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Abstract—Software development does not usually end with the
final release of the application. The software application must
be maintained throughout its lifetime to keep in step with the
user’s needs. Most software applications are built around a rigid
data model, which whenever modified will have an impact on
the application, resulting in additional maintenance costs. A
way to mitigate this problem would be to have an ontology-
based software framework for building information systems that
can auto-adapt to an evolving data model. Such a framework
has been built and used in the development of a client-server
application as a proof of concept. This application can adapt
dynamically to numerous changes that can be made in the data
model without recompiling the client side or server side of the
application. Two communication systems between the client and
server have been tested to compare their performance, code length
and capabilities. In order for this framework to be efficiently used
for the development of applications, it must be combined with
other components to form an adaptive application builder, whose
design is discussed with regard to the ontology-driven architecture
paradigm.

Keywords–Adaptive Information System; Ontology; RDF;
RDFS; OWL; Ontology-Driven Architecture; Model-Driven Engi-
neering, Autonomic Computing.

I. INTRODUCTION

This article is an extended version of an earlier paper that
described an ontology-based framework for building applica-
tions capable of adapting to changes in the data model. Here,
it will be explained how this framework can be part of a
more complex entity: an adaptive application builder (AAB).
In addition, two communication systems between client and
server are compared [1].

Many of today’s software applications are developed
around a rigid data model drawn from relational database
(RDB) technologies. Though RDB technologies are mature
and perform well when storing and accessing data, their data
models are hard to change when modifications must be made.
Modification of the software itself is rather time-consuming
as most of the changes to the data model also require adjust-
ments to the corresponding objects’ model. Migration usually
requires a transitional program to transfer stored information to
the new data model, recompile and republish the application.
Usually, when the application is on a client-server system in a
large organization, all this work must be synchronized between
departments, adding to the overall refactoring effort.

When ontologies are used to model information, they can
be established and refined as new knowledge is acquired and
as needs evolve. However, the ease with which models are
modified within the ontology can be constrained by the appli-
cations’ rigid development framework and resulting programs.
Staab et al. recommend gathering all the modifications made
to an ontology in order to test all possible consequences to the
applications before deploying a new version [2]. We conclude
that developing applications able to self-adapt to data models
would reduce both development and maintenance costs. This
paper shows how ontology repository technologies such as
triplestores, i.e., database management systems (DBMS) for
data modeled using the resource description framework (RDF)
[3], can be used in applications built to take into account how
the data model evolves. Moreover, such applications do not
require a compilation process in order to adapt to an evolving
data model, contrary to most current applications.

The main focus of this work is the design and implemen-
tation of a framework that allows for a fast and easy building
of information systems that can auto-adapt to evolving data
models. This framework has been used in the development of a
client-server application as a proof of concept. The application
adapts dynamically to numerous changes that can be made in
the model without recompile of the client side or server side
of the application. The goal of this framework is to reduce
the costs associated with application development, deployment
and maintenance at Hydro-Québec, the utility that generates,
transmits and distributes electricity in the province of Québec.
At IREQ, Hydro-Québec’s research institute, studies on the
application of semantic technologies are currently underway
as a means to solve problems related to the increasing number
of databases within the organization [4][5]. In addition, self-
adapting technologies have already been applied successfully
[6]. Since the adaptive properties of applications hinges on
the communication system between the server side and the
client side, two communication approaches have been tested
and compared within the framework developed. The main
contribution of this paper is the development of this framework
as a new approach to generating an information system that
auto-adapts to its data model.

In order to give the framework more complex adaptive ca-
pabilities and facilitate its implementation into future company
applications, an adaptive application builder (AAB) is being
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developed. Since this AAB influences the development of the
framework, its main principles will be discussed. As semantic
technologies enable domain-independent meta-modeling of
information systems, model-driven engineering (MDE) seems
a natural approach to guide the development of an AAB.

Section II of this paper reviews earlier work in two
areas: MDE and ontology-driven architecture (ODA), and
then systems, frameworks and user interfaces (UI) with self-
adaptive capabilities. Section III presents the framework, its
design and main functions, an application built with it and an
alternative communication system for the framework. Section
IV presents the results, including the comparison between the
two communication systems. Section V discusses the benefits
of the proposed framework and future developments.

