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Abstract—The onset of the Big Data phenomenon presents 
significant technological challenges in managing massive 
amounts of information, yet it also presents tremendous 
opportunities for enhancing societal resilience and directly 
serving the public good. The Internet of Everything, which is 
driving such massive connectivity and growth in data 
generation is a highly complex system, continuously giving rise 
to new communication capabilities, yet also becoming 
increasingly vulnerable to destabilizing forces and malicious 
threats. Creating systems that are truly intelligent and capable 
of balancing these interrelated dynamics in the management of 
data demands a deliberate approach that is scalable, adaptive, 
and extensible. In this paper, we discuss three primary 
considerations for conducting Collaborative Big Data 
Analytics, including data acquisition, layered analytics, and 
visualization in order to grow resilient cyber-physical 
infrastructures that are capable of withstanding significant 
destabilization. With regard to data acquisition, we present the 
basic characteristics of so-called Big Data, namely the Six Vs of 
data variety, volume, velocity, veracity, volatility, and value. In 
addition, we outline the development of analytical tools and 
techniques for processing data, as well as methods for 
effectively visualizing the products of a layered analytic 
approach. In order to illustrate the utility of such an approach, 
we summarize findings from our participation in Orange 
Telecom’s Data for Development Challenges in the Republic of 
Côte d'Ivoire and Senegal, as well as introduce initial findings 
from our ongoing study of infrastructural resilience in 
archipelagos. We conclude that while Collaborative Big Data 
Analytics hold great promise, forums for the open development 
and validation of methodologies for its conduct are needed to 
generate more and better uses of the Big Data that have come 
to dominate our world.  

Keywords—Collaborative Big Data Analytics; Decision 
Engineering; Infrastructural Resilience; Sensemaking 
Methodology 

I.  INTRODUCTION 
This paper is an extension of work presented at the 2015 

IARIA Data Analytics Conference [1]. Whereas the dot-com 
boom of the late 1990s and early 2000s ushered in a wholly 
novel industry, replete with information-based products and 
virtual services marketed via the Internet, collaborative 
approaches for conducting civil-centric and public service-
oriented data analytics have taken longer to develop [2]. This 
fact notwithstanding, the rise of the Internet of Everything 
(IoE) has introduced unprecedented levels of artificial 
complexity within many cyber-physical systems, which 
demand constant attention, lest areas of brittleness and blind 

spots compromise the delivery of essential services through 
infrastructures that are the backbone of modern civilization. 
In bridging this gap, we present three basic layers that 
comprise a framework for gaining insight from data. In 
previous work [3], we posed the question of whether the 
protection architectures of critical infrastructure are 
improving or deteriorating with age; in other words, are they 
more like milk or like wine? Our investigation suggests that 
in the case of electric grid systems, infrastructures become 
more vulnerable with age, particularly as new threats evolve 
more quickly than existing protective measures are able to 
adapt. To ameliorate such a circumstance and improve the 
security and stability of critical infrastructural systems like 
the grid, we advocate for increased data collection, and more 
robust analytic capability employed in a Big Data Paradigm. 
This is illustrated by our juxtaposition of bamboo and the 
sandpile. Whereas the Abelian Sandpile or Bak-Tang-
Wiesenfeld model serves as an effective metaphor for self-
organized criticality and cascading effects in complex 
systems [4], the structural flexibility and dynamic 
responsiveness of bamboo [5] characterizes a system in 
which adaptation facilitates resilience. In turn, adaptation is 
facilitated by a timely and precise leveraging of data. The 
Sensemaking Methodology addresses three primary 
concerns, namely, the capturing of data, the processing and 
refinement of data into insight, and the visualization of 
insight to guide Decision Engineering endeavors. In this 
manuscript, we briefly outline the system of methods that 
comprise our three-layer framework, as illustrated by 
ongoing research focused on the resilience of critical 
infrastructures such as electric power systems.   

The remainder of the paper is organized as follows. 
Section II discusses some of the primary considerations for 
data identification and capture, including the variety of 
sensor platforms that are responsible for producing data. 
Section III describes the basic categories of analytic tools 
and techniques that have been developed for data processing, 
and argues the importance of counterpoising heuristic and 
algorithmic analytics, which is a core component of our 
methodology. Section IV addresses primary considerations 
for effective data visualization. Section V summarizes major 
findings and lessons learned from our participation in the 
first two Data for Development (D4D) Challenges as an 
exemplar of the Sensemaking Methodology for 
Collaborative Big Data Analytics. In Section VI, we 
articulate how such an approach stands to enhance resilience 
in complex systems, in particular the employment of data-
driven isomorphic and biomimetic applications to critical 
infrastructures such as the electric grid. Specifically, we 
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explore the context of power grid resilience, and discuss our 
investigation of a synchrophasor analytics system for 
archipelagos. We conclude in Section VII with general 
thoughts on the state of the art with regard to Collaborative 
Big Data Analytics, and identify areas for future 
advancement of our Sensemaking Methodology.  

II. DATA ACQUISITION: PROSPECTING FOR DIAMONDS 
OF THE INFORMATION AGE 

Just as various phases of the Industrial Revolution were 
fueled by human ability to derive value from the planet’s 
natural resources though technology, the ongoing 
Information Revolution is being fueled by our ability to 
derive value from data through technology [6]. However, 
this derivation results in more than the generation of wealth. 
Data management impacts nearly every facet of society, 
from economic development and education, to international 
security and environmental stewardship. In formulating a 
data-centric approach to complex problem-solving of any 
sort, it is prudent to first observe basic characteristics of data 
that impact its selection and acquisition. Whereas 
multivariate criteria exist for evaluating the quality of natural 
mineral resources such as diamonds (e.g., the “Four Cs” of 
color, clarity, cut, and carat weight) [7], so too must data be 
evaluated from various perspectives.   At the most basic 
level, the phenomenon of Big Data is being propelled by the 
so-called “Three Vs” of volume, variety, and velocity, which 
concern objectively quantifiable aspects of how much and 
how quickly different kinds of information are being 
communicated. However, in order to make any sense out of 
this torrent of data, we argue that an additional three 
qualitative aspects of veracity, value, and volatility are of 
equal importance, as depicted in Table I below. 

