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Abstract—Electrical vehicles are not only passenger cars but
also commercial vehicles and, in particular, municipal vehicles.
Their acceptance and usage depends primarily on everyday
usability, aiming for a smart vehicle with intelligent energy
and range supervision as well as driver support. In our funded
research project eTelematik, we conceptualized, implemented
and proved an Information and Communication Technology
(ICT) System with directly connected vehicle components, driver
interface and back end applications as well as an analytical
evaluation process for our prediction model. In order to expand
the usage of electric vehicles, we predict energy consumption
of complex work task sets and guide vehicle drivers while driving.

Keywords - Municipal vehicles; ICT-support for fully electric
vehicles; range prediction; mobile client; in-car module; trajectory;
Dynamic Time Warping.

I. INTRODUCTION

This paper is an extended version of a paper that was
presented at the Forth International Conference on Smart
Systems, Devices and Technology, SMART 2015 [1].

Worldwide electrical vehicles are seen as the future of
mobility. The primary focus in this vision is mainly on private
cars [2]. However, commercially used vehicles have a much
better starting point for electrification. Based on prescheduled
tasks and daily high usage work, the capability of commercial
vehicles can be predicted. At the current state of development
commercially used, fully electrical vehicles are not able to
fulfill a full day’s work without recharging. Therefore, hybrid
vehicle concepts are developed and currently in advanced
prototype state. A special class of commercial vehicles are
municipal vehicles. These universal vehicles can be used
with different setups and add-on structural parts in various
scenarios.

In our research project eTelematik, we developed a system
based on Information and Communication Technologies (ICT),
which supports daily commercial usage of electrical municipal
vehicles and allows for new usage scenarios with hybrid
vehicles.

The project eTelematik was a federal funded research
project during 2012 and 2014. The consortium included four
main partners [3]:

1. EPSa GmbH: industry, electronics and communication de-
vices

2. Navimatix GmbH: mobile and server applications

3. Friedrich Schiller University Jena: research, distributed
software systems, range estimation

4. HAKO GmbH Werk Walterhausen: electrical municipal
vehicles

The paper presented here, focuses on summarizing the
project and its general accomplished results as well as giving
a detailed overview of the analysis approach used for the
evaluation of the produced data within the project.

The remainder of the paper is organized as follows: In
Section II we will provide an overview of the project’s
overall ICT architecture including the main challenges of our
distributed system. From there we will highlight the usage of
collected data inside the vehicle and on back end systems. In
Section III the analysis process for the evaluation of work task
sets will be described and in Section IV some information and
findings of the project’s long-term field test will be presented.
We close with a short review of goal reaching in Section V.

II. THE ETELEMATIK PROJECT

The main focus of the project was the creation of a complete
ICT infrastructure to enable an improved usage of electrical
municipal vehicles.

Our main requirements for this system were

a) to gather data from mobile electrical vehicles and store
them in a central universal database,

b) to interpret gathered data in order to evaluate the influence
of various parameters on energy consumption during the
fulfillment of certain work tasks with required work equip-
ment,

c) to adjust the internal energy consumption and range pre-
diction model with computed factors of influence and

d) to support the driver with information about estimated and
real energy consumption of current and scheduled work
tasks, irrespective of the status of the connection to the
central server.

Excluded from the project focus was the development
of a new work force management or fleet management/
optimization system. Thus, all required business data had to
be provided from an external fleet management system via
designated service interfaces.

Based on these requirements, we developed our system as
schematically shown in Figure 1.
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Fig. 1. eTelematik system architecture overview (adapted figure, based on original by Johannes Kretzschmar, University Jena)

The eTelematik solution consists of a communication hard-
ware (“in-car module”), a mobile application (“mobile client”)
and a central server (“central instance”) with a prediction
model (“flexProgno”).

Externally computed work task sets are evaluated in regard
to their practicability in our central instance eTelematik Server.
We use our energy consumption and range prediction model
flexProgno to estimate the power consumption for every single
part of the given work task set. While power consumption
depends on various parameters like vehicle model, payload,
environmental temperature (as already shown in [4]), we need
to know more about the work task, required add-on structural
parts and settings of them. Moreover, we require knowledge
about the concrete routing and their elevation profile between
different work task places. We use the commercial available
route calculation service and map height services of project
partner Navimatix GmbH to gather this data.

