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Abstract—Metamodeling of simulation results with radial basis 
functions (RBF) is an efficient method for the continuous 
representation of objectives in parametric optimization. In the 
multi-objective case a detection of non-convex Pareto fronts is 
especially difficult, which is a point where many simple 
algorithms fail. In this paper we consider different 
formulations of the multi-objective optimization problem: as a 
sequential linear program (SLP), as a sequential quadratic 
program (SQP) and as a generic nonlinear program (NLP). We 
compare their efficiency and apply them in three realistic test 
cases. In the first application we consider a bi-objective 
optimization problem from non-invasive tumor therapy 
planning, where the typical goal is to maximize the level of 
tumor destruction and to minimize the influence to healthy 
organs. The second application case is safety assessment in 
automotive design. Here the crash intrusion in the driver and 
passenger compartment is minimized together with the total 
mass of the vehicle. The third application comes from the 
simulation of gas transport networks, where the goal is to fulfil 
the contract values, such as incoming pressure and outgoing 
flow delivery, providing the best energetic efficiency of the 
transport. 

Keywords-complex computing in application domains; advanced 
computing in simulation systems; advanced computing for 
statistics and optimization.  

I.  INTRODUCTION 
This paper is a continuation of our previous work [1], 

significantly extended by new material. Particularly, in the 
paper [1] we have proposed three algorithms for the 
detection of non-convex Pareto fronts in multi-objective 
optimization problems, where the objectives are represented 
by RBF metamodels. The algorithms have been applied to a 
bi-objective optimization problem in focused ultrasonic 
therapy planning. In the current paper we give more details 
on the implementation of the algorithms and present two 
more applications. The first application is a bi-objective 
optimization problem in the field of automotive design. The 
statement of the problem has been given in [2], while the 
special methods for finding non-convex Pareto fronts 
described in this paper have never been applied to this 
problem and we do it here for the first time. The next 
application is a four-objective problem in optimization of gas 
transport networks, which has not been considered before. 
Here we give the detailed statement of the problem and find 

an optimal solution, providing 27% energy savings for the 
realistic network. 

Related work on metamodeling techniques, multi-
objective optimization and their industrial applications is 
presented in [2-8]. Our contribution with regard to the state-
of-the-art is the development of efficient algorithms for 
detection of non-convex Pareto fronts in combination with 
RBF metamodeling of objectives. 

RBF metamodeling is often used in applied problems for 
the continuous representation of optimization objectives 
from a discrete set of simulation results. It represents the 
interpolated function f(x) as a linear combination of special 
functions Φ() depending only on the distance to the sample 
points xk: 

 
 f(x) = ∑ k=1..Nexp ck Φ(|x-xk|).  (1) 

  
The coefficients ck in (1) can be found from known 

function values in sample points f(xk) by solving a 
moderately sized linear system with a matrix Φkn =Φ(|xk-xn|). 
A suitable choice for the RBF is the multi-quadric function 
Φ(r)=(b2+r2)1/2, b=Const, which provides non-degeneracy of 
the interpolation matrix for all finite datasets of distinct 
points and all dimensions [3]. RBF interpolation can be 
extended by adding polynomial terms, allowing the exact 
reconstruction of polynomial (including linear) dependencies 
and generally an improved precision of interpolation. The 
number of points should be greater than the number of 
available monomials to avoid overfitting. An adaptive 
sampling and a hierarchy of metamodels with appropriate 
transition rules are used for further precision improvement. 
RBF metamodels are directly applicable to the interpolation 
of high dimensional bulky data, e.g., complete simulation 
results can be interpolated at a rate linear in the size of the 
data, and even faster in combination with PCA-based 
dimensional reduction techniques.  The precision can be 
controlled via a cross-validation procedure. RBF 
metamodels, enhanced in this way, are a part of our software 
tool for design parameter optimization DesParO [2,4,5]. 

