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Abstract—Six regression type binary classifiers based on linear
and logistic models have been evaluated using a complex simu-
lation experiment. The classifiers were compared with respect
to the robustness to unexpected changes of the models that
describe data in training and test sets. The data used for this
comparison were generated using different models describing
their interdependence. This dependence was modeled by different
copulas. The experiments revealed that the performance of
considered classifiers strongly depends upon the type of copula.
However, the simple logistic regression has appeared to be the
best one in these circumstances. Thus, this classifier could be
recommended for practitioners when the type of dependence may
vary in time.
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I. INTRODUCTION

This paper is a significant extension of the conference paper
“On the Robustness of Regression Type Classifiers” presented
in the Proceedings of INTELLI’2015 conference, held in St.
Julians, Malta [1], and is focused on rarely discussed aspects of
classification problems. Classification algorithms are probably
the most frequently used tools of data mining. The methods of
their construction in the Artificial Intelligence (AI) community
is known under the name of supervised learning. There are
thousands of books and papers devoted to their theory and
applications. Thomson Reuter’s scientific database Web of
Science displays information (as on 2016 February 24th) on
nearly 400 papers with the phrase “classification algorithms” in
the title, and nearly 7000 papers with this phrase in the topic.
The information about theoretical foundations of classification
algorithms can be found, e.g., in books by Duda et al. [2]
and Hastie et al. [3]. Comprehensive description of application
aspects of classification algorithms can be found in the book
by Witten et al. [4].

The main problem with the evaluation of each, from
among hundreds of already proposed, classifier is estimation
of its quality characteristics. Japkowicz and Shah in their
excellent book [5] write about two general approaches to this
problem: de facto approach based on computing of many
different quality characteristics, and statistical approach, in
which unavoidable randomness of classification results is taken
into account. The de facto approach can be used for any
type of testing procedure, and is predominately used by the
AI community. The applicability of the statistical approach
is somewhat restricted, as the analyzed data should fulfill
some requirements precisely described in terms of the theory

of probability. These requirements are easily verified if we
use for testing purposes artificially generated data. However,
the usage of such data is not appreciated by the AI commu-
nity, who prefers to use real-life benchmarks for evaluation
purposes. When we use benchmark data for evaluation, the
data used for the construction of an algorithm and the data
used for its evaluation come from the same set of real-life
values. In order to assure validity of comparisons different
schemes of randomization, e.g., cross-validation techniques,
are used. This approach is commonly accepted, and valid
for the great majority of potential applications. It is, usually
rightly, assumed that a classifier (in fact, the method of its
construction) is of good quality if it performs well on many
different benchmarks. However, in nearly every case (see, e.g.,
Hand [6]) it is assumed that the classifier is constructed and
further used on the same population of classified objects. In
some cases, however, this assumption may be questioned.

Robustness is well defined in statistics. According to
Wikipedia, robust statistics “is a statistical technique that
performs well even if its assumptions are somewhat violated
by the true model, from which the data were generated”.
This definition of robustness can be directly applied to these
methods of classification, which are based on well established
statistical methodology, such as, e.g., regression. In general,
however, many classification methods, such as, e.g., neural
networks or decision trees, are not based (at least, directly)
on statistical models. Therefore, in the machine learning com-
munity robustness is often understood somewhat differently,
as the ability to perform well for many different sets of real
data. David Hand, one of the most renowned researchers in the
area of machine learning, in his overview paper [6] discusses
consequences of breaking the assumption that the data in
the design (training) set are randomly drawn from the same
distribution as the points to be classified in the future. He gives
references to some works related to this problem, and presents
examples of problems encountered in the area of the credit
scoring and banking industries. It has to be noted, however,
that the number of papers devoted to the problem of robustness,
understood as in [6], is rather small. For example, Japkowicz
and Shah [5], while discussing this type of the robustness of
classifiers, cite only the paper by Hand [6]. One can consider
the concept of robustness in even more general sense, as to
perform reasonably well when data are described or generated
using different mathematical models. This understanding of
robustness is close to the one used by the AI community, but
is different to it as takes into account the knowledge about
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the mathematical models of analyzed data. In this paper we
understand the concept of robustness in this, more general,
sense.

Hryniewicz [7] [8] considers the case when binary clas-
sifiers are used for quality evaluation of items in produc-
tion processes. In many cases of such processes, quality
characteristics cannot be directly evaluated during production
time. Sometimes it is impossible, when a testing procedure
is destructive or impractical, or when a testing procedure is
costly or lasts too long. In such cases, an appropriate classifier,
which labels monitored items as “good” or “bad” is constructed
using the data coming from specially designed (and usually
costly) experiments, and then used in production practice. The
situation does not rise any objections if the process, from
which items used in the construction phase of a classification
algorithm are taken is the same as a process, in which obtained
classifiers are used. Hryniewicz [7], [8] has demonstrated that
deterioration of such process may have detrimental effects
on the quality of classification. Similar problems may be
also encountered in other fields of applications. Consider, for
example, a classifier that is used for the prediction of cancer
recurrence who may change its quality characteristics when
future patient will undergo a treatment, which was not used at
the moment when this classifier was built.

The problems described in the previous paragraph may sug-
gest that in the evaluation of classifiers we should add another
dimension, namely the robustness to the change of population
understood as the change of probability distributions that
describe input variables in the classification process. It was
the topic of the paper by Hryniewicz [1] whose work was
focused on the analysis of robustness understood in this way.
In our analysis we take into account in a more comprehensive
way the impact of the type of stochastic dependence on
the performance of classifiers. Therefore, we supplement the
results already presented in [1] with new results whose aim is
to present this impact.