TABLE I. CHARACTERISTICS OF DATA 

 
a. An alternate V of Viability has also been proposed in [2], which we believe is subsumed above 

Size does matter. The Big Data phenomenon is perhaps 
most commonly linked with the sheer volume of data being 
generated by a host of remote sensors, household appliances, 
mobile communication devices, and human content 
generators worldwide that totals over 2.5 quintillion bytes of 
data per day [8]. Although difficult to comprehend 
quantitatively, these reams of data come in many forms, 

from the millions of photos and videos shared daily from 
smart phones through applications like Facebook, Sine 
Weibo, and Snapchat, to telemetric data and raw system 
measurements recorded by a multitude of sensor types and 
fed into industrial control systems (ICS), transportation 
management networks, meteorological forecasting services, 
and other information management systems [9]. Whereas 
human beings have historically been the primary generators 
and collectors of data contributing to knowledge 
development, with the number of devices connected to the 
Internet surpassing the global human population in 2008 
[10], machines are now responsible for an increasing 
preponderance of the world’s data. Indeed, the growing 
linkage of people, data, things, and processes is central to the 
so-called IoE [11], and the driving force behind change in 
myriad interdependent complex systems. This massive 
increase in IOE-generated data is both a significant challenge 
and a promising opportunity. On the one hand, conventional 
mechanisms for capturing and analyzing data cannot scale up 
effectively to accommodate the explosive growth in data 
generation. On the other hand, such abundance can enable us 
to use data to guide our decision-making and problem-
solving in ways that have not been possible until now. A key 
to unlocking this potential is the ability to rapidly assimilate 
huge volumes of data and accurately identify useful pieces of 
information.   

Integrating a large variety of data stands to yield the most 
robust insights. In order to achieve quantitative exactitude in 
identifying insightful information, a maximally inclusive 
variety of data types and sources is essential. To generate a 
complete picture of a system, we must be able to view it 
from multiple perspectives. In this regard, a critical 
determinant for perspicacity is the incorporation of diverse 
data that each relate to a given system or problem set through 
unique angles that allow for cross-referencing and 
comparison. This includes the acquisition of both structured 
and unstructured forms of data. By way of example, when 
someone is interested in a particular topic or event, they may 
initially hear a broadcast about it on the radio, then read an 
article about it, download images, or watch a video on the 
Internet. As with the parable of the blind men and the 
elephant; each source of information takes a different form, 
yet contributes to a more complete understanding when 
taken together. Similarly, in researching issues of 
infrastructural resilience, we are striving to utilize a host of 
data gathering mechanisms, including the collection of 
electric power signals from monitoring equipment such as 
Phasor Measurement Units (PMU) and Digital Fault 
Recorders (DFR), to visual and geospatial data from 
Unmanned Aircraft Systems (UAS), Ocean Data Acquisition 
Systems (ODAS), Synthetic Aperture Radar (SAR) and other 
weather observation tools, to human sensor networks in the 
form of crowdsourced event observation and reporting.  

Data velocity is a determining factor for agile systems. In 
addition to harvesting a large variety of data, the speed with 
which data are gathered and communicated is another 
significant variable, as time-critical operations from financial 
management and news reporting, to emergency response, 
law enforcement, and national defense all must be able to 

V 
The 6 Vs of Big Data 

Description Units of measure /  
Dimensions 

Volume Massive amounts of data Bytes => Petabytes 

Variety Multiple forms / formats video, sms, .pdf, .doc, .jpg, 
.xls, .rtf, .tif, PMU, etc 

Velocity Speed of data feeds Event-driven / Streaming 

Veracity Trustworthiness of data  Provenance / Pedigree 

Volatility Shelf-life of data Time-Sensitive / Static 

Value Usefulness of data 
Ambiguity / Uncertainty; 
Correlation / Causation 
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quickly sense the occurrence of anomalous events in order to 
operate effectively [12]. Several factors influence the 
velocity of data, including the capacity of communication 
channels, as well as the granularity of observations. The 
continuous expansion of fiber optic and wireless 
communication networks enable many individuals and 
sensors to rapidly exchange data. In addition, sensors are 
capable of recording measurements at increasingly precise 
spatial and temporal scales, resulting in more frequently 
observed change and data generation. At the same time, the 
increase in data velocity challenges our ability to keep pace. 
As information is communicated at greater speed, decision 
cycles are compressed, and we have less time to assimilate 
more information. To illustrate this point, consider that over 
100 hundred hours of video are uploaded every minute to the 
video sharing site YouTube [13], which accounts for over 
400 million years’ worth of viewing time in the 11 years 
since the site’s creation in 2005 [14].   

Whereas adapting to these quantitative aspects of data are 
sufficiently challenging, simply capturing a large amount of 
fast-moving information from different places is not enough 
to generate improved insight. We must also consider the 
more qualitative aspects of data, which ultimately determine 
how useful it can be. In managing both emergency responses 
and routine system operations, all data consumers rely on the 
authenticity or veracity of data in order to gain actionable 
insight. The consistency of data taxonomy is an important 
aspect of veracity, and, in this regard, discovery standards for 
electronic resources such as the Dublin Core standards for 
Metadata are essential for datasets held by diverse curators to 
remain compatible with one another [15].  

A more persistent challenge regarding veracity is the 
ability to establish the provenance and pedigree of data, 
particularly in the context of data manipulation and spoofing, 
or counterfeiting in the information supply chain. While 
gathering redundant data from multiple sources, and cross-
referencing particularly specious data are prudent strategies 
for mitigating the negative impact of false or corrupted data, 
ensuring data veracity is a challenge that requires vigilance 
and adaptation. By way of example, the April 2013 issuance 
of a false tweet from the Associated Press’s hacked Twitter 
account alleging injury to President Obama during an 
explosion at the White House caused the Dow Jones 
Industrial Average to plummet 142 points in just two 
minutes [16]. Such a resourceful, yet malicious use of 
technology illustrates that data need not be characterized by 
great volume or variety in order to generate massive impact. 
In turn, methods to ascertain and safeguard the authenticity 
of data must be equally resourceful.  

Data veracity is particularly significant for operating and 
safeguarding critical infrastructures. With regard to electric 
power systems, the lack of a shared standard for grid 
performance metrics can compromise the value of system-
wide measurements, as U.S. grid ownership is fractured 
between a diverse mix of privately-owned corporations, rural 
cooperatives, municipalities, the federal government, and a 
host of independent power providers, with over three 
thousand organizations distributing power to consumers, 
each with varying standards of performance monitoring [17]. 

Internationally, in addition to a lack of shared performance 
metrics, grid operations are also challenged by the lack of a 
shared grid event lexicon, which in extreme cases can 
actually prevent system interoperability [18]. 

In addition to its veracity, the shelf life of data also has 
a large impact on its utility. Volatility or duration of 
relevance depends largely on the nature of the decision 
which data are serving to inform. Whereas certain digitally 
preserved historical records maintain their relevance or 
value in perpetuity, other datasets that pertain to rapidly 
evolving circumstances may remain relevant for only a 
matter of days, if not seconds, or less. By way of example, 
international standards for the operation of power grids 
dictate that the onset of electrical islanding events amongst 
distributed power generating sites be detected and addressed 
in no more than two seconds [19]. Although the granularity 
of time series data is a vital consideration for decision 
making on compressed time scales, the continuity of data 
collection similarly impacts the longitudinal analysis of 
slower developing patterns. By way of example, a 
maintenance gap in 2012 of the Tropical Ocean Atmosphere 
array led to a 70% drop in data collection, thus 
compromising the consistency of measurements, and 
potentially skewing the analysis of long-term anthropogenic 
climate change and global warming studies [20].   