Single objective optimization selects a point in parameter 
space, providing an optimum (e.g., maximum) of the 
objective function. In multi-objective optimization the 
optimum is not an isolated point but a hypersurface (Pareto 
front, [6]) composed of points satisfying a tradeoff property, 
i.e., none of the objectives can be improved without 
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simultaneous degradation of at least one other objective. 
E.g., for a bi-objective problem, the Pareto front is a curve 
on the 2D plane of the objectives bounding the region of 
possible solutions. Efficient methods have been previously 
developed for determining the Pareto front. 

The simplest way is to convert multi-objective 
optimization to single objective one, by linearly combining 
all objectives into a single target function  

 
 t(x)= ∑ wi fi(x)  (2) 
 
with user-defined constant weights wi. Maximization of the 
target function (2) gives one point on the Pareto front, while 
varying the weights allows to cover the whole Pareto front. 
In this way only convex Pareto fronts can be detected, 
because non-convex Pareto fronts do not produce maxima 
but saddle points of the target function. For non-convex 
Pareto fronts this method just skips non-convex segments 
and jumps to the nearest convex part. 

There are methods also applicable to problems with  non-
convex Pareto fronts. The non-dominated set algorithm 
(NDSA) finds a discrete analogue of the Pareto front in a 
finite set of points. For two points f and g in optimization 
criteria space the first one is said to be dominated by the 
second one if fi ≤ gi holds for all i=1..Ncrit , where Ncrit is a 
number of objectives (optimization criteria). A point f 
belongs to the non-dominated set if there does not exist 
another point g dominating f. There is a recursive procedure 
[7] finding all non-dominated points in a given finite set. The 
drawback of the algorithm is an extremely large number of 
samples necessary to populate multidimensional regions for 
a good approximation of the Pareto front. 

The normal boundary intersection method (NBI) [8] 
provides a good heuristic for sampling the Pareto front. The 
idea is to find individual minima of objectives, to construct 
their convex hull, to sample it, e.g., with Delaunay 
tessellation, to build normals in tesselation points and finally 
to intersect them with the boundary of the par → crit 
mapping. The approach has problems, e.g., at Ncrit>2, when 
non-Pareto points or not all Pareto points are covered, or if 
the number of minima is >Ncrit, when several local Pareto 
fronts can be mixed together. 

Meanwhile, practical applications just require an 
elementary algorithm that performs a local improvement of a 
current design towards the optimum. Being iterated such an 
algorithm proceeds towards the Pareto front. For 
definiteness, an improvement direction in the space of 
objectives can be fixed, e.g., if at every step all objectives are 
improved by a given increment. The algorithm stops when 
no further improvement in the given direction is possible. 
Normally it happens when the solver reaches the Pareto 
front. Convex or non-convex Pareto fronts can be 
encountered and the algorithm should work equally efficient 
for both. The improvement can also stop at a non-Pareto 
boundary point. In this case the algorithm is allowed to 
return another point on Pareto front, which does not 
necessarily belong to the original improvement direction.  

In Sections II-V we consider different approaches for this 
algorithm: sequential linear programming (SLP), sequential 

quadratic programming (SQP) and generic 1- or 2-phase 
nonlinear programming (NLP). We also consider the 
question of scalarization, i.e., the possibility to reformulate 
the multi-objective optimization problem as constrained 
optimization with a single objective, which allows to employ 
available NLP solvers for its solution. In Section VI we 
discuss the implementation details of the algorithms. In 
Sections VII-IX we describe the applications of the 
algorithms to the optimization problems in focused 
ultrasonic therapy planning, safety assessment in automotive 
design and simulation of gas transport networks, 
respectively. The relative benefits of the algorithms are 
summarized in Section X. 

 

II. USING SEQUENTIAL LINEAR PROGRAMMING 
Considering RBF metamodels (1) and linearizing the 

mapping y=f(x) using the Jacobi matrix Jij=∂yi/∂xj, let us 
define a polyhedron of possible variations 

 
 Πε: ∆y=J∆x , ∆y ≥ ε > 0 , -δ ≤ ∆x  ≤ δ,  (3) 

xmin ≤ x+∆x ≤ xmax  , ymin ≤ y+∆y ≤ ymax. 
 