If a working set is estimated as achievable, the assigned
driver gets this set shown on his mobile client.

Inside the vehicle the communication hardware, developed
by EPSa GmbH, collects vehicle specific data in real-time,
aggregates and sends them to the mobile client. Communi-
cation between the communication hardware and the vehicle
is realized by Controller Area Network (CAN) connections.
The mobile client, developed by Navimatix GmbH, is an
Android application running on established consumer devices.
The mobile client informs the driver about the actual operating
status of the vehicle, the current status prediction based on the
assigned working task set and the probability of fulfillment of
this set. All collected vehicle data combined with sensor data
from the mobile phone are transferred to and stored at the
central instance.

Figure 2 shows the internal conceptual system design of the
mobile client application. The mobile client is subdivided into
a user interface related part and some background services.
While the data storing modules are responsible for realizing

business logic, which is used by the UI module, the ICM
Communicator Service takes care of establishing a connection
to the in-car module and keeping it alive. We use plain
TCP socket connections at this communication channel to
minimize transport size and delay overhead. The eTele App
Communicator Service realizes the reliable communication
to the central instance. All other services, background as
well as UI-related, use this service to communicate to and
receive data from the central instance. At this channel, we use
HTTP as transport layer. Since our JBoss Application Server
based central instance is realized by using Java Servlets and
Enterprise Java Beans, HTTP is a natural choice. As payload,
we used data objects with an own implemented key-value
based object serialization which represents our business data.

In summary, our system has to handle the following data
from central instance to vehicle:

• master data of vehicles and drivers
• general and vehicle specific configuration setting for

communication between in-car module and mobile client
• current work task sets depending on logged in driver

From vehicles to central instance we send:

• updates of work task status
• vehicle’s positions and velocity
• electrical vehicle specific measurements

The electrical vehicle specific measurements and especially
their representation on in-car communication buses vary be-
tween vehicle manufacturers and even between vehicle types
of one manufacturer. Within our project consortium, we are
able to gather and transfer the following electrical vehicle
specific measurements:

• state of charge
• primary battery voltage
• current in high voltage circuit
• connection state, settings and power of battery recharger
• state and settings of range extender (if applicable)
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Fig. 2. eTelematik mobile clients internal module overview

This data is used in different situations. The data supports
the driver inside the vehicle in driving between work task
places of action and while task fulfillment. On server side,
we use recorded data in different analyses. Some are shown
in Section III of this paper.

Inside the vehicle, we are able to realize “enhanced fore-
sighted driving”. Since we know, based on the scheduled work
task sets, which route has to be driven and what kind of
working task has to be accomplished, we are able to predict
if this planning is still valid. Usually, only average statistics
about energy consumption per kilometer are available to the
vehicle and the driver. We know the exact route to drive as
well as the required settings of add-on components. Thus, we
are able to predict the required energy consumption on a much
more detailed basis. This advanced, detailed knowledge allows
us to warn the driver that he will not reach his destination,
even if the average statistics would tell him so. Alternatively,
we can relax him in situations where average statistics would
show a much too low range, for example, when the planned
route has many downhill sections. Furthermore, we can delay
the usage of the range extender in hybrid cars when it would
be triggered by the vehicle’s management system, because we
know when the user’s preferred charging stations are in reach.

By doing so, we are able to optimize the battery usage and
extend the usability of electrical vehicles.

In vehicles with range extender, we can optimize the point
in time for recharging. In certain situations, work tasks have
to be fulfilled without any avoidable emission, e.g., noise or
exhaust. If recharging is only controlled by battery state of
charge, it could happen that the driving to the workplace is
realized fully out of battery and that the recharging has to
be started at the workplace. With our knowledge about the
complete work task set and desired or required restrictions in
work task fulfillment, we can foresee and avoid such situations.

On server side, we use recorded data of the vehicle in
different scenarios.