At the moment the analysis of the robustness of classi-
fiers, understood in a general way, can be achieved using
artificially generated data, because appropriate, and widely
known, benchmarks seem not to exist. Hryniewicz [1] analyzed
the problem of robustness using software designed for the
generation of complex nonlinear processes with statistically
dependent data. This software has also been used for obtaining
new results described in this paper. A detailed description of
this software can be found in Section II. Similarly as in [1] we
have evaluated binary classifiers whose construction is based
on generalized linear models and regression techniques. In
particular, we have analyzed classifiers based on

• Simple linear regression,
• Linear regression with interactions,
• Simple logistic regression,
• Logistic regression with interactions,
• Linear Discrimination Analysis with a symmetric de-

cision criterion,
• Linear Discrimination Analysis with an asymmetric

decision criterion.

We have assumed that the dependence between variables in
our simulation model may be described by different copulas,
characterized by different strength of dependence. The main

goal of the research was twofold. First, as it is presented
in [1], we have evaluated the robustness of the considered
classifiers to shifts of the expected values of input variables
(attributes). Second, we have tried to find if the strength and
type of dependence influences performance of the considered
classifiers. In contrast to the results published by other authors,
we present the results of experiments performed in a strictly
controlled environment that simulates conditions, which are
significantly different from those usually assumed for the
considered classification models.

This paper is organized similarly to its predecessor [1]. In
Section II we describe considered models of data dependence,
simulation software, and evaluated classifiers. Then, in Section
III we describe used methods of evaluation. The most impor-
tant results of experiments will be illustrated with examples
in Section IV. Finally, in Section V we will conclude the
experiments, and present the original results of this research.

II. DESCRIPTION OF SIMULATION EXPERIMENTS

Except for few particular cases the problems described in
the previous section cannot be solved analytically. Therefore,
statistical simulations are widely accepted by the AI com-
munity as a sufficient tool for solving different problems of
classification.

A. Simulation software
Realization of the task formulated in Section I requires an

implementation of a complex mathematical model in a form of
simulation software. On the most general level, let us assume
that a general mathematical model that describes dependence
of input variables (predictors) with an output binary variable is
a simple one. Let Z1, . . . , Zp be p output characteristics whose
values are not directly observed in an experiment. Assume
now that these values should be predicted using observations
X1, . . . , Xk of k predictors. This problem is easy to solve
if we assume that we know the joint probability distribution
of input and output variables, i.e., the probability distribution
of a combined vector (Z1, . . . , Zp, X1, . . . , Xk). According to
the famous Sklar’s theorem this distribution is unequivocally
described by a (p + k)-dimensional copula, and marginal
probability distributions of Z1, . . . , Zp and X1, . . . , Xk, re-
spectively. Such a general model is hardly applicable, as
only two-dimensional copulas C(u, v) are widely used in
practice. Therefore, our simulation software should be based
on a model, which is simpler and more easy for practical
interpretation. In this research we have used a hierarchical 3-
level model, originally proposed in [7]. On the top level of
this model there is an auxiliary one-dimensional real-valued
variable T . This value is transformed to a binary one (in which
we are interested in) by means of the following transformation

Zt =

{
0 , T ≥ t
1 , T < t

(1)

The instances with the value Zt = 1 we will call “positive
cases” or “Positives”, and the instances with the value Zt = 0
we will call “negative cases” or “Negatives”. This model has
a direct interpretation in the case considered by Hryniewicz
[7] who modeled a monitoring of a production process with
indirectly observable quality characteristic. The first level of
our model describes the predictors X1, . . . , Xk. In order to
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simplify simulations we assume that consecutive k−1 pairs of
predictors (Xi, Xi+1), i = 1, . . . , k− 1 are described by k− 1
copulas Ci,i+1(Fi(Xi), Fi+1(Xi+1)), i = 1, . . . , k − 1, where
F1(X1), . . . , Fk(Xk) are the cumulative probability functions
of the marginal distribution of the predictors. In order to
simulate the input variables we have to assume the type of
the proposed copulas, and the strength of dependence between
the pairs of random variables whose joint two-dimensional
probability distributions are described by these copulas. In the
AI community Pearson’s coefficient of correlation r is often
used as the measure of dependence. Unfortunately, its applica-
bility is limited to the case of the classical multivariate normal
distribution, or - in certain circumstances - to the case of
the multivariate elliptic distributions (for more information see
[9]). When dependent random variables cannot be described
by such a model, and it is not an unusual case in practice, we
propose to use Kendall’s coefficient of association τ defined,
in its population version in terms of copulas, as (see [10])

τ(X,Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1. (2)

Numerical comparisons of the values of Pearson’s r,
Kendall’s τ , and - another popular nonparametric measure of
dependence - Spearman’s ρ are presented in [11], and show
that the usage of Pearson’s r in the analysis of data that cannot
be described by the normal distribution may lead to wrong
conclusions, especially in the case of negative dependence.
Therefore, Kendall’s τ is, in such cases, a much better measure
of dependence.