Here we require that all criteria ∆y are improved, 
parameter variations ∆x are bounded in a trust region [-δ,δ] 
for linear approximation, while parameters and criteria 
satisfy bounding box or other polyhedral restrictions in xy-
space. By requiring in (3) that a maximally possible 
improvement of the criteria in Πε is achieved, we formulate 
a linear program that can be solved, e.g., by the simplex 
method [9] and repeated sequentially:  

 
Algorithm SLP: 

   Solve LP: max ε, s.t. (∆x,∆y)∈Πε. 
   Repeat steps x+∆x → x until convergence.  
 

The algorithm terminates at the Pareto front, where no 
further improvements are possible. 

 
Property [9]: In general position the LP-optimum is 
achieved in the corners of the polyhedron Πε. 

 
E.g., ∆y=ε corresponds to linear trajectories in y-space, 

|∆x|=δ corresponds to linear trajectories in x-space. 
Therefore, the method tends to generate linear trajectories in 
certain projections. 

SLP is formulated above for the case dim(x)=dim(y). At 
dim(x)<dim(y) the multi-objective problem is ill defined, 
i.e., full dimensional regions in parameter space become 
Pareto equivalent. At dim(x)>dim(y) there are unstable 
directions from the kernel of Jacobi matrix Ker(J): J∆x=0, 
i.e., there are ∆x not influencing ∆y. These directions can be 
suppressed by the additional condition J⊥∆x=0, where J⊥ is 
the orthogonal complement to J, constructed, e.g., with the 
Gram-Schmidt algorithm. 
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Example: Let us consider a fold transform: |y|=2|x|/(1+|x|2), 
shown in Fig. 1 for the 2D case. An upper right arc 
corresponds to a global Pareto front (PF) max y1,y2. There is 
also a degenerate local PF at y1,2=-0, corresponding to an 
image of x1,2=-∞. 

The SLP algorithm generates trajectories shown by red 
lines in Fig. 1, in x-space in the left column and in y-space 
in the right column. The algorithm reconstructs correctly 
both global and local PFs, shown by blue points in the 
images. The bottom closeups demonstrate piecewise linear 
trajectories described above. Particularly, there is a dashed 
linear trajectory in y-space tending to the non-Pareto part of 
the boundary (nPF), which at a certain moment switches 
from the ∆y=ε corner to the |∆x|=δ corner, becomes curved 
and finally stops at the PF. 

 

III. USING SEQUENTIAL QUADRATIC PROGRAMMING 
The polyhedron Π0 is defined as above (with ε=0). Let v 

be a fixed search direction in y-space, ε a constant. The 
following quadratic program [10] tries to perform ∆y=εv 
steps if possible in Π0: 

 
Algorithm SQP: 

   Solve QP: min ||∆y-εv||2, s.t. (∆x,∆y)∈Π0 
   Repeat steps x+∆x → x until convergence.  
 

Property [10]: In general position the QP-optimum can be 
achieved inside Π0, in the corners of Π0 or on the 
edges/faces of Π0. 

 
In the first case ∆y=εv linear trajectories will be 

generated in y-space, in the second case |∆x|=δ linear 
trajectories will be generated in x-space, in the third case the 
trajectories become nonlinear. 

 
Example: Fig. 1 also shows 5 trajectories from SQP method 
(green lines). Performance of SQP is analogous to SLP and 
we prefer to use SLP due to simplicity of its 
implementation.  
 

IV. USING 1-PHASE NONLINEAR PROGRAMMING 
Nonlinear target functions of the form t(x)=∑ wi criti

p
  

can, under certain conditions, detect non-convex Pareto 
fronts. Here the target function is represented by a scaled 
Lp-norm with weights wi ≥0, ∑ wi =1. Fig. 2 left shows the 
level curves for a 2D target function for different p. One has 
a straight line at p=1, a quadric at p=2, a superquadric at 
p>2 and a corner at p=∞. 
 
Property (see Fig. 2 left): Nonlinear target functions can be 
used to detect non-convex PFs, if the curvature of the level 
curve exceeds the curvature of the PF. 