Whereas an evaluation of each of the Four Cs are 
combined to determine a diamond’s overall quality, the 
aforementioned Vs can be similarly combined to determine 
the utility of data.  Data value loosely correlates to how 
much of any given decision can be engineered from it. In 
other words, can we decide a course of action based on a 
single dataset? If so, then that dataset is of high value. If 
many disparate datasets are required in order to engineer a 
single decision, then each of those datasets is of 
comparatively lower value, taken in isolation. Determinants 
of value include such factors as the level of ambiguity with 
regard to data meaning, as well as discernibility between 
correlation and causation (i.e., whether multiple variables 
simply change together, or whether a particular variable 
directly catalyzes change in others).  Amongst the sea of 
data corresponding to myriad variables, a principal 
challenge is determining which pieces of data are the most 
significant indicators of change or phenomena of interest. 
Although no formalized schema yet exists for evaluating 
these Six Vs of data, recognizing the significance and 
employing methods for addressing each is a fundamental 
aspect of operating in a Big Data Paradigm.   

The actual task of data acquisition is no less complex. 
For all organizations - public, private, and any permutation 
in between – how best to gather and disseminate data 
remain open questions [21]. With the United Nations (UN) 
having asserted that information in itself is a life-saving 
need for people in crisis, just as important as water, food, 
and shelter, the necessity of publicly-accessible data is 
clearly a global one that now transcends the realm of 
scholarly open access [22]. Yet, there is no comprehensive, 
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authoritative single source for information, and so we must 
get data from as many places as we can, in as many ways as 
we can. By extension, an intelligent system is ideally 
capable of continuously ingesting data from multiple 
sources, through diverse media. However, there are a variety 
of practical limitations on such a capability, including 
human controls over data accessibility (e.g., personal 
privacy, political sensitivity, national security, commercial 
ownership, etc.), as well as technological challenges with 
data capture and curation [23]. Moore’s Law for 
semiannually doubling transistor capacity, Gilder’s Law for 
annually doubling communication bandwidth capacity, and 
Koomey’s Law for annually doubling computational energy 
efficiency have each held steady for years to yield the 
current explosion of Big Data. Yet, at the same time, system 
input/output (I/O), memory, and storage capacities have 
each increased at a much slower rate [24], creating a 
dynamic  whereby data is generated faster than it can be 
consumed, as pictured below in Figure 1.  

 

 
Such limitations notwithstanding, an important 

component of our Sensemaking Methodology involves 
prioritizing the most critical data requirements, and where 
these cannot be met directly, identifying suitable proxies. 
Just as the UN employs rates of electrification as a proxy to 
gauge a nation’s level of development, we can employ 
statistics such as the penetration of renewable energy 
sources to infer probability of electrical islanding and other 
disturbance events. As a commodity, data in and of itself is 
not particularly valuable. However, the more of it that we 
can gather, then the greater the chances are to yield valuable 
insights through intelligent refinement. Generally speaking, 
the onset of the Big Data phenomenon is not an automatic 
boon to the generation of deep insight into complex problem 
sets. On the contrary, Big Data itself presents unique 

challenges that necessitate new ways of working with 
information, through robust analytic techniques.  

 
III. STACKING THE DECK: TOOLS AND TECHNIQUES FOR 

LAYERED DATA ANALYTICS 
The analytic phase of the Sensemaking process is 

designed to extract actionable insights from the raw material 
of massive datasets.  It is constituted by layers of algorithmic 
and heuristic techniques, high performance, distributed, and 
cloud computing, machine learning, signal resolution, video 
analytics, and natural language processing, nested under the 
Unstructured Information Management Architecture (UIMA) 
[25]. Whereas the significance of structured information such 
as that contained in relational databases is by nature 
unambiguous, the various components comprising UIMA are 
geared towards discerning meaning and significance from a 
variety of unstructured information sources, such as sensors, 
video, and natural language. Many of these components are 
rooted in mathematical concepts that have developed over 
centuries, and therefore some brief accounting of their 
evolutionary pathway is instructive.  

Mathematicians and logicians of the 17th century realized 
that the painstaking work of numerical calculation could be 
conducted automatically in order to free up the mind to focus 
on higher level analytical work. First the Pascaline, then the 
Leibniz Computer represent some of the earliest automated 
calculating machines, later advanced in the 19th century by 
Charles Babbage in the form of the Analytical Engine, which 
was the first programmable computer designed to solve a 
variety of mathematical and logical problems [26]. Although 
Babbage’s inventions are certainly significant achievements, 
the detailed instructions that his protégé and peer, Augusta 
Ada Byron Lovelace wrote for using the Engine are arguably 
even more lasting for being the first computer programming 
code [27]. Indeed, a case can be made that modern computer 
programming evolved from Lovelace’s early conceptual 
programming work, as indicated by the fact that one of the 
U.S. military’s first high level programming languages was 
eponymously called “Ada” [28]. In addition, George Boole’s 
work on representing the process of logical thought in binary 
mathematical form paved the way for digital computer logic 
and the electromechanical switching processes that remain 
foundational to the operation of computers today [29].  

While providing early functional models for 
computational intelligence, the work of early mathematicians 
and philosophers also served to inform the ontological basis 
on which many modern platforms have been constructed. 
Specifically, the theories of knowledge and logic proposed 
by the American Triumvirate of Pragmatism in the late 19th 
century have played a significant role in influencing the 
trajectory of the Information Revolution in the 20th and 21st 
centuries. The Triumvirate, comprised of William James, 
Charles Pierce, and John Dewey, established three postulates 
that would later serve as the philosophical underpinning for 
modern information retrieval and search engine systems, 
namely applications of the semblance of indeterminacy, 
order in chaos, and long-run convergence [30]. When 
combined with such an ontological orientation and the 

Figure 1. Technology Trends Impacting Big Data 
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invention of semi-conductive transistors, the Shannon-
Weaver model of communication opened the door to modern 
information and communication technology, by establishing 
a theory of information that conceptually integrated disparate 
elements of data source, message, transmitter, signal, 
channel, noise, and receiver into a coherent system [31]. 
Finally, the works of mathematician and cryptanalyst Alan 
Turing and others at Bletchley Park to unlock the signals 
intelligence encrypted by Nazi Germany’s Enigma Machine, 
as well as John Mauchly and Presper Eckert’s Electronic 
Numerical Integrator and Computer (ENIAC) [32] not only 
helped to turn the tide of World War II, but also gave birth to 
the field of computer science [33].   

From this shared lineage, the modern analytical toolkit of 
computation has evolved into far too many instruments to 
concisely summarize here. However, there are fundamental 
components of the analytic process, which we will strive to 
articulate. Upon acquiring data, the initial step in the analytic 
layer of our framework is data ingestion and cleansing, 
which can actually account for up to 80% of work in data 
science [34]. By way of example, satellite imagery is 
unfortunately not as simple as an “eye in the sky” beaming 
down neat pictures to a computer console for analysis and 
distribution. The many 0’s and 1’s that make up the digital 
representation of a physical object must first be processed 
and translated into an intelligible picture. Once raw data are 
refined into a malleable commodity, that commodity can 
then be annealed into meaningful insight through a 
systematic layering of Analytics on Analytics (A2O). The 
most critical aspect of A20 is the contrasting or 
counterpoising of diverse datasets. This process begins with 
a foundational geospatial and or temporal matrix of data 
points, and proceeds through a set of systematic 
organizational steps that include data clamping, 
normalization, and hierarchical clustering, in order to reveal 
patterns and detect aberrations.  