In order to have a more realistic model for simulation
purposes, it was proposed in [7] to use an in-between second
level of latent (hidden) variables H1, . . . ,Hk described by
cumulative probability functions FH1(h1), . . . , FHk(hk). Each
hidden variable Hi is associated with the predictor variable
Xi, and its fictitious realizations are measured on the same
scale as the predicted continuous random variable T . The
dependence between Hi and Xi is described by a copula
Ci,i(FHi(Hi), Fi(Xi)). Moreover, in our model we assume
that there exists a certain linear relationship between the
expected value of Hi and the expected value of Xi. This
assumption is needed if we want to model the effects of the
shifts in the expected values of the predictors on the expected
value of the predicted auxiliary variable T , which is related to
the hidden variables by a certain, possibly nonlinear, function

T = f(H1, . . . ,Hk). (3)

In real circumstances, such as those described in [7],
the probability distribution of T , and hence the probability
distribution of Zt, can be observed only in specially designed
experiments. The results of such experiments can be viewed
upon as data sets coming from supervised learning experi-
ments. In our research we simulate similar experiments, and
we use actual (i.e., generated by our software) and predicted
(i.e., the results generated by classifiers) binary outputs for
constructing and testing, several, say s, classifiers, K1, . . . ,Ks,
each of the form

Z ′t = K(X1, . . . , Xk). (4)

The mathematical model described above was implemented
in a software system written in FORTRAN. The reason for
using this old programming language was twofold. First,
because of a great amount of needed computations the usage
of popular among statisticians interpreted languages like R is
completely inefficient. Second, because of the long history of
the usage of this programming language in statistics many
numerically effective procedures are widely available.

B. Description of the experiment
In this paper, we describe the results for only four input

variables. This limited number of input variables may be
justified by findings of Hand [6] who noticed that in many real-
life problems of classification only few predictors (attributes)
have real impact on the results of classification. Another reason
for making this restriction is limited time of computations. One
has to note that even in this restricted model one run of Monte
Carlo simulations may last several days of continuous work of
a fast PC computer. The simulation process described in this
paper consists of three parts. First, a stream of data points,
i.e., the values of predictors, the values of hidden variables,
the value of the unobserved auxiliary output variable, and
the observed output binary variable are generated. Next, these
simulated data serve as training data sets for building several
classifiers. Finally, test data sets are generated, and used for the
evaluation of considered classification (prediction) algorithms.

In our simulation experiment the probability distributions
of predictors defined by a user on the first level of the model
can be chosen from a set of five distributions: uniform, normal,
exponential, Weibull, and log-normal. For the second level of
the model a user can choose the probability distributions of the
hidden variables from a set of distributions, that are defined on
the positive part of the real line: exponential, Weibull, and log-
normal. The information about these probability distributions
can be found in any textbook on probability and statistics.

The dependence between the pairs of predictors, and
between predictors and associated hidden variables, can be
described by the following copulas:

- independent
C(u, v) = uv, (5)

- Normal (Gaussian)

C(u, v; ρ) = ΦN (Φ−1(u),Φ−1(v); ρ) (6)

where ΦN (u, v) is the cumulative probability distribution
function of the bivariate normal distribution, and Φ−1(u) is
the inverse of the cumulative probability function of the uni-
variate normal distribution (the quantile function). Parameter
ρ is equal to the well known Pearson’s coefficient of linear
correlation r only in the case of normal marginal probability
distributions,

- Clayton

C(u, v) = max
([
u−α + v−α − 1

]−1/α
, 0
)
, α ∈ [−1,∞)\0,

(7)
- Frank

C(u, v) = − 1
α ln

(
1 +

(e−αu−1)(e−αv−1)
e−α−1

)
,

α ∈ (−∞,∞) \ 0,
(8)
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- Gumbel

C(u, v) = exp

(
−
[
(− lnu)

1+α
+ (− ln v)

1+α
] 1

1+α

)
,

α ∈ (0,∞),
(9)

used only for positive dependencies, and
- Fairlie-Gumbel-Morgenstern (FGM)

C(u1, u2; θ) = u1u2 + θu1u2(1− u1)(1− u2), |θ| ≤ 1, (10)

used for modeling only weak dependencies. The detailed
description of these copulas can be found, e.g., in [10].
The strength of this dependence is defined by the value of
Kendall’s coefficient of association τ , calculated for each of
the considered copulas using (2). The expected values of the
distributions of the hidden variables in this simulation model
depend in a linear way on the values of its related predictors.
At the next stage of simulation, hidden random variables are
transformed to the auxiliary output random variable T . The
relation between the hidden variables and T is strongly non-
linear, and is described by operators of a “min-max” type.
Finally, the auxiliary output random variable T is transformed
to the binary output variable, which is used for classification
purposes. The proposed model allows to generate data with
great variety of properties (non-linear dependence of a differ-
ent strength, different probability distributions, etc.) that are
significantly different from those usually assummed for linear
regression models.

The scheme of the simulation of a data point, for an
exemplary set of input parameters (probability distributions,
copulas, and values of Kendall’s τ ), is presented in Figure
1. The values of four input attributes are generated, respec-
tively, from the normal, exponential, logarithmic normal, and
Weibull distributions. The generated values are statistically
dependent, and the dependencies are described, respectively,
by the following copulas: Clayton (with τ = 0.8), Normal
(with τ = −0.8), and Frank (with τ = 0.8). Then, for
each input attribute the system generates an unobserved (hid-
den) value. These hidden values are generated, respectively,
from the logarithmic normal, exponential, exponential, and
Weibull distributions. The parameters of these distributions
depend in a linear way upon the values of the respective
input attributes (this dependence is not depicted in Figure
1). Moreover, they are also statistically dependent upon the
values of the generated input attributes, and these dependencies
are described, respectively, by the following copulas: Normal
(with τ = −0.8), Frank (with τ = 0.9), Gumbel (with
τ = −0.9), and Normal (with τ = −0.8), and Clayton (with
τ = −0.8). Finally, the real-valued output is calculated using
the formula depicted in Figure 1, and this value is transformed,
by using (1), to the binary output variable. The generated 5-
tuple (4 input attributes, and a binary output value) describes
one point in the training data set. The points of the test
set are generated similarly, with the same or different (when
robustness is evaluated) parameters of the model. The number
of input variables (four) has been chosen in accordance with
the opinion presented in [6] that in real situations the number
of attributes, which really influence quality characteristics of
a classifier is usually small.