II. RELATED WORK

This section first examines how MDE and semantic tech-
nologies relate to one other and what has been done to
bridge the two worlds, and second, reviews works on auto-
adaptiveness, or more generally on the self-* properties of
applications and information systems.

A. Model-driven engineering and ontology-driven architecture
Since the 1990s, MDE methodologies have focused on

enabling software development from models. In order to maxi-
mize productivity, the model of the software application would
be sufficient for programs to automatically generate the soft-
ware itself. Though there are some success stories in MDE, it
has not become a universal approach since adopting it remains
complex and time consuming. Even so, researchers and com-
panies are still devoting much attention to MDE because of its
great promises [7]. In [8], Douglas C. Schmidt described MDE
as a promising approach to shield developers from platform
complexity, just as early programming languages protected
programmers from the complexity of machine code. Schmidt
stated that third-generation languages failed to alleviate this
complexity due to their own complexity and to the rapid
evolution and proliferation of platforms.

Ontologies have also been a popular research subject in
the recent years, due primarily to their interoperability capa-
bilities, which could facilitate the advent of the semantic web.
Since an ontology is the “description of the concepts and the
relationships that can formally exist for an agent or community
of agent” [9], it is understandable why researchers have tried
to use them with MDE.

The object management group (OMG), proponents of the
model-driven architecture (MDA) [10], states that the goals
of their approach include application re-use, complexity re-
duction, cross-platform interoperability, domain specificity and
platform independence. Since these are also objectives of
semantic technologies, synergy may presumably be achievable
by combining the two paradigms. The World Wide Web Con-
sortium (W3C), providers of the foundation of the semantic
web, suggests that even if MDA is a good framework for
software development, it could be improved by the use of
semantic web technologies to disambiguate domain vocabular-
ies, validate model consistency and increase the expressivity of
the constraints representation. By thus augmenting the OMG
methodology stack, ontologies could lead to the rise of ODA
[11].

Pan et al. propose using ontologies and MDA together
to reap the best of both worlds [12]. Their approach is
to build bridges between the ModelWare and OntologyWare
technical spaces. Both technical spaces are constructed on
different layers, from metalanguages (M3), languages (M2)
and models (M1) to running instances (M0). By bridging
each of these layers, the ontologies’ capabilities would be
enabled in an MDA approach during software development.
Ontologies should be integrated with model-driven software
development in order to validate the consistency of models,
guide software developers and causally connect specifications
during the development process [12].

In what seems like a much simpler and straightforward
way to bring those two worlds together, Martins Zviedris
et al. describe how they automatically build ontology-based
information systems [13]. Following the Sowa’s principle that
every software system has an ontology, implicit or explicit
[14], the authors believe it possible to develop a universal
platform-independent meta-model using an MDA approach.

They do so by first developing an ontology of web applica-
tions and then instantiating this ontology each time they wish
to build a new information system. An engine they built is then
used to ”understand” the instance of a particular application
and automatically generate its code. The result is a hard-coded
non-adaptive application with a one-to-one mapping of the
domain ontology classes and properties into JAVA classes. The
resulting application can be easily rebuilt if any change is made
in the data model but must be recompiled to use.

The main difference between the work of Pan et al. and
of Zviedris et al. is that the former are trying to bring the
capabilities of ontologies into the MDA world, while the
latter are focusing on bringing MDA learning into semantic
standards. Although the approach of Pan et al. to bridging all
the standards enables the use of many tools already developed
with both technologies, it is far more complex to implement.
By ignoring OMG standards, Zviedris et al. more easily bring
MDA learning into the semantic realm, but at the cost of
coding their own MDA tools, i.e., their web application builder
and their web application runtime engine. In our view, both
teams are working to achieve ODA in opposite ways. Our
ODA approach is similar to Zviedris, enhancing upon it by
incorporating auto-adaptive capabilities.