Given the importance of data veracity, a significant 
aspect of analytics in a Big Data Paradigm is the ability to 
recognize latent relationships in seemingly unrelated 
phenomenon. The case of the Boston Marathon Bombing 
well illustrates this point, as minor human error inputting one 
of the perpetrator’s names into a federal database prevented 
law enforcement and intelligence officials from recognizing 
a critically predictive event in the month’s leading up to the 
attack [35].  In a Big Data Paradigm, the mistaken addition 
of an extra “y” included in the Treasury Enforcement 
Communication System (TECS) record for Tamerlan 
Tsarnaev would not have prevented the issuance of an alert 
to detain him during re-entry to the United States from 
Chechnya, upon the recommendation of the Russian State 
Security Service (FSB). The application of fuzzy logic [36] 
and similar techniques in an A20 approach accommodates 
uncertainty in information granulation, which recognizes 
approximate relations in data instead of relying solely on 
exact similarity and total certainty. In general, morphological 
analysis and aberration detection serve to evaluate the role of 
myriad variables in the dynamics of complex systems and 
networks over time. This is depicted below in Figure 2, 
which is a snapshot from the SynerScope visualization suite 

showing change in international communication network 
connectivity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
Whereas many high performance computing applications 

rely on synthesized data (i.e., Monte Carlo Simulations, 
etc.), our approach is predicated on the acquisition and 
analysis of empirical data. However, a fundamental 
prerequisite for effective A2O is the storage and 
management of massive datasets. In this regard, distributed 
computing architectures and parallel processing are critical 
capabilities [37]. 

Impressive though they may be, machine capabilities 
comprise but one half of the analytic layer of our 
methodological framework. The remaining half relies on the 
inherently human capabilities of contextual orientation and 
intuitive leaping [38]. Whereas machines are capable of 
generating, processing, and storing massive quantities of 
data, the human mind remains unique in its ability to 
superimpose context over data in order to discern relevance 
and meaning. Hence, the Sensemaking Methodology is 
characterized by its fusion of technological and sociological 
perspectives. On the one hand, we leverage the technical 
advantages of machine capability in an algorithmically 
inductive pathway accumulating specific observations to 
build generalizable insights. On the other hand, we also 
leverage intuitive capacity in a heuristically deductive 
pathway applying general knowledge in particular 
circumstances to yield precision insights.  

This socio-techno unification is at the heart of our 
methodology for pattern recognition and Decision 
Engineering. Going back to the example of satellite 
imagery, let us consider the case of the Global Earth 
Observing System of Systems (GEOSS) and the view of 
Somali villages at night as an illustration of counterpoising 
algorithmic versus heuristic insight.  With the rise of both 
maritime piracy off the Horn of Africa, and the violent 
extremist organization Al-Shabaab in Somalia, international 
security organizations were keen to establish a link between 
the two groups [39]. As assets in the GEOSS satellite 
constellation observed significant variances in the night-

Figure 2. Example of SynerScope A2O Visualization Suite 
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time illumination of various towns along the Somali Coast 
and provincial capitals, analysts sought to employ the 
algorithmic insight of seeing more lights at night as 
evidence for a correlation between the dispensation of pirate 
ransoms and the buildup of jihadi strongholds [40].  
However, heuristic insight suggested that the ideological 
and religiously-motivated nature of Al-Shabaab was 
incompatible with the financially-driven motives of the 
criminal piracy network, and therefore a link was unlikely. 
The truth of this insight would later be established through 
data gathered by the International Criminal Police 
Organization (INTERPOL) and the United Nations Office 
on Drugs and Crime (UNODC) [41], which verified that 
although pirates invest in infrastructure improvements (e.g., 
electrification and lights), Al-Shabaab degrades local 
infrastructure to fund arms purchases and maintain secrecy. 
Such an example shows us that while technology and 
algorithms are more than capable of identifying patterns of 
interest, we still need heuristic insight to decipher what 
those patterns actually mean.   

IV. A PICTURE TELLS A THOUSAND WORDS: IMPARTING 
INSIGHT THROUGH DATA VISUALIZATION 

Upon recognizing patterns of interest through an analytic 
process, relevant insight must be visualized in a way that 
directly informs the engineering of decisions. The primary 
aim of the data visualization phase is to establish the 
relevance of insight gained through the A20 process, and 
help to guide the actions of decision makers by parsing out 
critical points of useful information from massive amounts 
of data. Figure 2, above, displays output from one of our 
visualization platforms, the SynerScope. SynerScope and 
other similar tools use a coordinated multi-view approach 
with a scalable and flexible visual matrix in order to 
visualize key morphological insights into how complex 
systems and networks change over time. However, before 
we progress into any further detail with regard to 
contemporary visualization techniques, let us briefly 
consider data visualization in its broader context.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Efforts to visualize and impart insight are as old as 
human knowledge and communication; from cave paintings, 
to pictographs, hieroglyphs, numerology, symbolic logic, 
and language. In order to understand what methods have 
been developed over time for effectively conveying 
knowledge, it is instructive to visit certain historical 
examples. One case in point is the work of the Mixtec 
civilization of Oaxaca, Mexico [42], depicted above in 
Figure 3. Although the figure above depicts the Mixtec’s 
primordial cosmology and creation mythology, it is an early 
example of how human insights gained through observation 
of natural phenomenon (i.e., data analysis) were preserved 
for distribution and posterity. This and other similar 
precedents from early civilization remain germane to many 
data-related fields, including Education, the Arts, Public 
Information, Manufacturing, Product Advertisement, Device 
Instruction Manuals, Traffic Signage, Emergency 
Management, and Information Technology (IT) [43]. With 
the advent of the Internet, and eventually the World Wide 
Web, the tradition of data visualization has continued to 
evolve. Today, such professional disciplines as Cognitive 
Science, Behavioral Psychology, Computer-Assisted Design 
(CAD), and Strategic Communication all build on the work 
of early visualization specialists by combining machine 
capability with human insight to generate socio-techno 
innovations in how the brain senses and interprets 
information. In turn, our interpretation and assimilation of 
information drives our ability to engineer decisions and 
determine appropriate courses of action, as individuals in 
daily life, as agents in organizations, and as members of the 
global citizenry.   

Nevertheless, this does not mean that modern data 
visualization is a perfected science. Rather, visualization is a 
principled art that requires both intelligence and intuition in 
its composition. In turn, efforts to visualize pseudo-insights 
that are not informed by robust analytics run the risk of 
proliferating misinformation, bias, conflict, and spoilage of 
resources [44]. In addition to these pitfalls, data-informed 
visualizations also can be subject to information overload, if 
insights are not concisely crystallized in a digestible form, as 
depicted below in Figure 4 [45].  