Several types of classifiers have been implemented in our
simulation program. The classifiers are built using samples

Figure 1. An exemplary scheme of the simulation of a data point

of size nt of training data consisted of the vectors of the
values of predictors (x1, x2, x3, x4), and the actual value of
the assigned class. In this paper, we consider only six of
them, which represent three different general approaches to
the classification problem.

Binary linear regression. The first considered classifier is a
simple (of the first order) binary linear regression (LINREG4).
We label the considered classes by 0 and 1, respectively, and
consider these labels as real numbers, treating them as obser-
vations of a real dependent variable in the linear regression
model of the following form:

R4 = w0 + w1 ∗X1 + w2 ∗X2 + w3 ∗X3 + w4 ∗X4, (11)

where R is the predicted class of an item described by
explanatory variables X1, X2, X3, X4, and w1, w2, w3, w4, w0

are respective coefficients of the regression equation estimated
from a training set of nt elements. The value of R estimated
from (11) is a real number, so an additional requirement is
needed for the final classification (e.g., if R < 0, 5 an item
is classified as belonging to the class 0, and to the class 1
otherwise). The second considered classifier is also a linear
one, but with additional variables describing interactions of
the second order between the input variables (LINREG14).
The regression function (of the second order) in this case is
the following

R14 = w0 + w1 ∗X1 + · · ·+ w5 ∗X2
1 + · · ·+

w9 ∗X1 ∗X2 + · · ·+ w14 ∗X3 ∗X4.
(12)

The main advantage of these two classifiers is their simplic-
ity. Moreover, the classical linear regression is implemented in
all spreadsheets, such as, e.g., MS Excel. For this reason we
have chosen these classifiers as the easiest to implement in
practice without any specialized software.

Logistic regression. The next two classifiers are built using
a generalized linear regression model, namely the logistic
regression. The logistic regression is recommended by many
authors (see, e.g., [3]) as the best regression tool for the
analysis of discrete data. In this model the dependence of the
output RL upon the input variables is modeled by the logistic
function

RL =
1

1 + exp(−f(X1, . . . , X4))
, (13)
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where the function f(X1, . . . , X4) is described either by the
right side of (11) of the LOGREG4 model, or by the right
side of (12) of the LOGREG14 model. Unfortunately, the
implementation of the logistic regression is not as simple as
in the case of the linear regression. The estimation of its
parameters requires the usage of numerical procedures that
are implemented in specialized software (available, e.g., in the
WEKA package).

Linear Discriminant Analysis (LDA). The last two classi-
fiers implement the LDA introduced by Fisher, and described
in many textbooks on multivariate statistical analysis and data
mining (see, e.g., [3]). This method is historically the first
classification method used in practice, and according to [6] its
efficiency has been proved empirically by many authors. In
the LDA statistical data are projected on a certain hyperplane
estimated from the training data. New data points, projected
on this hyperplane, which are closer to the mean value of
the projected on this hyperplane training data representing the
class 0 than to the mean value of training data representing the
remaining class 1 are classified to the class 0. Otherwise, they
are classified to the class 1. The equation of the hyperplane is
given by the following formula:

L = y1 ∗X1 + y2 ∗X2 + y3 ∗X3 + y4 ∗X4 + y0, (14)

where L is the value of the transformed data point calculated
using the values of the explanatory variables X1, X2, X3, X4,
and y1, y2, y3, y4, y0 are respective coefficients of the LDA
equation estimated from a training set. If ZL denote the
decision point, a new item is classified to the class 0 if
L ≤ ZL, and to the class 1 otherwise. The LDA may not
perform well in the case of imbalanced data. Therefore, in our
simulation we implemented two methods of the calculation of
ZL. First, the classical one (LDA-SYM), when this point is
just the average of the mean values of the transformed data
points from the training set that belonged to the class 0 and
the class 1, respectively. Second, an asymmetric one (LDA-
ASYM), recommended for the analysis of imbalanced data
sets, where ZL is located asymmetrically between the two
mean values mentioned above, depending upon the number of
items belonging to each class in the test set. The calculation
of the LDA equation (14) is not so simple. However, it can
be done using basic versions of many statistical packages such
as SPSS, STATISTICA, etc. Moreover, the LDA problem can
be reformulated in terms of a simple linear regression, so the
statistical tools available in spreadsheets may also be used for
computations.

III. EVALUATION OF BINARY CLASSIFIERS

Proper evaluation of binary classifiers is not as simple as it
looks like. If we do not consider any costs of misclassification
the whole information about the quality of classifiers is con-
tained in the so called confusion matrix, presented in Table I
[5].

TABLE I. CONFUSION MATRIX

Pred Negative Pred Positive
Act Negative True negative (TN) False positive (FP) N=TN+FP
Act Positive False negative (FN) True positive (TP) P=FN+TP

All measures of the quality of classifiers are built using
the information contained in this matrix. A comprehensive
overview of these measures can be found in many sources
such as, e.g., Chapter 3 of the book by Japkowicz and Shakh
[5]. The most frequently used measure is Accuracy

Acc =
TN + TP

N + P
(15)

It estimates the probability of correct classification. How-
ever, in certain circumstances (e.g., when classes are imbal-
anced) this measure does not let to discriminate the quality of
different classifiers. This happens to be the case in experiments
described in this paper.

Other popular and important measures, such as
- Precision

Prec =
TP

TP + FP
, (16)

- Sensitivity or Recall

Sens =
TP

TP + FN
, (17)

- Specificity

Spec =
TN

FP + TN
, (18)

describe only certain features of binary classifiers. For exam-
ple, high values of Precision in statistical terms are equivalent
to low values of type I classification error when “Positives”
are considered as the relevant class. Similarly, high values
Sensitivity in statistical terms are equivalent to low values of
type II classification error. When quality of the classification
of “Negatives” is also worth of consideration, one has to take
into account the value of Specificity.