 

Also at higher dimensions, considering the level set (LS) 
tangent to the PF, performing Taylor expansions of the LS 
and the PF: z=uTMu+o(u2), where u,z are, respectively, the 
parallel and normal components to a common tangent 
hyperplane to the LS and the PF, and requiring zLS≥zPF, one 
can reformulate the property above as positive definiteness 
for the difference of the curvature matrices MLS-MPF. 

Note that L∞ =max is applicable in any case (minmax 
method [11]), but the corresponding NLP will be non-
smooth. Practically, one can use large finite p. It is also 
convenient to normalize yi in [0,1] and take the logarithm of 
the target function for numerical stability. In this way one 
achieves a so called scalarization of the multi-objective 
optimization, i.e., the conversion of a multi-objective 
problem to a single objective one. As a result, the problem 
becomes solvable with standard NLP-solvers, e.g., Ipopt 
[12]. Here one can impose any additional constraints, e.g., 
require that y(x) ≤ c. By putting c=y0 one ensures that the 
result is better in all criteria than a starting point and finds 
only a corresponding segment of the PF. One can also leave 
c=∞ and vary wi to cover the whole PF. 

 
Algorithm NLP1(c): 

     minimize t(x)=log ∑ (wiyi)p, s.t. y(x) ≤ c. 
 

V. USING 2-PHASE NONLINEAR PROGRAMMING 
The following algorithm combines the concepts of linear 

search from NBI and the optimization of a nonlinear target 
function. The first phase performs the linear search in a 
given direction v in y-space towards the PF and the second 
phase tries to perform further improvements (if possible). 
The problem is solvable with two calls to ipopt. 

 
Algorithm NLP2: 

NLP2.1: maximize t, s.t. y(x)=y0+tv;  result y1; 
NLP2.2: call NLP1(y1); result y2. 

 
Properties (see Fig. 2 right): 

if y1 ∈ PF, phase 2 quits immediately; 
if y1 ∈ non PF boundary, trajectory is bounced to PF. 
 
In NLP2.2 not the whole PF is targeted, but a smaller 

part ∆PF possessing better criteria values than y1. Here one 
can use a smaller p, while even for too curved PFs the result 
y2 will be still better than y0 and y1. 

 

VI. IMPLEMENTATION DETAILS 
The SLP and SQP algorithms with their specific 

definition of a polyhedron of variation and with their 
internal iteration loop are better to implement as separate 
program modules. The NLP algorithms can use existing 
NLP solvers, such as Ipopt, Snopt, Minos etc. An 
implementation can use one of the following interfaces: 
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AMPL environment (A Mathematical Programming 
Language, [13]) can be used to specify the optimization 
problem in a human-readable format. Fig. 3 top shows a 
snippet of code defining a constraint. 

NL stub [14] is a standard format for optimization 
problems, containing the objective and constraints recorded 
in Polish prefix notation (PPN). The code forms an 
expression tree, whose branches are formed from a 
predefined set of operators (o…) extendable by user defined 
functions (f…), the leaves are numerical constants (n…) and 
variables (v…). Such a representation is suitable for the 
automatic differentiation of expressions using the chain rule. 
Fig. 3 middle shows the definition of a constraint in NL 
format. 

Ipopt’s C++ API [12] allows to inherit a new program 
from a base class TNLP (The Non-Linear Program or 
Template Non-Linear Program). The class possesses an 
evaluator of constraints and objectives, as well as their first 
and second derivatives, expressed in analytical or numerical 
form. Fig. 3 bottom represents the corresponding function 
prototypes. 

Although AMPL and NL interfaces have a small 
overhead in comparison with the direct C++ API, in practice 
all these possibilities provide comparable performance. 