 

 

Figure 3. Image from the Codex Vindobonensis Mexicanus Figure 4. Example of Counterinsurgency Diagram 
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The design of any given data visualization is driven by 
two primary factors; the nature of the decision it serves to 
engineer, and the demographic characteristics of the 
audience or decision maker. Firstly, is the aim of the 
visualization simply to impart generally useful information, 
or is it intended to inform a specific choice? If the aim is the 
former, then visualizations such as that in Figure 4 may be 
suitable. However, decision-quality visualizations must 
clearly depict actionable insight, and inform implementable 
courses of action in a timely manner. Secondly, how much 
does the target audience for a given data visualization 
already know? An audience of laymen will require a 
significant amount of context in order to make sense out of 
visualizations depicting complex phenomena. Conversely, 
too much context will be superfluous (and potentially 
distracting) to an audience of experts. Therefore, 
constructing an effective data visualization means striking a 
delicate balance between sufficient context and specific 
insight. 

With this in mind, we turn to a key consideration 
regarding the value of data visualization; the depiction of 
changing dynamics and identification of brittleness in 
complex systems. In light of the many layers of 
interdependence that characterize our most critical 
infrastructural systems (e.g., electric grids, the Internet, 
etc.), there is significant potential for percolation effects or 
cascading failure [46]. Therefore, to ensure the resilience of 
such systems, it is essential to closely track changes in 
system states over time, to identify areas of brittleness or 
weak links in the chain, and actuate corrective measures 
before these weak links fail. With regard to the resilience of 
the Internet in particular, tools such as the SeeSoft System, 
pictured below in Figure 5, enable analysts to visualize 
statistics of interest in software code [47]. In the case of 
Figure 5, a color-coding scheme displays how recently lines 
of code have been changed, with red lines having been most 
recently changed, and green lines having remained 
unchanged the longest.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Visualization tools are invaluable assets that enable us to 
quickly and clearly see areas of potential brittleness in 
complex systems. In the case of Figure 5, above, we have a 
mechanism to visualize answers to questions such as 
whether software security improves with age, as lines of 
code not recently updated to address proliferating cyber 
threat vectors are likely brittle [48]. Therefore, visualization 
is not only a product of the analytic phase of the 
Sensemaking Methodology, but can actually be a feedback 
loop that helps to inform the A2O process. In general, 
visualization is a fluid endeavor, whereby patterns that 
reside in large amounts of data can be quickly and easily 
recognized by a human user, and help to guide their decision 
making amidst dynamic environments and changing 
circumstances.  

V. PROOFS OF CONCEPT: SYNERSCOPE AND THE DATA 
FOR DEVELOPMENT CHALLENGE  

To demonstrate the utility of our approach, we come to 
the shores of West Africa and the Data for Development 
Challenge (D4D) [49]. Since its inauguration in 2012, the 
annual D4D Challenge has represented a unique opportunity 
for Big Data analysts to experiment with diverse tools and 
techniques for harvesting insight from mobile phone data. 
For each challenge, international competitors from academia 
and private industry are given the chance to analyze a 
multitude of datasets pertaining to mobile phone use in a 
designated country during a circumscribed portion of the 
year [50]. We have had the privilege to participate in the 
first two such challenges, in the Republic of Côte d'Ivoire 
and Senegal, with  a sampling of our results displayed 
below in Figure 6 [51]. 

 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
In conducting our analysis of the D4D datasets and 

generating the illustrations sampled above, two lessons 
became clear to us. First, we needed a large variety of data 
sources, through which to contrast and correlate mobile 

 

Figure 6. 2013 D4D Best Visualization: "Exploration and Analysis of 
Massive Mobile Phone Data: A Layered Visual Analytics Approach" 

 

 

Figure 5. SeeSoft software code visualization system, 
Lucent Technologies 
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phone activity with other significant trends and events. For 
the first D4D in Côte d'Ivoire, we contrasted the given 
mobile phone data with UN reports of violent conflict and 
significant social disturbance, as well as meteorological data 
for the given timeframe. This helped to reveal regional 
political affiliations and ethnic enclaves, as violent events 
targeting certain political and ethnic groups in the capital 
city, Abidjan, catalyzed notable increases in call activity to 
specific communities elsewhere in the country.  In addition, 
we observed that abundant rainfall in areas of significant 
cocoa and yam cultivation correlated with heightened call 
activity, likely indicating increased agro-business 
developments at specific points in the growth and harvest 
cycles in response to favorable weather conditions.  Our 
second key learning was the need to adopt multiple 
perspectives from which to interrogate the datasets. Our 
normalization and clustering algorithms produced 
dendograms, with which we were able to sort items (e.g., 
cell towers) of similar calling behavior into groups for 
further investigation. By grouping cell towers of similar call 
behavior, we were then able to further explore what other 
commonalities linked these disparate regions.  

Although such techniques are still relatively nascent, we 
believe that the work of our team and fellow D4D 
participants is a clear demonstration that Collaborative Big 
Data Analytics can help to increase insight into complex 
interrelated phenomenon, and thus improve Decision 
Engineering in a variety of social, political, and economic 
arenas. However, the implementation of our Sensemaking 
Methodology remains in the early stages, and inevitably 
there is room for improvement in such an approach. 
Specifically, increasing the volume and variety of data 
included in the A2O phase will yield greater insight in 
future D4D Challenges, and other applications of our 
methodological framework. In addition, the deliberate 
articulation of alternate frameworks for Collaborative Big 
Data Analytics will help to progress the state of the art, by 
revealing common best practices as well as shortfalls and 
gaps.  

VI. KEEPING THE LIGHTS ON: THE ROLE OF 
SENSEMAKING IN SMART ELECTRIC GRIDS 

In addition to work on the D4D Challenges, our 
exploration of infrastructural resilience also helps to 
illustrate the utility of a systematic approach for data 
acquisition, analytics, and visualization. As society has 
evolved, technology has advanced, and the complexity of 
systems has increased. In turn, this rise in complexity and 
interdependence leads to increased vulnerability in the 
social and physical systems upon which we rely for essential 
services  [52]. In response, a resilience-oriented approach 
assumes that unpredictable and destabilizing events will 
inevitably occur, and accordingly focuses on how flexibility 
and adaptation can be instilled across systems. Making good 
use of data is central to such an effort. Therefore, we present 

initial findings from the application of our Sensemaking 
Methodology to an investigation of electric grid systems, 
and the development of a synchrophasor analytics system 
for archipelagos.  