B. Self-* properties
In 2001, IBM proposed the Autonomic Computing Initia-

tive [15] with the objective to develop mechanisms that would
allow systems and subsystems to self-adapt to unpredictable
changes. Conferences such as Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS) [16] or Engineering
of Autonomic and Autonomous Systems (EASe) [17] show
that system and software self-adaptability is still an important
research area, now divided into a variety of subfields. Amongst
them, one could include information system self-adaptability
to an evolving data model.

As Dobson et al. pointed out [18], the Autonomic Com-
puting Initiative did not fulfill the promises announced [19].
Though many individual advancements have yielded some
of the expected benefits, there is still no integrated solution
resulting in an autonomous system. This is a task being
undertaken by some researchers, such as Bermejo-Alonso who
is attempting to develop an ontology for the engineering of
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autonomous systems [20]. All those individual advancements
fall into the category of ”self-* properties”, i.e., ways for sys-
tems to automatically maintain themselves throughout different
scenarios [21].

The self-adaptability mechanisms of the framework we pro-
posed could help develop self-aware or self-adjusting proper-
ties [22] leading to the development of autonomic components.
Within the hierarchies of self-* properties of both Salehie and
Tahvildari [23] and Berns and Ghosh [21], our framework
would be classified as a set of self-configuring properties. Once
the framework is integrated into an AAB, some self-optimizing
properties are likely to emerge.

As the framework’s ultimate goal is semi-automatic devel-
opment of completely adaptive applications, it is important to
look at current adaptive user interfaces (UIs), and systems to
study their strengths and weaknesses. Recently, Akiki et al.
[24] presented an overview of the most important adaptive
UIs, evaluating and classifying them. They divided the design
of adaptive UIs into two approaches: (1) MDE and (2) window
managers and widget toolkits. They then proposed seven
criteria to evaluate the two approaches and concluded that
the first has more advantages than the second. They next
established 21 criteria to evaluate adaptive model-driven de-
velopment systems, specifying whether each criterion applies
to architectures, techniques or development tools. Lastly, they
evaluated many UIs adapting to their context of use. This set
of criteria provides a valuable starting point and checklist for
devising a new adaptive UI.

At Hydro-Québec, progress has been made in self-adapting
applications with the dynamic information modelling (DIM)
development environment [6]. Some client-server applications
built using this system have been put into production and are
still in use today. Self-adaptation, even though it is only to
the data model, has proven to be beneficial, especially when
evolutionary prototyping is used as a development methodol-
ogy [25]. In DIM, the proposed development library was not
a client-server framework and was used as a private, closed
semantic modeling system. Those benefits were an incentive
to continue following the evolutionary prototyping approach,
as does the framework and even more so the AAB. The use of
standards like RDF makes it possible to continue developing
this research field in concert with other researchers world-wide.

McGinnes and Kapros circumscribe the problem of non-
adaptive applications as a conceptual dependence upon the data
model [26]. They describe this dependence between the data
model and the resulting application as undesirable software
coupling. The authors use the term “adaptive information
system” (AIS) for an information system that adapts to changes
made to the underlying data model. They conclude that most
applications based on information systems in use today are
dependent on their domain model. Such systems must thus
be maintained every time the data model is changed, even the
slightest change potentially resulting in costly, time-consuming
adaptation.

McGinnes and Kapros propose six principles to achieve
conceptual independence over any data source (see Table I).
Using those principles, they show that it is possible to build
an AIS based on an Extensible Markup Language (XML)
mapping of an RDB data source [26]. Applying those prin-
ciples to ontologies based on RDF brings useful insights (see

Table I) on the use of those technologies in an AIS. Achieving
conceptual independence using RDF-based technologies such
as Resource Description Framework Schema (RDFS) and Web
Ontology Language (OWL) is arguably more intuitive than
using RDB data sources. RDF-based technologies actually
have many of the required properties inherently built into their
design, thus reducing the complexity of achieving conceptual
independence. In Table I, principles 3, 5 and 6 may be con-
sidered inherent to this technology. Use of the other principles
is discussed in Section III.