 

VII. APPLICATION IN FOCUSED ULTRASONIC THERAPY 
PLANNING 

Focused ultrasonic therapy is a non-invasive therapy 
using magnetic resonance tomography for the identification 
of tumor volume and focused ultrasound for the destruction 
of tumor cells. Numerical simulation becomes an important 
step for the therapy planning. Efficient methods for focused 
ultrasonic simulation have been presented in paper [15]. It 
uses a combination of the Rayleigh-Sommerfeld integral for 
near field and of the angular spectrum method for far field 
computations, which allows determining the pressure field in 
heterogeneous tissues. The bioheat transfer equation is used 
to determine the temperature increase in the therapy region. 
Thermal dose is defined according to the cumulative 
equivalent minutes metric (CEM, [16]) or the Arrhenius 
model [17] as a functional of temperature-time dependence 
in every spatial point in the therapy region. These methods 
have been accelerated by a GPU based parallelization and 
put in the basis of software FUSimlib (www.simfus.de), 
developed by our colleagues at the Fraunhofer Institute for 
Medical Image Computing. 

3D visualization is used for the interpretation of the 
simulation results, in particular, for the detailed inspection of 
MRT images (magnetic resonance tomography), 
corresponding material model and spatial distribution of the 
resulting thermal dose, see Fig. 4. Stereoscopic 3D 
visualization in virtual environments based on modern 3D-
capable beamers with DLP-Link technology (Digital Light 
Processing), described in more details in [18], is especially 
suitable for this purpose. Such commonly available beamers 
do not require special projection screens and can turn every 

regular office to a virtual laboratory providing full 
immersion into the model space. We use 3D visualization 
software Avango (www.avango.org), an object-oriented 
programming framework for building applications of virtual 
environments. Our interactive application overlays three 
voxel models: The original MRT sequence, the material 
segmentation and the resulting thermal dose. The user can 
mix the voxel models together, interactively changing their 
levels of transparency, set the breathing phase, cut the model 
with a clipping plane, etc.  

 

TABLE I.  BI-OBJECTIVE OPTIMIZATION IN FOCUSED 
ULTRASONIC THERAPY PLANNING, PROBLEM CHARACTERISTICS 

Parameter bounds: 
frequency   0.25…0.75 MHz 
ini.speed    0.23...0.282 m/s 

Timing per solution 
@ 3GHz Intel i7: 

Criteria bounds: 
∑TDin       0…3000 eq.min 
∑ TDout    0…6000 eq.min 

SLP      7ms 
NLP1   16ms 
NLP2   13ms+12ms 

 
 

A generic workflow for ultrasonic therapy simulation has 
been described in our paper [19]. Numerical simulation with 
FUSimlib software uses a 512 x 512 x 256 voxel grid. 
Ultrasound has been focused in the center of the target zone 
for the neutral breath state. The result after 10 seconds of 
exposure time (200 steps x 0.05sec) has the form of spatial 
distributions of the pressure amplitude, the temperature and 
the thermal dose. Fig. 4 top-right shows a typical result for 
thermal dose on slice 97/256 near the focal point.  The 
frequency of the transducer is taken as an optimization 
parameter controlling the focused ultrasonic therapy 
simulation. The other one, initial particle speed, is 
proportional to an acoustic intensity emitted by the 
transducer [15]. The objective of therapy planning is a 
maximization of the thermal dose inside the target zone 
(TDin) and a minimization of the thermal dose outside 
(TDout). The thermal doses are defined as sums of the 
thermal dose over corresponding voxels, ∑TDin / ∑TDout.  
The variation range of the optimization parameters was 
regularly sampled with 25 simulations, from which 16 fall in 
the region of interest, shown in Fig. 5 by red points. Our 
RBF metamodel constructed on simulation results is used to 
oversample the region by green points, from which the 
discrete method NDSA selects the Pareto front, shown by 
blue points. We see that the Pareto front is of non-convex 
type. Magenta lines show the application of the three 
continuous methods described above. The trajectories 
generated by SLP and NLP2 coincide in every detail. Even 
bouncing from the non-PF boundary works similarly, 
although the mechanisms of this bouncing are different. 
NLP1 with p=8 and w1=0.01, 0.15, 0.27, 0.5, 0.99 produces 
the other set of trajectories. Table I shows a summary of the 
problem characteristics. SLP provides the best performance 
for the given application case. On the other hand, NLP 
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provides an easier integration with existing scalar solvers. In 
the NLP class, NLP1 is faster than NLP2 for bounced 
trajectories, otherwise NLP2 is faster. Numerically NLP2 
(with small p) is less singular than NLP1 (with large p) and, 
therefore, it is more robust for the detection of strongly 
curved Pareto fronts.  