The concept of resilience is a core area of study in a 
wide variety of disciplines, from human psychology [53] 
and childhood development [54], to ecosystems [55], 
economics [56] and disaster preparedness [57]. Generally 
speaking, resilience refers to the capacity of a system to 
absorb shocks while maintaining functionality. However, 
resilience is a highly conditional state and the determinants 
of system resilience  vary depending  on the nature of the 
system and the context of specific shocks or destabilizing 
forces [58]. Factors that promote resilience in one system do 
not always translate neatly into other system contexts. By 
way of example, while a diverse social network can enhance 
individual resilience, the interdependence of diverse 
infrastructural components may itself be a source of 
vulnerability for the collective infrastructural system. In 
addition, a particular system cannot be broadly 
characterized as either vulnerable or resilient in perpetuity, 
because each threat affects a system differently, and threats 
continually evolve. 

Nonetheless, we maintain that insights generated from 
the study of resilience in social-ecological systems [59] do 
bear relevance for the promotion of resilience in cyber-
physical systems, such as the electric grid. In particular, the 
so-called “R4” framework is a helpful tool for 
conceptualizing the key harbingers of resilience, namely 
robustness, redundancy, resourcefulness, and rapidity [60]. 
With regard to lifeline critical infrastructure systems like the 
electric grid, robustness; or the ability to withstand shocks is 
of particular importance [61]. Although rapidity (i.e., the 
ability to return to a state of normal functioning in a timely 
manner) is also a chief concern, it is an outcome of how 
effectively the redundancy and resourcefulness of 
contingency measures can augment a system’s robustness.  

Resilience can take many forms. In particular, research 
in ecological systems has evolved through two fundamental 
categories of systemic resiliency that differ over the balance 
between resilience and stability, or the flexibility to operate 
in multiple states of equilibrium or basins of attraction, as 
depicted below in Figure 7. Systems of inherent or 
engineering resilience are characterized by relatively low 
resilience and high stability, whereby systems operate 
within a comparatively narrow envelope of equilibrium that 
are designed for efficiency and productivity and thus do not 
tolerate instability. Systems of engineering resilience 
typically operate within a rigid set of parameters, or a single 
basin of attraction, and therefore have been able to operate 
effectively on a comparatively sparse data paradigm. In 
contrast, systems of adaptive or ecological resilience are 
characterized by relatively high resilience and low stability, 
whereby systems can function in multiple states of 
equilibrium or instability in order to persist or remain 
functional [62]. These multiple states of equilibrium or 
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basins of attraction enable systems of adaptive resilience to 
remain viable in a more fluid set of parameters. 

 
The ecological resilience concept pictured on the right of 

Figure 7 more closely approximates the aspirational “Smart 
Grid” of future power delivery. In this conception, resilience 
is a dynamic process that unfolds within a stability 
landscape, determined by a system’s latitude, resistance, 
precariousness, and panarchy [63], which necessitates the 
adoption of a Big Data Paradigm in light of the many 
variables that must be managed within a given system. A 
resilience-oriented approach differs from a stability-oriented 
approach in that it does not require complete knowledge of 
all possible future events, but rather assumes that the 
unexpected will occur, and accordingly, it focuses upon 
devising systems that can respond adaptively to new and 
changing circumstances through the timely acquisition and 
analysis of granular data. These divergent conceptions of 
resilience raise interesting questions as to the nature of 
increasingly complex cyber-physical systems, such as the 
electric grid, particularly in light of the electric grid’s shift 
toward a heterogeneous blend of power providers and 
distributed energy resources.  

While engineering resilience characterizes the grid of the 
past and present, in which stability and efficiency are 
prioritized, the grid of the future has the potential to operate 
in an ecological resilience paradigm, whereby continuity is 
prioritized and power is provided in increasingly varied 
ways. In light of many technological advancements, perhaps 
the characterization need not be one of mutual exclusivity, 
but rather, how systems like the electric grid can be a hybrid 
enjoying the benefits of both stability and resilience. In this 
vein, a complementary focus in resilience research explores 
the effects of long-term change on the functionality of 
systems. In contrast to quick-onset shocks, the effects of 
gradual transformation can be equally disruptive and 
challenging to the resilience of systems, thereby demanding 

an adaptive capacity on the part of human operators [64]. 
The move towards a smarter grid represents just such a 
transformation, with multiple competing priorities that must 
be balanced in order to maintain infrastructural systems that 
are both sustainable and secure. This includes the 
deployment of newly developed hardware and software 
tools, as well as human capital investment for training 
operators to work in a more adaptive and data-centric 
paradigm. 

Indeed, as societies become more reliant on an 
increasingly complex web of infrastructural systems, the 
need for both resilience and stability cannot be mutually 
exclusive. The imperative for many infrastructural providers 
to operate their systems at a profit adequately incentivizes 
stability in routine operations. However, a comparably 
salient incentive to invest in measures that enhance 
resilience to rare — yet devastating — black swan events 
[65] is lacking. The interdependence of modern critical 
infrastructure systems is itself a chief vulnerability or blind 
spot, in that the disruption of one critical service or system 
can potentially catalyze the catastrophic failure of all 
systems [66]. As evidence of this potential, we need only 
consider how many devices in our homes and communities 
rely upon electricity to function, from refrigerators and cash 
machines, to life-saving medical devices and water 
treatment facilities. In the event of a power outage, any such 
device not supported by its own independent power source 
would cease to function. When disaster events compromise 
the operation of critical infrastructure systems, the potential 
arises for situations to quickly transform from emergencies 
into crises. In such scenarios, societal or community 
resilience and the ability of citizens to cope effectively with 
crisis becomes a crucial consideration, albeit with its own 
set of unique challenges [67]. 

To hedge against such catastrophe, enhancing the 
resilience of even a single infrastructural component 
increases the collective resilience of the entire mosaic of 
critical infrastructure. Therefore, the focus of our study is on 
enhancing resilience in the electric grid as a vital component 
in the broader infrastructural system. In doing so, we aim to 
provide a blueprint for Decision Engineering that can be 
translated to other infrastructural sectors, public services, 
and missions that are challenged with the management of 
large and complex systems.  

The first step in this effort is understanding data related 
to an electric power system, and the means for acquiring it. 
An electric grid is an integration of four distinct networks of 
electricity generation, transmission, distribution, and 
consumption, each of which produce distinct metrics. While 
each of these networks present their own idiosyncratic 
challenges to be overcome, the overarching problem for the 
grid is that electricity supply must constantly satisfy ever 
expanding consumer demand in a reliable, efficient, and 
increasingly sophisticated manner [68]. In order to do so, 
electricity is transported through many buses or nodes and, 
in many cases, over long distances; the overload or failure 

 

Figure 7. Engineering & Ecological Resilience, adapted 
from Scheffer et al, 1993 
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of any single node or edge between nodes forces the 
redistribution of load to other nodes, which can compromise 
the operation of the entire network through a cascading or 
percolating effect [69]. Percolation is not unique to electric 
grids, and other networks that have demonstrated potential 
resilience to the phenomenon appear to share common 
topological features, such as modularity and long path 
length across the network, which serve to isolate 
disturbances, provide alternate flow routes, and delay total 
network exposure [70]. However, robustness to percolation 
is not a viable solution, as grid operators must also deliver 
electricity efficiently, which excessively circuitous or 
entangled transmission and distribution lines would 
preclude. In contrast, optimally efficient networks are 
characterized by short path lengths formed around highly 
linked central nodes or hubs [71]. Ideal grid architectures 
strike a balance between resilience and efficiency by 
featuring a core of interlinked hubs and a periphery of leaf 
nodes, which facilitate connectivity throughout the network 
while maintaining resilience to percolation [72]. However, 
the North American bulk power grid was not designed with 
resilience in mind, and it contains a very limited corpus of 
hubs, which are so highly connected that it has been 
characterized as a scale-free network [73]. While these hubs 
are the main source of the grid’s connectivity, they are also 
a critical vulnerability if they are compromised.  