In the performed experiment we used all these measures for
the evaluation purposes. However, in this paper we present the
analysis of two aggregate measures recommended for the eval-
uation of performance especially in presence of imbalanced
data. First of these measures is F1 score (or F1 measure),
defined as the harmonic average of Precision and Sensitivity,
and calculated using the following formula

F1 =
2TP

2TP + FP + FN
. (19)

Low values of this measure indicate that a classifier has
a large value of at least one of type I or type II errors.
Second aggregate measure is known as G-mean, defined as the
geometric mean of Sensitivity and Specificity, and calculated
as

G =

√
TP ∗ TN

((TP + FN)(FP + TN)
. (20)

This measure is recommended for the evaluation of clas-
sifiers for highly imbalanced data when percentages of “Pos-
itives” and “Negatives” are significantly different, as it was
the case in our experiments. It has to be noted that a popular
among AI specialists measures such as ROC or AUC cannot
be applied in our comparisons, as all considered classifiers are
based on the same linear model, and are characterized by the
same (or nearly the same) ROC characteristics.
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IV. RESULTS OF EXPERIMENTS

The simulation system described in Section II was used
in many experiments with the aim to evaluate different binary
classifiers. In this paper, we describe only one of them. In each
instance of this particular experiment we simulated 50 runs,
each consisted of one training set of 100 elements and 100
test sets of 1000 elements each. This small size of a training
set was chosen in order to compare the results of simulations
with those described in [7], [8], where it had a particular
practical meaning. In each instance of the experiment, we used
the same type of a copula for the description of all depen-
dent random variables (in other experiments, not described
in this paper, we used different copulas in one considered
model). The strength of dependence was categorized into 6
categories: strong positive (Sp), medium positive (Mp), weak
positive (Wp), weak negative (Wn), medium negative (Mn),
and strong negative (Sn). For the Sp category the value
of Kendall’s τ was randomly chosen for each training set
from the interval [0.7, 0.9]. The respective intervals for the
remaining categories were the following: [0.4, 0.6] for Mp,
[0., 0.2] for Wp, [−0.2, 0.] for Wn, [−0.6,−0.4] for Mn, and
[−0.9,−0.7] for Sn. For each of the simulated 50 training
sets the expected values of input variables (predictors) varied
randomly in certain intervals. The simulated training sets were
used for the construction of six classifiers described in Section
II. For all test sets in one simulation run the description of
the dependence between considered random variables (i.e., the
copula, and the set of the values of Kendall’s τ ) was the
same as in the respective training set. However, in choosing
the expected values of the input variables (predictors) we
considered two cases. In the first case, these expected values
were the same as in the training set. Thus, the test sets were
simulated using the same model as the respective training set.
In other words, the considered classifiers were evaluated, in
this case, on data generated by the same model as it had been
used for their construction. In the second case, the expected
values of the input variables used in the generation of test sets
were different than the values used in the generation of the
respective training sets. Those different values were chosen
randomly around the values used for the generation of the
training sets (by maximum ±30%).

The presentation of the obtained results let us start with the
analysis of the influence of the type of a copula describing the
type of dependence on the Accuracy (i.e., fraction of correctly
classified objects) of considered classifiers, which is the most
frequently used quality characteristics of classification. In
Table II we present the obtained average values of Accuracy for
4 different copulas, and the strength of dependence belonging
to the category Mp. We can see that the quality of the
considered classifiers for a given copula is similar. Only the
asymmetric LDA classifier is visibly worse. However, this
quality is different for different types of copulas. This seems
to be a very important finding, as the type of dependence is
rarely (if ever) considered in the evaluation of classifiers. In the
case described in Table II the observed (marginal) probability
distributions are the same, and the estimates of the strength of
dependence are also the same. Nevertheless, the accuracy of
classification is visibly different, depending upon the type of
dependence defined by the respective copula.

From Table II we can see that the highest fraction of
correctly classified objects appears when data are generated

TABLE II. AVERAGE Accuracy. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.769 0.835 0.741 0.752
LINREG14 0.769 0.833 0.735 0.751
LOGREG4 0.789 0.849 0.757 0.773
LOGREG14 0.769 0.832 0.736 0.751
LDA-SYM 0.741 0.765 0.729 0.729
LDA-ASYM 0.697 0.732 0.683 0.685

by the Clayton copula, and the LOGREG4 classifier is the
best one for all considered types of dependency, described by
four considered copulas.

Now, let us consider the case of the similar (of medium
strength) dependence, but a negative one. In Table III we
compare the values of Accuracy for three copulas: Normal,
Clayton, and Frank (the Gumbel copula does not allow nega-
tive dependence).

TABLE III. AVERAGE Accuracy. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.356 0.279 0.321
LINREG14 0.432 0.411 0.404
LOGREG4 0.424 0.333 0.379
LOGREG14 0.436 0.422 0.408
LDA-SYM 0.428 0.438 0.460
LDA-ASYM 0.483 0.472 0.486

From Table III we see that in the case of negative depen-
dence the situation is totally different in comparison to the
case of positive dependence of the same (in absolute values)
strength. For classifiers based on linear and logistic regression
models the best results of classification are observed when data
are described by the Normal copula. Moreover, classifiers that
use the linear model with interactions perform much better
than the simple ones. However, when data are analysed using
classifiers based on linear discriminant analysis the best results
are observed when they are described by the Frank copula.
It is worth to note that in the considered case of negative
dependence the LDA-ASYM classifier is visibly the best one.