 

VIII. APPLICATION IN AUDI B-PILLAR CRASH TEST 
 
We apply the algorithm NLP2 for the detection of Pareto 

fronts in automotive crash test simulation, described in [2]. 
The PamCrash software (www.esi.com.au/Software/PAM-
CRASH.html) is used for simulation. The model of a B-
pillar shown in Fig. 7 contains 10 thousand nodes. 45 
timesteps of crash process are simulated. 101 simulations 
were made by varying two design parameters, i.e., the 
thicknesses of two layers composing the B-pillar. The 
optimization objective is the simultaneous minimization of 
the total mass of the B-pillar and of the crash intrusion in 
the contact area. Crash intrusions in the driver and 
passenger compartment are commonly considered as critical 
safety characteristics of car design, while the total mass 
influences other important characteristics, i.e., fuel 
consumption, CO2 emissions and production costs. Two 
extreme designs corresponding to lower and upper bounds 
of both thicknesses are shown in Fig. 7.  

Further, we apply RBF metamodeling to represent the 
relation between design parameters and optimization criteria 
and study this problem in our interactive optimization tool 
DesParO, see Fig. 6. At first, we impose constraints on the 
optimization criteria, as indicated by red ovals in Fig. 6 top. 
As a result, islands of available solutions become visible 
along the axes of design parameters. The islands are 
combined cross-like, as shown in Fig. 6 bottom. For these 
combinations both constraints on mass and intrusion are 
satisfied, while all alternative combinations violate the 
constraints. In this way a complex structure of the Pareto 
front in the considered problem is revealed. 

Fig. 8 shows the results of the NDSA and NLP2 
methods on two different projections. On the left the Pareto 
front on the criteria plane is presented. Blue points indicate 
the first piece of the Pareto front found by NDSA and 
corresponding to the first island of solutions. Meanwhile 
NLP2 trajectories sometimes stop earlier and indicate the 
second piece of the Pareto front shown by a dashed line. Fig. 
8 right part shows a different projection, where both pieces 
become visible. There is a hill separating solutions like a 
watershed, so NLP2 trajectories go to the one or to the other 
side dependently on a starting point. This projection 
produces also a fold, a small overlap near the second piece 
of the Pareto front. It does not disturb the convergence of 
the NLP2 algorithm, the trajectory jumps directly from the 
starting point to the second piece of the Pareto front, 
displayed by the dashed line in the figure.  

We note that NDSA considers a dataset as a cloud of 

discrete points in the space of criteria, without any notion of 
continuity in parameter and criteria space, and detects only 
one piece of the Pareto front (global optimum). NLP2 is a 
continuous method and detects also the second piece (local 
optimum). In the considered problem both optima are close 
to each other and represent the underlying symmetry of the 
problem. Indeed, the Pareto optimal solution for this 
problem belongs to a boundary of the parameter space. It 
corresponds to a minimal thickness of one layer and varied 
thickness of the other layer, representing a compromise 
between stiffness and mass. Two possibilities in a choice of 
the minimal layer become two pieces of the Pareto front. 

TABLE II.  BI-OBJECTIVE OPTIMIZATION IN AUDI B-
PILLAR CRASH TEST SIMULATION, PROBLEM 

CHARACTERISTICS 

Parameter bounds: 
thickness1,2    0.5…3 mm 

Criteria bounds: 
intrusion       0…174 mm 
mass             7.8…26.9 kg 

 

IX. APPLICATION IN GAS TRANSPORT NETWORKS 
 

The simulation of gas transport networks is performed 
by a software package Mynts (Multi-phYsics NeTwork 
Simulator, www.scai.fraunhofer.de/en/business-research-
areas/high-performance-analytics-en/products/mynts.html) 
developed in our group. A small training network used here 
for experiments is shown in Fig. 9. It contains 100 nodes, 
111 pipes and other connecting elements. We note that real 
life problems are much larger. In cooperation with our 
partners we solve stationary and transient problems for gas 
networks with ten thousands of elements.  