A long-term use case, which is very important to vehicle
manufactures as well as to the vehicle owner, is predictive
maintenance. With data mining techniques, we are able to
detect deviations in characteristic gradients long before the
vehicle breaks down. This is of particular interest to our project
partners due to the lack of long-term experience with the
completely new designed power train and the used battery
system.

In addition, for the first time, this process enables insight
into exhaustive detailed real world usage records of these vehi-
cles. This information is very helpful to vehicle manufactures
for further improvements and new developments.

A short-term use case is monitoring the overall resource
consumption for certain work tasks. It is not possible to date
the direct assignment of fuel consumption to single work tasks.
Since we record work task state changes as well as energy
consumption parameters continuously, we are able to match
them.

Inside our project’s system, we also process recorded data
for intrasystem usage. The main task is to adjust and im-
prove our energy consumption and range prediction model
flexProgno. Our model is based on assumptions, e.g., required
energy stays equal if all influencing parameters do not change
or stay very close to situations before. Initially, we did not
have many vehicle specific data. By processing recorded data,
the vehicle specific parameter set gets more accurate over time.
The basic approach of our model is shown in [5].

Energy consumption does not only depend on vehicle or
work task parameters, but also on driver characteristics. Hence,
it is important to include the driver’s start and stop behavior in
energy consumption prediction. Since these parameters cannot
be measured beforehand, they need to be determined from the
recorded data.
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III. LOCATION-BASED ANALYSIS FOR WORK TASK SETS

A working task set is defined as a round trip with several
work task places.

Figure 3 shows an abstract work task set. A driver starts
the trip at a central point (“start”), driving over to his work
task places, e.g., A, B and C, where the driver will then fulfill
the work tasks. After finishing all tasks in the given order, the
driver will then drive back to the central point (“end”), which
is not necessarily the same as the starting point.

Fig. 3. Work task set definition as round trip with work task places A, B
and C

To verify our assumptions about a certain work task set
with its predicted routes between task places, it is worth to
compare recorded data with the predicted data or even with
other recorded data of the same task set. Furthermore, the
comparison of different trip records of the same route at
specific spatial scenarios, e.g., uphill, downhill, highway or
city traffic, can help us to understand the behavior of drivers
and vehicles. Hence, enables us to evaluate and adjust our
prediction model.

While doing so, the data can be examined from different
perspectives and all of them may raise different questions.
For example:

A) Geographically, i.e., “Is the driven route equal to the
predicted route?”

B) Energy consumption, i.e., “Is the predicted consumption
close to the real consumption?” or “Which driver was
saving most energy on the same route as others and why?”

C) Trip time, i.e., “Is the predicted estimated trip time close
to real trip times?”

For the analysis, we use the recorded trajectory data of each
municipal electric vehicles using our system architecture. As
above mentioned, we want to analyze them at specific location-
based scenarios. Thus, we always need to specify a spatial
reference track which defines the road segment that is going to
be analyzed. Both, trajectory and reference track, are defined
as follows in definitions 1 and 2:

Definition 1. A trajectory T = {p1, p2, . . . , pN} is a finite
sequence of points. Each point pi = {ts, pos, o} consists of
a timestamp (ts) and a geo-position pos = {lon, lat, alt}
with longitude (lon), latitude (lat) and altitude (alt). An
optional set of attributes (o) with additional measurements for
each spatio-temporal point can be defined. All points are in
temporal order p1.ts < p2.ts < . . . < pN .ts.

Definition 2. A reference track rT = {p1, p2, . . . , pN} is a
finite ordered sequence of points. Each point pi = {pos}
consists of a geo-position pos = {lon, lat, alt} with longitude
(lon), latitude (lat) and altitude (alt).

Fig. 4. Two similar recorded tracks, side by side, with colored speed (left);
speed vs. time graph of the same two tracks (right)

However, the representation form of a temporal trajectory
is very unsuitable for a comparison on a local basis. In fact,
looking at the left graph of Figure 4, the human brain might be
able to perform such a comparison given the appropriate visual
representation. Unfortunately, a computer using algorithms
cannot do that, due to temporal shifts or distortion and the
consequential difference in length, as shown in the right graph
of Figure 4. Thus, it is necessary to synchronize the data
at a geographical-spatial basis to be also able to analyze it
automatically through algorithms.

