gpu communication
for infiniband clusters,” Computer Science - Research and
Development, vol. 26, no. 3-4, 2011, pp. 257–266. [Online].
Available: http://dx.doi.org/10.1007/s00450-011-0171-3

[8] L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” IEEE Comput. Sci. Eng.,
vol. 5, no. 1, Jan. 1998, pp. 46–55. [Online]. Available:
http://dx.doi.org/10.1109/99.660313

[9] Khronos Group - OpenCL. [Online]. Available:
http://www.khronos.org/opencl [retrieved: Nov., 2016]

[10] CLara. [Online]. Available: https://www.alpha-
tierchen.de/ bkoenig/clara/ [retrieved: Nov., 2016]

[11] Khronos Group - SyCL. [Online]. Available:
http://www.khronos.org/sycl [retrieved: Nov., 2016]

[12] A. Dubey et al., “A survey of high level frameworks in block-structured
adaptive mesh refinement packages,” Journal of Parallel and Distributed
Computing, 2014.

[13] T. Goodale et al., “The Cactus framework and toolkit: Design and
applications,” in Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer Science. Berlin:
Springer, 2003. [Online]. Available: http://edoc.mpg.de/3341

[14] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn, “Scaling hierarchical n-body simulations on gpu clusters.”
in SC. IEEE, 2010, pp. 1–11. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sc/sc2010.html

[15] B. Chamberlain, “Chapel (cray inc. hpcs language).” in
Encyclopedia of Parallel Computing, D. A. Padua, Ed.
Springer, 2011, pp. 249–256. [Online]. Available: http://dblp.uni-
trier.de/db/reference/parallel/parallel2011.html

[16] A. Dubey et al., “The software development process of flash,
a multiphysics simulation code.” in SE-CSE@ICSE, J. Carver,
Ed. IEEE, 2013, pp. 1–8. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icse/secse2013.html

[17] B. Fryxell et al., “FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes,” Astrophys.
J. Supp., vol. 131, Nov. 2000, pp. 273–334. [Online]. Available:
http://dx.doi.org/10.1086/317361

[18] S. Zwart, “The astronomical multipurpose software environment
and the ecology of star clusters.” in CCGRID. IEEE
Computer Society, 2013, p. 202. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ccgrid/ccgrid2013.html

[19] S. Dindar et al., “Swarm-ng: a cuda library for parallel n-
body integrations with focus on simulations of planetary systems,”
CoRR, vol. abs/1208.1157, 2012. [Online]. Available: http://dblp.uni-
trier.de/db/journals/corr/corr1208.html

[20] The Enzo project. [Online]. Available: http://enzo-project.org/
[retrieved: Nov., 2016]

[21] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” CoRR, vol. abs/1411.1607,
2014. [Online]. Available: http://arxiv.org/abs/1411.1607

[22] P. Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” SIGPLAN Not., vol. 40, no. 10, Oct. 2005, pp. 519–
538. [Online]. Available: http://doi.acm.org/10.1145/1103845.1094852

[23] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, “WaLBerla:
HPC software design for computational engineering simulations,”
Journal of Computational Science, vol. 2, no. 2, May 2011, pp. 105–
112. [Online]. Available: http://dx.doi.org/10.1016/j.jocs.2011.01.004

[24] I. Antcheva et al., “{ROOT} - a c++ framework for
petabyte data storage, statistical analysis and visualization,”
Computer Physics Communications, vol. 180, no. 12, 2009,
pp. 2499 – 2512, 40 {YEARS} {OF} CPC: A celebratory
issue focused on quality software for high performance,
grid and novel computing architectures. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010465509002550

[25] A. Lazzaro, S. Jarp, J. Leduc, A. Nowak, and L. Valsan, “Report
on the parallelization of the MLfit benchmark using OpenMP and
MPI,” CERN, Geneva, Tech. Rep. CERN-OPEN-2014-030, Jul 2012.
[Online]. Available: https://cds.cern.ch/record/1696947

[26] libconfig – C/C++ configuration file library. [Online]. Available:
http://www.hyperrealm.com/libconfig/ [retrieved: Nov., 2016]

[27] TOP500. [Online]. Available: https://en.wikipedia.org/wiki/TOP500
[retrieved: Nov., 2016]