The network of Fig. 9 has two supply nodes with 
specified pressure values (PSETs) and three consumer nodes 
with specified flow values (QSETs). There are two 
compressor stations, providing the necessary throughput in 
the network, see Fig. 10. Every station consists of two 
separate compressors, each can be configured to provide a 
fixed output pressure (SPO) or a fixed flow value (SM). In 
the considered scenario one compressor is set to SPO mode 
and three others to SM mode and these four values are used 
as optimization parameters. The purpose of the optimization 
is to run the compressors at minimal possible power (POW) 
sufficient to satisfy all contract values, such as PSETs and 
QSETs. The result is a particular solution of a network 
feasibility problem, possessing the best energetic efficiency. 

For this study we have prepared 1000 simulations in the 
bounds given in Table III. Fig. 11 shows a solution of the 
optimization problem in our DesParO Metamodel Explorer. 
It is achieved at a minimal SPO value for the first 
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compressor and a particular distribution of SM values, 
corresponding to individual properties of the three other 
compressors. The result of the NLP2 optimization is given 
in Table IV. We see that the optimization provides 27% 
energy savings relative to the starting point. 
 

TABLE III.  FOUR-OBJECTIVE OPTIMIZATION IN GAS 
TRANSPORT NETWORK SIMULATION, PROBLEM 

CHARACTERISTICS 

Parameter bounds: 
SPO1   71…91 bar 
SM2-4    400...600  x1000m3/h 

Criteria bounds: 
POW1-4       2…16 MW 

 

TABLE IV.  FOUR-OBJECTIVE OPTIMIZATION IN GAS 
TRANSPORT NETWORK SIMULATION, STARTING POINT AND 

OPTIMAL SOLUTION 

 STARTING 
POINT 

OPTIMAL 
SOLUTION 

SPO1 81 71 

SM2 500 510 

SM3 500 508 

SM4 500 502 

POW1 8.5 6.3 

POW2 8.6 6.4 

POW3 8.4 6.2 

POW4 7.8 5.6 

 

X. CONCLUSION 
Several algorithms of continuous multi-objective 

optimization applicable to the detection of non-convex 
Pareto fronts have been discussed: sequential linear 
programming (SLP), sequential quadratic programming 
(SQP) and generic 1- or 2-phase nonlinear programming 
(NLP1,2). Performance of SQP is analogous to SLP and we 
prefer to use SLP due to simplicity of its implementation. 

Scalarization, i.e., the reformulation of the multi-objective 
optimization problem as constrained optimization with a 
single objective, allows to employ available NLP solvers for 
its solution. The algorithms have been applied to a realistic 
test case in focused ultrasonic therapy planning. In the given 
problem SLP possesses the best performance, while NLP 
provides an easier integration with existing scalar solvers. 
NLP1 is faster than NLP2 for bounced trajectories, 
otherwise NLP2 is faster. Numerically NLP2 is less singular 
than NLP1 and is therefore more robust for the detection of 
strongly curved Pareto fronts. All these optimization 
methods provide real-time performance necessary for the 
interactive planning of focused ultrasonic therapy. Further, 
NLP2 has been applied to a multi-objective optimization 
problem in the safety assessment of automotive design. Here 
the Pareto front is also non-convex and consists of two 
separate pieces, global and local parts of the Pareto front. 
NDSA detects only the global part, while NLP2 finds both.  
Finally, we have applied NLP2 to improve the energetic 
efficiency of a gas transport network, where the 
optimization allows to achieve 27% energy savings. 
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Figure 1.  Pareto front detection for 2D fold transform (see Sections II-III for details). 
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Figure 2.  Scalarization of multi-objective optimization problem. On the left: algorithm NLP1; on the right: algorithm NLP2. 