The synchronization is realized using the Dynamic Time
Warping (DTW) Algorithm. The DTW Algorithm is well
known in the area of time series alignment and clustering.
One of its first applications was speech recognition back in the
70s and since then it is also used in handwriting and gestures
recognition, to only name a few [6], [7]. To overcome the
limitations of shifts in time series, it generates a warping path
which represents an optimal alignment between the two, not
necessarily equally long, time series, as shown in Figure 5.

Fig. 5. Point correspondence when two similar time series contain local time
shifting using Euclidean distance (upper left); using DTW (lower left);

Search for an optimal alignment or warping path (red squares) within the
distance matrix between the same two time series (right) Image source: [8]
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A. Methodology

Our analysis process can be divided into the three subpro-
cesses (i) Data preparation, (ii) Identification of analyzable
segments and (iii) Spatial synchronization:

(i) Data preparation: Before it is possible to perform a
data analysis, the data needs to be structured in a way that
consistent processing can be guaranteed.

As already mentioned in Section II, the electrical vehicle
specific measurements and their representation can vary be-
tween vehicle types, but also the time intervals in which the
various measurements are collected within the vehicle can
differ. Taken all that into account, it is necessary to convert
the data into an homogeneous data scheme. To overcome the
measure interval differences, the data will be embedded into a
fixed time interval, e.g., every n seconds. Emerging temporal
gaps will eventually be filled using a linear interpolation.

Due to the possible occurrence of errors during data collec-
tion, it is also necessary to perform a data cleansing. Especially
when using GPS, it is not uncommon to receive erroneous or
inaccurate GPS positions. In order to correct these position
data, we use a map-matching algorithm which brings off-track
positions back to their corresponding road element using the
map service of project partner Navimatix GmbH.

After homogenization and data cleansing, we also perform a
data enrichment to combine our vehicle specific measurements
with more general information, e.g., traffic, temperature and
weather or even more accurate altitude information, to improve
our data even more.

The result of this subprocess is an homogenized, revised
trajectory dataset QT = {T1, T2, . . . , TN}, which now can be
used as a basis for the analyzing process.

(ii) Identification of analyzable segments: Given a pre-
selected reference track rT , which could contain interesting
sections for an analysis task, we need to determine all common
sub-trajectories between rT and the dataset QT in order to
find all track segments RT ′ = rT ∩QT that can possibly be
covered by the dataset. Those segments need to be clustered
into distinct groups and will be afterwards presented to an
expert who will finally choose one segment, which will serve
as the selected reference track rT ′ ∈ RT ′ for the further
detailed analysis process.

(iii) Spatial synchronization: Since a reference track rT ′

has been selected by the expert, the spatial synchronization to
enable the location-based analysis can be performed.

To do that, we need to find all common sub-trajectories
CS = rT ′ ∩ QT that cover the selected reference track
entirely. Afterwards, the spatial synchronization takes place
between rT ′ and every common sub-trajectory cs ∈ CS and
results in synchronized common sub-trajectories cssync with
the same length as the selected reference track. This implies
that, with the definition of the preselected reference track rT , it
is possible to control the level of detail of the synchronization
outcome, i.e., sample points and distance between them.

The trajectories cssync are now equally long and it is
guaranteed that the i-th element of each trajectory refers to
the same spatial position. Hence, can be compared with each
other using algorithms.

B. Algorithms

To reflect the spatial synchronization process two key-
algorithms have to be implemented: (i) Determining common
sub-trajectories and (ii) Spatial synchronization of common
sub-trajectories.

(i) Determining common sub-trajectories: This algorithm
determines common subsegments between two location-based
data series, in our case reference track and trajectory, where
local distances of corresponding points are within a tolerated
distance r. The DTW algorithm is used to determine the
corresponding points. For this, a pair-wise local distance
matrix D(rT, T ) ∈ RM×N is built between all positions of
the reference track rT with M elements and the trajectory T
with N elements. The distance between two positions will be
calculated using great-circle distance calculation, i.e., a low-
costed matrix, with a minimum of zero, will represent more
geographic similarity than a high-costed matrix.