The development of smart grid technologies is 
precipitating several significant changes in data generation, 
network topology, and system dynamics that impact 
resilience. First, automated metering infrastructure and other 
communications enhancements are increasing the volume, 
variety, and velocity of power system data. In addition, 
power generation resources are becoming increasingly 
diverse and decentralized, with the flow of electricity 
transitioning from unidirectional to bidirectional as energy 
consumers also become part-time energy providers [74]. 
These changes add layers of complexity to electric grid 
operations, which in turn drives an increase in the amount of 
information required to maintain operability that exceeds 
human capabilities to process in terms of speed and volume 
[75]. In naturally occurring complex adaptive systems, 
biodiversity is an asset that enables various components to 
self-organize effectively in response to disturbances [76]. 
As the electric grid becomes an increasingly complex 
system of diverse components, it is prudent to consider what 
measures can be taken to catalyze resilience as an emergent 
property among these components.   

In this regard, key principles from corporate enterprise 
governance provide an informative isomorphic contrast to 
those of ecosystem resilience. For service-oriented 
enterprises that must cope with discontinuity and 
uncertainty, the ability to sense and respond to change is 
paramount; context and coordination replace command and 
control as procedural operating paradigms, with the addition 
of an adaptive loop that facilitates systemic learning and the 
ability to improve responses to successive perturbations 

[77]. The Sense and Respond concept was originally 
articulated in the context of managing large corporations 
with diverse teams working on a variety of missions; 
however, it also bears relevance to a large physical system 
with diverse components that must fulfill a variety of 
functions. In this regard, the need to acquire maximally 
granular data regarding the operational status of the grid’s 
various components becomes a principal requirement, and 
the advent of phasor measurement units (PMU) or 
synchrophasors represent a significant increase in 
granularity over conventional supervisory control and data 
acquisition (SCADA) capabilities [78].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leveraging the PMU as a primary data acquisition 
platform enables the operation of power systems in a Big 
Data Paradigm. Measurements, such as the example 
pictured above in Figure 8, translate electric power signals 
into sinusoidal waveform and are capable of recording as 
many as 120 geo-referenced time-synchronized 
measurements per second in a streaming fashion, whereas 
conventional SCADA monitoring systems are event-driven, 
and typically record a single measurement every 2-4 
seconds. In addition to acquiring a larger volume of data, 
PMUs are capable of measuring a variety of variables, such 
as voltage and frequency fluctuations, rate of change of 
frequency, harmonics, and phase angle difference. The 
veracity of these measurements is ensured with time 
synchronization via GPS arbiter clocks in each unit. By 
employing such an increased observational capacity, grid 
operators can sense the onset of disturbance or fault events 
with much greater precision. However, this requires both the 
ability to ingest large continuously streaming datasets [79], 
as well as the analytic capability to perform complex 
computations on the incoming data in order to discern 
between typical system fluctuations and dangerous 
anomalies. In this regard, standards for PMU performance, 
such as IEEE C.37.118 continue to evolve as thresholds for 

 
 
 
 
 
 
 

Figure 8. Sample phasor measurement unit output, Open PMU 
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harmonic and interharmonic filtering are calibrated to 
preserve valuable signal components [80]. 

With regard to data ingestion and the velocity of PMU 
record generation, communications latency is a nontrivial 
issue worthy of note. In order to maximize the utility of 
PMUs, they must be able to communicate through a robust 
protocol such as TCP/IP, with significant bandwidth (i.e., at 
least 5 Megabytes per second). In light of the synchronized 
nature of PMU data, a network of geographically dispersed 
devices can facilitate a wide-area measurement system 
(WAMS), provided that each device enjoys uniform 
connection speed. Whereas conventional fault recording 
devices are generally triggered only in event-driven 
circumstances, the need for persistent Internet connectivity 
between substations and central monitoring facilities is a 
novel requirement for many utility operators. Similarly, the 
streaming nature of synchrophasor data requires utility 
operators to develop data retention strategies or policies in 
order to effectively manage such a large increase in data 
generation. Although the dynamic nature of power systems 
means that PMU data are highly volatile for functions that 
demand a fast response, the preservation of data over time is 
critical to yielding deep insights through an A2O process. 

As an electric power signal contains numerous variables 
of interest, the analytic phase of our approach involves 
numerous procedural layers. A variety of competing 
algorithmic techniques exist for detecting anomalies, such 
as analyzing rates of change of voltage, frequency, and 
phase angle difference, detecting fluctuations in harmonic 
distortion, and measuring voltage unbalance, many of which 
have historically been executed independently of one 
another. As computational capability has advanced, the 
ability to leverage support vector machines, artificial neural 
networks, decision trees, and other intelligent classifiers 
presents the opportunity to more quickly and accurately 
detect events of interest. In particular, we are exploring how 
cognitive computing in a layered analytic process has the 
potential to enable the rapid detection of the onset of 
electrical islanding scenarios. By developing an integrated 
islanding detection method that is both sensitive to target 
events and stable against false tripping, we aim to improve 
the integration of renewable energy sources such as 
photovoltaics and wind turbines. In turn, we intend that such 
an advanced analytic process will also help to identify and 
visualize patterns related to other destabilizing events in 
electric power systems. We have chosen to focus our 
research on archipelagos due to the unique set of 
circumstances which these environments represent. Given 
their physical isolation, islands are inherently bounded 
problem sets. In addition, the power systems that serve 
islands are characterized by lower inertia and lower 
blackstart/quickstart ratios than larger systems such as the 
North American bulk power grid.   