 

 

maximize obj: t*1e6; 
subject to y0constr: 
y0=sqrt(0.01+((x0-250000)/500000-0)**2+((x1-0.23)/0.052-0)**2)*(4208.98)+sqrt(0.01+((x0-250000)/500000-
0)**2+((x1-0.23)/0.052-0.25)**2)*(-938.255)+sqrt(0.01+((x0-250000)/500000-0)**2+((x1-0.23)/0.052-
0.5)**2)*(-310.969)+sqrt(0.01+((x0-250000)/500000-0)**2+((x1-0.23)/0.052-0.75)**2)*(-
1405.99)+sqrt(0.01+((x0-250000)/500000-0)**2+((x1-0.23)/0.052-1)**2)*(-527.836)+sqrt(0.01+((x0-
250000)/500000-0.25)**2+... 
 
 
C0 o54 28 o2 n-4208.98 o39 o54 3 n0.01 o5 o3 o0 n-250000 v0 n5e+05 n2 o5 o3 o0 n-0.23 v1 n0.052 n2 o2 
n938.255 o39 o54 3 n0.01 o5 o3 o0 n-250000 v0 n5e+05 n2 o5 o0 n-0.25 o3 o0 n-0.23 v1 n0.052 n2 o2 
n310.969 o39 o54 3 n0.01 o5 o3 o0 n-250000 v0 n5e+05 n2 o5 o0 n-0.5 o3 o0 n-0.23 v1 n0.052 n2 o2 
n1405.99 o39 o54 3 n0.01 o5 o3 o0 n-250000 v0 n5e+05 n2 o5 o0 n-0.75 o3 o0 n-0.23 v1 n0.052 n2 o2 
n527.836 o39 o54 3 n0.01 o5 o3 o0 n-250000 v0 n5e+05 n2 o5 o0 n-1 o3 o0 n-0.23 v1 n0.052 n2 o2 ... 
 
 
bool eval_f(Index n, const Number* x, bool, Number& f); // objective function 
bool eval_grad_f(Index n, const Number* x, bool, Number* gf); // gradient of objective function 
bool eval_g(Index n, const Number* x, bool, Index m, Number* g); // constraints 
bool eval_jac_g(Index n, const Number* x, bool, Index m, // Jacobian of constraints 

Index njac, Index* iRow, Index *jCol, Number* values); 
bool eval_h(Index n, const Number* x, bool, Number obj_factor, Index m, const Number* lambda, bool,  
   Index nhess, Index* iRow, Index* jCol, Number* values); // Hessian of Lagrangian 
 
 

Figure 3.  Example of NLP code in different interfaces. Top: AMPL model file. Center: NL stub file. Bottom: Ipopt C++ API. 
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Figure 4.  Focused ultrasonic therapy planning and its software components.  

 

 

 

Figure 5.  Non-convex Pareto front in focused ultrasonic therapy planning, comparison of different methods. 
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Figure 6.  Studying Audi B-Pillar crash test in DesParO Metamodel Explorer. Top: an attempt to minimize simultaneously intrusion and mass by setting 
upper constraints on these criteria. Bottom: two islands of available solutions become visible. 
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Figure 7.  Audi B-Pillar crash test in DesParO Geometry Viewer. Two extreme designs are shown. On the left: small stiffness, small mass. On the right: 
large stiffness, large mass. 

 

 

Figure 8.  Pareto front of Audi B-Pillar crash test. On the left: intrusion vs mass projection. On the right: intrusion vs thickness2 projection. Red points 
show simulation results, green area - RBF interpolation, blue points - global Pareto front found with NDSA. Magenta arrows are trajectories of NLP2 

algorithm. Dashed line shows a local Pareto front, corresponding to the second island of solutions. 

106

International Journal on Advances in Intelligent Systems, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

Figure 9.  Gas transport network simulation in Mynts, the network topology with the resulting pressure distribution, shown by color. 

 

Figure 10.  Gas transport network simulation in Mynts, closeup to a compressor station. 
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Figure 11.  Four-objective optimization problem for gas transport network simulation in DesParO Metamodel Explorer. 
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