Based on matrix D the DTW algorithm calculates an
alignment path, i.e., warping path, which runs through the
low cost areas of the local distance matrix. It represents a
complete assignment of all indices between both data series,
starting with the first and ending with the last indices of both,
to guarantee that every index is used at least once. The indices-
pairs of the warping path are by default in a monotonically
increasing order with a maximum step-size of 1.

Afterwards, the local distances of the warping path will be
analyzed. Here, all index-pairs with a lesser local distance
than the predefined tolerance radius r will be determined.
These pairs are describing geographical common points CP
between rT and T . Multiple consecutive common points can
form a common sub-trajectory. To avoid large gaps between
consecutive points, it is necessary to define a tolerance dis-
tance. The gap distance g represents the maximum distance
two subsequent common points can be apart from each other
to be recognized as “real consecutive” and, hence, forming a
common sub-trajectory cs.

Figure 6 shows the local distances of the warping path’s
index-pairs. The straight colored line at the bottom side
represents the tolerance radius for determining common points.
Furthermore, aside from a common sub-trajectory, a gap be-
tween common points as well as a case of a possible crossing
between the two trajectories is highlighted.

(ii) Spatial synchronization of common sub-trajectories:
To make the local points of a common sub-trajectories CS =
{cs1, cs2, . . . , csN} locally comparable with each other, the
length of both data series needs to be equalized. Therefore,
the points of the reference track will serve as spatial reference
points. Each data series needs to be realigned to match the
length of the reference track in order to return data for each
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Fig. 6. Interpretation of the warping path’s local distances in order to determine common sub-trajectories

spatial reference point. The alignment to realize this is already
given by the warping path. However, before it can be used,
multiple assignments of indices within the warping path need
to be handled. They occur to compensate differences in length
between the time series. The following cases of assignments
are possible and need the given action:

• normal case: Exactly one index of cs is assigned to
exactly one index of rT . Nothing needs to be done.

• reduction case: Multiple indices of cs are assigned to
exactly one index of rT . Here, the multiple assigned
points of cs need to be aggregated into one point, as
shown in Figure 7.

• extension case: Exactly one index of cs is assigned to
multiple indices of rT . This case needs to be handled very
carefully to preserve the reference point count. Hence, an
aggregation cannot be done. Instead the point of cs needs
to be duplicated until every point of rT finds exactly one
match, as also shown in Figure 7.

The result of the synchronization is a trajectory cssync
which is exactly as long as the reference track rT ′ and can
now be locally compared, i.e., by location, to other trajectories
cssync synchronized on the same reference track.

Fig. 7. Approaches of solving different multiple assignments problems
within the warping path using duplication and aggregation (in this case

mean calculation).

IV. THE PROJECT’S FIELD TEST

As we developed our system from scratch, we designed a
long running field test. In this section, the test will be reviewed
from two different perspectives. The technical perspective
reviews the overall functionality of the system and whether
all components are working well together. The analytical
perspective is concerned with the resulting data produced by
the system and the analytical potential of them.

A. Technical perspective

We built up a complete system installation to validate the
system’s long term stability, data transfer reliability especially
in areas with unreliable mobile network connection and to
validate and harden our prediction model.

In our build up test, we installed our system components in
five electrical vehicles. These vehicles were used on a regular
daily basis. In terms of the test, the following findings are
worth mentioning:

A) Our system setup is running very stable over all compo-
nents. During the development, there were some doubts
about wireless local area network (WLAN) communica-
tion between in-car module and mobile client. However,
we did not register any significant disturbance in this
communication channel. All relevant data provided by the
electrical vehicles in the field test were recorded by the
in-car module and were transferred properly to the mobile
client.

B) We succeeded in establishing a robust communication
between mobile client and central instance. Even in our
test region where mobile network coverage is very patchy,
we had no data loss.

C) Synchronization of master data as well as measurement
data between mobile client and central instance is working
very solid, even if network connection gets lost while
transfer. Thus, the required offline capability of the mobile
client is achieved.
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Fig. 8. Recorded subset of the road network with highlighted reference track
and start/end point of every trip (left); trip types and their occurrences (right)

B. Analytical perspective

During the field test, the electrical vehicle specific mea-
surements, mentioned in Section II, as well as GPS positions
are collected and stored for each trip together with their cor-
responding timestamps per measurement, and hence forming
trajectories. We are using the programming language R for our
location-based analysis process to evaluate the consistence of
the recorded data and our assumption about working task sets
and the behavior of electrical vehicles in general.