It is a well known fact that for imbalanced classes (i.e.,
when objects belonging to one of the two considered classes,
usually the “Positives”, appear much less frequently than the
objects belonging to the second class) Accuracy may not be
a good quality characteristic. In such a case, an aggregate
characteristics, such as, e.g., F1 score, are used for evaluation
purposes. The results of such evaluation (averaged for the same
data!) are presented in Table IV.

TABLE IV. AVERAGE F1 score. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.358 0.561 0.266 0.324
LINREG14 0.490 0.623 0.419 0.472
LOGREG4 0.537 0.662 0.464 0.509
LOGREG14 0.500 0.630 0.430 0.487
LDA-SYM 0.101 0.061 0.072 0.089
LDA-ASYM 0.549 0.598 0.484 0.562

It is evident that the situation in this case becomes quite
different. First of all, we can see unacceptably low values of
the F1 score for the symmetric LDA classifier. Despite its
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quite good accuracy (see Table II) classification errors of this
classifier are completely imbalanced. As the matter of fact,
the precision of this classifier was good, but its sensitivity was
really very low. The variability of the F1 score observed in
Table IV is much greater than the variability of the Accuracy.
It means that for different copulas the quality of considered
classifiers measured by the F1 score may be significantly
different. Moreover, if we look simultaneously on Tables II
and IV, we can see that the simple logistic regression classifier
seems to be quite visibly the best when it classifies data
generated by the same model as it had been used for the
generation of the training set.

The situation completely changes when consider the case
of negative dependence, presented in Table V.

TABLE V. AVERAGE F1 score. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.356 0.279 0.321
LINREG14 0.432 0.411 0.404
LOGREG4 0.424 0.333 0.379
LOGREG14 0.436 0.422 0.408
LDA-SYM 0.428 0.438 0.460
LDA-ASYM 0.483 0.472 0.486

The observed values of the F1 score behave similarly to
the case observed for Accuracy. Both classifiers built using the
discriminant analysis (LDA-SYM and LDA-ASYM) perform
much better than classifiers built on linear and logistic regres-
sion. What is interesting, however, that the values of the F1
score of the LDA-ASYM classifier (the best one!) observed for
different copulas are similar. It means that in case of negative
dependence this classifier is robust against possible variations
of the type of dependence.

A close look at the definition of the F1 score reveals
that this quality characteristic is related to the classification
of “Positives”, and does not take into account the quality
of classification of “Negatives”, which usually form a much
more numerous class. So, in the next step of our analysis let
us examine the impact of the strength of dependence on the
performance of considered classifiers evaluated using the G-
mean. From the definition of this characteristic one can see that
quality of classification of both “Positives” and “Negatives” is
taken into account in this case. In Tables VI– IX we present
a similar, as above, comparison for four cases: two levels of
the strength of dependence of both positive and negative sign.

TABLE VI. AVERAGE G-mean. THE SAME MODEL FOR TRAINING AND
TEST SETS. STRONG POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.806 0.860 0.796 0.820
LINREG14 0.834 0.893 0.831 0.847
LOGREG4 0.868 0.918 0.858 0.877
LOGREG14 0.835 0.896 0.831 0.847
LDA-SYM 0.055 0.037 0.058 0.063
LDA-ASYM 0.848 0.874 0.796 0.844

The results presented in Tables VI– IX show a rather
complex picture. In the case of strong positive dependence
(τ ∈ [0.7, 0.9]) between all variables the quality of clas-
sification, measured using the G-mean, is consistently the
highest when dependencies are described by the Clayton

TABLE VII. AVERAGE G-mean. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.513 0.665 0.434 0.496
LINREG14 0.625 0.725 0.567 0.617
LOGREG4 0.665 0.758 0.602 0.642
LOGREG14 0.634 0.736 0.576 0.629
LDA-SYM 0.281 0.195 0.261 0.287
LDA-ASYM 0.699 0.756 0.651 0.704

TABLE VIII. AVERAGE G-mean. THE SAME MODEL FOR TRAINING AND
TEST SETS. STRONG NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.708 0.637 0.712
LINREG14 0.809 0.774 0.785
LOGREG4 0.815 0.731 0.790
LOGREG14 0.809 0.775 0.785
LDA-SYM 0.309 0.180 0.234
LDA-ASYM 0.370 0.305 0.300

copula. However, the differences between considered copu-
las are not very strong. The best results are observed for
the LOGREG4 classifier based on the simple (i.e., without
interactions) logistic regression. When the strength of positive
dependence is weaker (τ ∈ [0.4, 0.6]) the data generated by
the Clayton copula are still classified in the best way, but
in this case the best classifier is the LDA-ASYM, based on
Fisher’s linear discrimination model with asymmetric decision
criterion. The situation changes dramatically when the depen-
dence is negative. In both considered cases of strong negative
(τ ∈ [−0.9,−0.7]) and medium negative (τ ∈ [−0.6,−0.4])
dependencies the best results of classification are observed for
the Normal (Gaussian) copula. For the Clayton copula (the best
in case of positive dependencies) the observed quality is the
worst. What is also very important that in the case of negative
dependencies none of the considered classifiers is the best one.
However, the classifiers based on logistic regression seem to be
more stable, as their performance does not depend so visibly
on the strength of dependence between observed (predictors)
and hidden variables.

Let us now consider an interesting case when the model
of data in test sets is different from that of training data. In
reality, it means that a classifier is used on data described by a
different probability distribution than the data used during its
construction. In Tables X– XI we present average values of the
Accuracy, and in Tables XII– XIII we present average values of
the F1 score, when the expected values of the input variables in
the test sets have been randomly shifted around the values used
for the generation of the training sets (by maximum ±30%).