In exploring these problem sets, we employ a 
combination of algorithmic and heuristic analytics. 
Although the PMU’s increase in observational granularity 

coupled with advanced computational analytic capabilities 
represent the value of algorithmic insight for enhancing 
power system resilience, the generation of heuristic insight 
will also be a significant pathway towards a more resilient 
and adaptive operating paradigm. In addition to its internal 
system dynamics, many external natural and anthropogenic 
environmental factors each exert influence on the operation 
of the grid. Therefore, including data on seismic events, 
weather patterns, and other natural phenomena as layers in 
the analytic stack will help to enrich the observational space 
in which we analyze power system dynamics. In addition, 
human-generated content is a valuable source of situational 
awareness regarding service disruptions, power outages, and 
latent vulnerabilities. By way of example, power companies 
in the U.S. have historically become aware of the majority 
of outages only after their customers called in to report that 
they were without power [81]. However, vigilant customers 
can serve as sensors not only to detect instances of power 
outage, but also to identify conditions that may be pre-
cursors to fault or disturbance events, such as vegetation 
overgrowth affecting power lines, abnormal spark emission 
from transformers, and suspicious activity around 
substations. Similar to the U.S. Department of Homeland 
Security’s “See Something, Say Something” public ad 
campaign, the encouragement of customer vigilance and 
crowdsourced infrastructure protection can be a useful tool 
for augmenting the limited capacity of system operators and 
public safety officials charged with safeguarding the grid. 
As depicted below in Figure 9, our approach aims to 
integrate these various data sources and analytic capabilities 
in order to achieve power systems that operate with greater 
resilience.  

 
As technology and connectivity advance us closer to the 

realization of a smart grid, a coherent and logical integration 
of data acquisition, analytics, and visualization will be 
critical. The ability to assimilate system state data from 
PMUs and other devices deployed across the grid with a 

 

Figure 9. Analytics on Analytics (A2O) Concept 
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variety of environmental data and geo-referenced content 
from human observers and remote sensors will be vital for 
operating power systems that are both reliable and 
sustainable. In addition, gaining a better understanding of 
how complex dynamics impact the grid’s operation will 
directly inform how automated protocols can be established 
to develop computer-assisted dynamic fine tuning measures. 

In this regard, nature-inspired engineering and insight 
from the life sciences may be instructive. In particular, the 
autonomic nervous system (ANS) is one potentially useful 
source of biomimetic and isomorphic insight for how a self-
healing smart grid could operate. Also known as the 
involuntary nervous system, the ANS maintains conditions 
for a steady state or homeostasis within the body and plays a 
role in many of its critical processes, including the defense 
reaction or “fight or flight” response, thermoregulation, 
coping with metabolic challenges [82], and regulation of 
organ functions related to the biological clock [83]. The 
ANS is composed of two primary subsystems that influence 
bodily functions; the sympathetic nervous system, which 
activates function, and the parasympathetic nervous system, 
which limits function [84].  

An important aspect of the ANS that translates well to 
the electric grid is its feedback-regulated nature; as 
conditions within the body change, the ANS acts to mitigate 
potentially harmful effects. For example, when we stand up 
after sitting for an extended period, the potentially 
dangerous drop in blood pressure that could result from 
blood pooling in the legs is counteracted as the ANS 
initiates a series of baroreceptor reflexes that increase heart 
rate and blood flow while mediating constriction of the 
blood vessels to restore steady blood pressure throughout 
the body. However, the ANS is also capable of anticipatory 
responses that serve to manage the danger presented by 
system perturbations or destabilizing events before they 
occur. The anticipatory release of insulin prior to a meal is 
one simple example. And yet, maintaining a homeostatic 
steady state may not always be the best strategy for ensuring 
the long-term survival of a system. In response to stress 
imposed by extreme circumstances, ANS processes within 
the body may need to shift to an altered state or allostasis1 
characterized by adaptive levels of system output like 
increased heart rate and blood flow through the muscles in 
order to facilitate escape from or confrontation with a 
physical threat [85]. Similarly, cyber-physical 
infrastructures such as the grid must also operate during 
periods of unusually high demand, or acute instability such 
as in the midst or aftermath of natural disaster.  

                                                           
1 Allostasis refers to a system’s ability to maintain functionality 
through change. In contrast to a homeostatic state in which a 
system maintains a relatively stable balance, an allostatic state is 
characterized by temporarily unbalanced ratios in system input vs. 
output, or other adaptations to internal processes that enable the 
system to remain in operation during external perturbations, after 
which the system returns to homeostasis.  

In light of its role in both feedback-regulated and 
anticipatory responses that facilitate homeostatic and 
allostatic system states, the ANS offers conceptual parallels 
for enhancing the resilience of critical infrastructure systems 
like the electric grid. Just as the ANS acts within the body to 
mitigate against potentially harmful conditions without an 
individual’s conscious awareness, machine automation or 
computer assisted dynamic fine tuning can act within the 
grid to mitigate against potentially harmful conditions 
before they are even recognized by human system operators. 
Yet, just as the ANS relies on input from the five senses to 
drive its operation, human-engineered systems like the grid 
require robust, precise, and diverse data in order to operate 
effectively. Technological advances such as synchronized 
phasor measurements, cognitive computing, and machine 
learning capabilities are particularly beneficial for operating 
large infrastructural systems such as the electric grid, and 
are therefore the primary components of our synchrophasor 
analytics system for archipelagos.  

VII. CONCLUSION 
As machine capability continues to accelerate giving rise 

to big and bigger data, the power and promise of robust 
analytics will grow along with potential areas of 
vulnerability introduced by increased system connectivity 
and interdependence. At the same time, our ability to make 
sense out of evolving circumstances quickly, and adapt 
social and physical structures accordingly will be important 
determinants in the shape of things to come. Such 
competing dynamics call for a suitably balanced approach to 
data management and systems operation. While complex 
cyber-physical infrastructures such as the electric grid are 
akin to the Abelian Sandpile in its susceptibility to 
cascading effects, tools such as PMU-enabled response 
mechanisms are the bamboo that can enable such systems to 
remain resilient amidst destabilizing events. In the context 
of electric grids in particular, the increasing penetration of 
distributed sources of renewable energy necessitates an 
improvement in the ability to detect and counteract the 
destabilizing effects of unintentional electrical islanding and 
similar phenomenon. In response, our synchrophasor 
analytics system for archipelagos aims to achieve a precise 
islanding detection capability by integrating the granularity 
of PMU data acquisition with the robust analytic capabilities 
of cognitive computing and machine learning.  

Our participation in the D4D Challenges as well as our 
investigation of infrastructural resilience demonstrate that 
much opportunity exists to improve our understanding of 
how systems operate through the application of analytics in 
a Big Data Paradigm. We believe that open and inclusive 
approaches such as the Sensemaking Methodology have 
the potential to enhance numerous dimensions of resilience, 
including those of cyber-physical systems, societies, and 
individuals. Systematic Decision Engineering requires a 
robust and iterative process of data collection, layered 

144

International Journal on Advances in Intelligent Systems, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/intelligent_systems/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



analytics, and insight visualization that in turn has the 
ability to identify critical blind spots and mitigate harmful 
vulnerabilities. We hope that such a methodology can 
facilitate positive developments, such as the smart 
integration of green technologies into sustainable Blue 
Economies [86], and  improvement in our roles as both 
environmental stewards and engines of social progress. 
Each of these areas represent exciting and relatively 
unexplored realms of research that we have designated as 
targets for future work. Specifically, we plan to further 
investigate how technological capabilities such as remote 
sensing and cognitive computing can be effectively 
integrated with human Sensemaking techniques to achieve 
increasingly useful insights and practical Decision 
Engineering solutions.  
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