For demonstration purposes, we examine an isolated and
complete subset of the whole road network produced during
the field test. Figure 8 shows the subset which was recorded
in the area of Erfurt, Germany. It consists of 13 single trips
which were all driven by the same car at different days. Each
trip starts and ends at the same position p0. The distinct tracks
with the number of times they were used for the trips within
the recorded data are listed at the right side of the figure.
For the analysis, we choose the reference track highlighted
in black and defined by the starting point rTstart and ending
point rTend.

During data preparation the recorded trip data is converted
into a common data scheme and our map matching algorithm
corrects positions that are off the road, which is crucial for the
detection of common sub-trajectories. Additionally, the data is
enriched with altitude data in order to complete the 3D position
tuple and is now prepared for further analysis.

During the determining of common sub-trajectories between
the reference track rT and the recorded trip data QT , ten
common segments were found. All ten segments are fully
covering the reference track. As Figure 8 indicates, this is
expected, since this is equal to the number of trips sharing
visually the same route as the reference track.

TABLE I. A part of the synchronized speed data of Figure 9

rT index rT lon rT lat track1.spd track2.spd
1000 10.88224 50.94711 37.0 17.3
1001 10.88224 50.94716 28.3 14.8
1002 10.88224 50.94720 28.3 14.8
1003 10.88224 50.94724 28.3 13.3
1004 10.88223 50.94729 20.5 8.9
1005 10.88223 50.94733 20.5 6.3

Fig. 9. Speed profile of two different trips on the same road segment in
asynchronous representation (left); synchronized (right)

On these ten common segments, the spatial synchronization
process is performed. To visualize the results of the process,
Figure 9 is showing the speed profile of two of the ten common
segments in an asynchronous state before and in a spatial
synchronized state after the process. It is worth pointing out
that the x-axis, which was representing time beforehand, has
changed into the spatial dimension (namely “idx” for index)
after the synchronization. The index scale is directly linked
to the numbered elements of the reference track and their
positions. A part of the data of Figure 9 together with the
corresponding position data from the reference track is shown
in Table I and proofs that the data can now be compared in a
local dimension.

The representation in the local dimension opens up for new
analysis perspectives. In order to see how different attributes
depend on each other, we can now for example, analyze them
not only over the course of one trip but across multiple trips
with an identical route.

Fig. 10. Analysis of multiple attributes over two or more common segments
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Figure 10 shows a possible visualization of such an analysis.
Here, the three attributes ts.norm (trip duration), spd (speed)
and soc.norm (state of charge loss) are presented. Note that,
even though we left the time dimension due to the spatial syn-
chronization, time data can still be restored as an analyzable
attribute by storing the difference in time between two local
positions as an attribute. The trip duration graph shows the
duration of each trip in seconds. The state of charge graph
allows us to identify the energy consumption on each trip.
The speed graph shows the speed used at each position. It is
noticeable that the difference in speed used during the different
trip is responsible for the different trip durations that emerged.
However, it could also be responsible for the difference in
energy consumption, given our assumption that the speed, or
better, the acceleration process has a significant impact on
the energy consumption. Other attributes such as weather or
altitude data could also show dependencies and could easily be
added to the set of analyzable attributes for even more insight.

The synchronized data can also be aggregated on a local
level. This can be used to create an energy consumption
profile for a route with a mean energy consumption difference
between positions of all trips. This could then be used to
evaluate our predicted energy consumption model for a given
route. Figure 11 shows the energy consumption profile for
the reference track produced during the field test visualized
by putting it on a map with a color indication for the mean
energy consumption.