Similar results for the case of the G-mean are presented in
Tables XIV– XV.

As we can expect, the values of quality indices in this case

TABLE IX. AVERAGE G-mean. THE SAME MODEL FOR TRAINING AND
TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.488 0.431 0.464
LINREG14 0.566 0.557 0.545
LOGREG4 0.553 0.482 0.519
LOGREG14 0.572 0.568 0.550
LDA-SYM 0.566 0.458 0.575
LDA-ASYM 0.605 0.527 0.592
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TABLE X. AVERAGE Accuracy. DIFFERENT MODELS FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.730 0.773 0.705 0.728
LINREG14 0.678 0.741 0.670 0.687
LOGREG4 0.759 0.809 0.725 0.749
LOGREG14 0.680 0.728 0.669 0.683
LDA-SYM 0.745 0.775 0.730 0.731
LDA-ASYM 0.643 0.672 0.631 0.646

TABLE XI. AVERAGE Accuracy. DIFFERENT MODELS FOR TRAINING AND
TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.765 0.738 0.757
LINREG14 0.718 0.669 0.701
LOGREG4 0.759 0.736 0.755
LOGREG14 0.717 0.666 0.693
LDA-SYM 0.527 0.423 0.529
LDA-ASYM 0.537 0.501 0.544

TABLE XII. AVERAGE F1 score. DIFFERENT MODELS FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.317 0.440 0.259 0.300
LINREG14 0.443 0.519 0.356 0.420
LOGREG4 0.482 0.577 0.406 0.451
LOGREG14 0.452 0.528 0.367 0.430
LDA-SYM 0.138 0.126 0.101 0.124
LDA-ASYM 0.470 0.524 0.411 0.484

TABLE XIII. AVERAGE F1 score. DIFFERENT MODELS FOR TRAINING
AND TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.340 0.274 0.308
LINREG14 0.367 0.394 0.372
LOGREG4 0.399 0.320 0.358
LOGREG14 0.365 0.399 0.373
LDA-SYM 0.427 0.434 0.457
LDA-ASYM 0.470 0.473 0.486

TABLE XIV. AVERAGE G-mean. DIFFERENT MODELS FOR TRAINING AND
TEST SETS. MEDIUM POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.540 0.632 0.494 0.525
LINREG14 0.626 0.685 0.561 0.610
LOGREG4 0.652 0.723 0.599 0.629
LOGREG14 0.631 0.692 0.567 0.615
LDA-SYM 0.326 0.287 0.294 0.325
LDA-ASYM 0.653 0.692 0.618 0.661

TABLE XV. AVERAGE G-mean. DIFFERENT MODELS FOR TRAINING AND
TEST SETS. MEDIUM NEGATIVE DEPENDENCE

Classifier Normal Clayton Frank
LINREG4 0.499 0.461 0.473
LINREG14 0.551 0.583 0.554
LOGREG4 0.557 0.506 0.522
LOGREG14 0.549 0.587 0.558
LDA-SYM 0.572 0.479 0.581
LDA-ASYM 0.591 0.564 0.602

are lower in comparison to the case when training and test
data are described by the same probability distributions. The
relative changes of their values are presented in Tables XVI–
XVII for Accuracy and F1 score, respectively.

TABLE XVI. RELATIVE CHANGE OF Accuracy DUE TO DIFFERENT
MODELS FOR TRAINING AND TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.950 0.925 0.950 0.968
LINREG14 0.883 0.889 0.911 0.914
LOGREG4 0.962 0.953 0.957 0.969
LOGREG14 0.884 0.875 0.909 0.910
LDA-ASYM 0.923 0.918 0.924 0.943

TABLE XVII. RELATIVE CHANGE OF F1 score DUE TO DIFFERENT
MODELS FOR TRAINING AND TEST SETS

Classifier Normal Clayton Gumbel Frank
LINREG4 0.887 0.785 0.974 0.925
LINREG14 0.904 0.834 0.850 0.890
LOGREG4 0.897 0.872 0.875 0.886
LOGREG14 0.904 0.837 0.853 0.884
LDA-ASYM 0.855 0.876 0.848 0.862

In the case of the G-mean the results are presented in
Table XVIII. In this table we have deleted the LDA-SYM
classifier, as its behaviour looks quite random, and thus cannot
be compared with the other considered cases.

TABLE XVIII. RELATIVE CHANGE OF G-mean DUE TO DIFFERENT
MODELS FOR TRAINING AND TEST SETS. STRONG POSITIVE DEPENDENCE

Classifier Normal Clayton Gumbel Frank
LINREG4 0.829 0.777 0.833 0.803
LINREG14 0.827 0.820 0.852 0.850
LOGREG4 0.906 0.845 0.906 0.884
LOGREG14 0.828 0.818 0.851 0.848
LDA-ASYM 0.791 0.773 0.842 0.790

The analysis of the robustness of the considered classifiers
to an unexpected change of the underlying model of observed
data is not simple and unequivocal. For example, in the case
of data described by the Clayton copula the loss of efficiency
seems to be the biggest one, so the type of data that yields the
best results of classification when training and test data are
generated by the same model becomes the worst one when
test data are generated from a different model. When we want
to compare the quality of considered classifiers, the simple
logistic regression classifier (LOGREG4) still seems to be the
best. However, its loss of efficiency is the best one only in the
case of G-mean. There is also another interesting observation:
the robustness of classifiers built on extended models (i.e.,
that take into account interactions) is generally worse than the
robustness of simple models.

Finally, let us consider the problem how the strength of
dependence influences the robustness of classifiers to an unex-
pected change of the underlying model of observed data. We
will illustrate this problem on the example of the LOGREG4
classifier, which seems to be the best from among all classifiers
considered in this paper. It seems to be quite obvious that there
exists a general rule that “the stronger dependence (positive or
negative) the better classification”. However, the relationship
between the strength and type of dependence and the quality
of classification may be not so simple. In Table XIX, we show
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how the values of the F1 score are changing for different
copulas and different strengths of dependence.

TABLE XIX. AVERAGE F1 score FOR THE LOGREG4 CLASSIFIER. THE
SAME MODEL FOR TRAINING AND TEST SETS. DIFFERENT LEVELS OF THE

STRENGTH OF DEPENDENCE

Dependence Normal Clayton Gumbel Frank FGM
Sp 0.799 0.866 0.813 0.813 X
Mp 0.537 0.662 0.463 0.509 X
Wp 0.041 0.062 0.044 0.052 0.052
Wn 0.088 0.060 X 0.056 0.056
Mn 0.424 0.333 X 0.379 X
Sn 0.763 0.647 X 0.730 X

The results displayed in Table XIX reflect the complexity
of the stated problem. First of all, the quality of classification
strongly depends upon the type of dependence described by a
respective copula. Only in the case of the normal (Gaussian)
copula (the classical multivariate normal distribution is a par-
ticular case of a distribution described by this copula) the re-
lationship between the strength of dependence and the quality
of classification (measured by the F1 score) is symmetric. For
the remaining copulas this relationship is visibly asymmetric
(negative dependence leads to worse classification), and the
values of the F1 score may be quite different despite the same
strength of dependence.

When the data in the test sets are generated by different
models than in the training sets the values of the F1 score are
changing. This is illustrated in Table XX for the case of the
LOGREG4 classifier.

TABLE XX. AVERAGE F1 score FOR THE LOGREG4 CLASSIFIER.
DIFFERENT MODELS FOR TRAINING AND TEST SETS. DIFFERENT LEVELS

OF THE STRENGTH OF DEPENDENCE

Dependence Normal Clayton Gumbel Frank FGM
Sp 0.642 0.618 0.633 0.625 X
Mp 0.482 0.577 0.406 0.451 X
Wp 0.069 0.089 0.064 0.077 0.076
Wn 0.110 0.082 X 0.074 0.075
Mn 0.399 0.320 X 0.358 X
Sn 0.648 0.558 X 0.633 X

For strong and medium positive dependencies the strongest
worsening of quality of classification has been observed when
data are described by the Clayton copula. However, when de-
pendencies are negative, the case of the Normal copula seems
to be the worse. It is also surprising that for weak dependencies
the values of the F1 score have even improved. It shows that
in such cases this quality index is rather inappropriate as the
results of classification to great extent seem to be random.

V. CONCLUSIONS

In the paper we have evaluated six binary regression type
classifiers. For the comparison we used three measures of qual-
ity: the Accuracy (i.e., the probability of correct classification),
the F1 score, which is the harmonic average of Precision
(equal to one minus the probability of type I error) and
Sensitivity (equal to one minus the probability of type II error),
and the G-mean, which is the geometric average of Sensitivity
and Specificity. The evaluation was performed using a complex
simulation software that allowed to model strongly nonlinear
dependencies of different types (described by different cop-
ulas) and different strength (measured by Kendall’s τ ). The

distinctive feature of this research is taking into consideration
the impact of the type and the strength of dependence between
all variables in the considered model. Moreover, we have
considered a practical problem when objects classified by
a certain classifier are described by a different probability
distribution than the objects used for building (training) this
classifier.

The performed experiments revealed that the quality of
classification is strongly related to the type of dependence
(type of the respective copula). This relationship may have
different impact on the performance of different classifiers. For
example, a simple linear regression classifier is quite robust to
the change of the data model when the data are described by
the Gumbel copula, but not robust when the data are described
by the Clayton copula, even if the strength of dependence is
in both cases the same. What is more important, and from a
practical point of view quite undesirable, that the impact of
the type of a specific copula strongly depends upon the sign
of dependence. For example, when the data are generated by
the Clayton copula the performance of considered classifiers
is the best in the case of (strong) positive dependence, but the
worse for the negative one.

The performed experiments do not reveal unquestionable
superiority of anyone of the considered classifiers. It is hardly
unexpected, as according to the famous Wolperts “no free
lunch theorem” such the best classifier cannot exist. However,
classifiers based on linear and logistic regressions are generally
(with some exceptions) better than those based on Fisher’s
linear discrimination. If we take into account both the quality
of classification and the robustness to the change of the under-
lying model, the classifier based on a simple (without interac-
tions) logistic regression is the best one. This could serve as
the general recommendation for practitioners. However, when
some additional information is available, other classifiers could
be preferred. For example, if we know that input attributes are
dependent, and their dependence is described by the Frank
copula, then the LDA classifier with an asymmetric decision
criterion would be preferred. In practice, however, obtaining
such specific information seems to be rather unlikely, so
our general recommendation seems to be valid for the great
majority of practical cases.

In the research described in this paper we have analysed the
case with when considered classes are imbalanced. We have
assumed that the class of main interest contains the minority of
observations. This is a situation frequently met in practice, e.g.,
in medicine or in quality control. Moreover, we have analysed
only the case of binary classification. The consideration of
more realistic, in some applications, cases of multiple classes
requires further research. Moreover, the behaviour of more
complex classifiers (e.g., based on decision trees) also requires
further investigation. Preliminary investigations (see, e.g., [8])
show, however, that these more complex non-linear classifiers
may perform much better in the case of the same data model
for training and test data (it is a usual case considered in the
data mining community), but loose its superiority when the
data models for training and test data sets are different, as in
the case considered in this paper.
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