Fig. 11. Map of the reference track with mean energy consumption
difference of all trip data of the route as color indication

During the analysis of the field test data, we noticed that the
attribute state of charge is not satisfying our needs for range
prediction evaluation purposes. The state of charge represents
a percentage of the energy capacity in a battery. However, this
maximum capacity can decrease due to extreme temperature or
bad health state. The state of charge is calculated in relation to
the current capacity. Without the current capacity measured in
our system, it is needless to say that the state of charge cannot

give us any information about the actual energy that is drained
from the battery. This information is crucial for the comparison
with our prediction model. Hence, in the future, instead of
measuring the energy consumption as a relative value, we need
to measure real energy values in kilowatt.

V. SUMMARY AND FUTURE WORK

Based on the evaluation of our long-term field test, we can
state that we achieved our primary goals.

From a technical point of view, the overall data recording
is satisfying, data transfer reliability is sufficient and offline
capability for mobile client is achieved.

Therefore, we can determine that our selected system design
and implementation are adequate to meet our overall require-
ments. However, we have to reassess our selection of mobile
phone as primary communication channel. We deployed mass
market mobile phones in the field test. So far we did not
have substantial failures. Nevertheless, based on other tests
we expect thermal problems in very cold and warm to hot
situations. These problems will become more serious when
running more applications and parallel tasks on the mobile
phone’s hardware.

Accordingly, the partitioning between in-car module and
mobile client has to be reviewed very carefully. An alternative
approach could be to transfer all permanent running processes
of data collection and aggregation to the fixed-powered in-car
module. This could as well include data transfer from and
to the central instance. This process should be realized in a
proxy-like way to keep this functionality transparent to the
mobile client. The main function of the mobile phone still
has to be the communication to the driver of the vehicle.
This includes the exchange of information about working
sets, as well as electrical vehicle state of charge, and driving
instructions, to reach optimal range and energy usage.

A disadvantage within this alternative approach is the lim-
ited updatability and extensibility of the in-car module. The
software for the in-car module has to be written system-
specific and very closely fitted to the underlying hardware.
Due to the rapid development of embedded Linux systems
and their possibilities, we see now the option to overcome
the above mentioned drawback by implementing our software
on a Linux-based embedded system together with a scripting
language to build a generic base system that is easily adaptable
for the use on a specific underlying hardware.

From the analytical point of view, a process was introduced
to synchronize spatial time series on a spatial-geographical
basis. Although this process has to be tested thoroughly in the
future, the evaluation of the field test shows that the overall
functionality is working. Its provided functionality is helpful,
as it allows us to evaluate our whole prediction model and the
recorded data produced by our system, which would otherwise
not be possible.

Thanks to the field test data evaluation, it is revealed that
there is a lack of significance in some of our data attributes
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(namely state of charge), which provoked us to reconsider the
electrical vehicle specific measurements that we are recording
in general. However, at the time the field test took place,
no other data was available for our system to measure. This
has changed as the project proceeded and to date a lot more
measurements can and will be recorded with our system.
Hence, we can easily measure the required data, e.g., real
energy consumption in kilowatt.

Until now, the analysis process has to be initiated manually
on a specified reference track. In the future, the process could
also be automatized to directly adjust our prediction model if
multiple trips are showing a pattern of high deviations.

Still many questions and tasks are left open. Our work will
be continued, partly in cooperation with the federal funded
project called “Smart City Logistik Erfurt” (SCL) [9].

In SCL, we address aspects of inner city freight logistic
processes with full electric vehicles. The logistic partners
of SCL intend to deploy available medium sized electrical
vehicles into their business as freight transporters for the
last mile, from the city’s perimeter to the final destination.
The project’s focus is on ICT support to optimize vehicle’s
utilization and integration in existing fleets and processes.

Therefore, we have to adapt our in-car module to the
selected vehicle models. The driver assistance mobile applica-
tion needs adjustments to meet the specific needs in delivery
logistic applications. Our range prediction has to be adjusted
to the new domain as we have differing influence factors
like weight or specific vehicles accessories. In SCL, we will
not only validate existing working sets. Implementation of
route calculation and tour optimization with electrical vehicle’s
additional restrictions will be an important task. Overall, we
have to improve usability and user experience in our driver
assistance application as well as in the back-end system’s
user interface, which was not the focus of eTelematik, but is
undoubtedly important to bring our research and development
into real world applications.
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