The proposed ontology-based adaptive information system
framework (OBAISF) is presented in the next section. The
applications built with OBAISF are conceptually independent
from their data model, like McGinnes and Kapros but with
independence achieved using semantic technologies.

III. PROPOSED ONTOLOGY-BASED ADAPTIVE
INFORMATION SYSTEM FRAMEWORK

As stated previously, our current goal is to develop an AAB
that will use an ontology-based adaptive information system
framework (OBAISF) to construct auto-adaptive applications.
The AAB is the combination of an ontology browser (OB),
a SPARQL query builder (SQB) and an OBAISF. SPARQL
stands for ”SPARQL Protocol and RDF Query Language”
[27]. The OB and SQB designs will be the subject of a
future paper. In the coming months, the OB will be enhanced
with an editing module supporting the instantiation of a web
application ontology (WAO), in line with the work of Zviedris
et al. [13] presented in Section II. With this editing module,
web application components can be added to a particular
instantiation of the WAO and customized through OB and SQB
functionalities.

A. Proposed adaptive application builder

The OB has been developed to navigate any OWL ontology.
It first presents all the classes of an OWL graph in a tree. Then,
upon selection, a box shows all the properties of the selected
object and those of its superclasses. From then on, the user
can navigate the ontology using object-type properties, which
open new boxes (Figure 1). In the AAB, the OB will be used
to choose classes and properties of an ontology and link them
to application components. For example, two classes linked
by an object-type property could be selected so their instances
become the branches and leaves of a data tree component.

The SQB is built on top of the OB and uses a recursive
JAVA engine to translate a user-originated visual query into a
proper SPARQL query. The SQB supports querying data-type
properties and applying filters to them (Figure 1). In the AAB,
the SQB will be used to build views on the semantic data. This
way, the end user of an application can be presented with any
view that could be made from the ontology.

All this is made possible by the semantic properties in
Table I, which enable the creation of the OBAISF. The frame-
work is basically a set of generic functions that dynamically
query the ontology before querying a set of its instances. Those
generic functions were first developed to be compatible with
RDFS ontologies but are now being updated to also suit OWL
ontologies. The remainder of this section will present an AIS
built with an OBAISF for a decision support application.
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TABLE I. CONCEPTUAL INDEPENDENCE PRINCIPLES AND APPLICATIONS.

CONCEPTUAL INDEPENDENCE PRINCI-
PLES [26]

APPLICATIONS OF THE PRINCIPLES WITH RDF-BASED TECHNOLO-
GIES

1. Reusable functionality (structurally- appropriate
behavior): The AIS can support any conceptual
model. Domain-dependent code and structures are
avoided. Useful generic functionality is invoked at
run time for each entity type.

This principle applies similarly using a triplestore data source. Generic SPARQL
requests will be obtained by exclusively hard-coding resources from the RDF, RDFS or
OWL semantics, leaving other resources soft-coded. The data model can be inspected
at run time using generic SPARQL requests.

2. Known categories of data (semantically- ap-
propriate behavior): Each entity type is associated
with one or more predefined generic categories.
Category-specific functionality is invoked at run
time for each entity type.

All ontologies using RDFS or OWL languages contain ipso facto the same conceptual
basis. The definition of those meta-entities is the semantics of RDF, RDFS and OWL.
By employing those meta-entities as the most generic entities of the AIS, any RDF-
based ontology can be used. McGinnes and Kapros use archetypal categories taken
from the field of psychology to classify entities according to the behaviours the AIS
should adopt in their presence. This interesting idea will be considered later on in the
development of this AIS, but is not yet essential.

3. Adaptive data management (schema evolution):
The AIS can store and reconcile data with multi-
ple definitions for each entity type (i.e., multiple
conceptual models), allowing the end user to make
sense of the data.

Firstly, RDF technology uses what McGinnes and Kapros call ”soft schemas”: data
models stored as data. Secondly, RDF technology allows individuals with different
valued properties to coexist in the same class. Moreover, individuals can belong to
more than one class. Axioms like OWL:sameAs or OWL:equivalentClass make it
possible to reconcile data from distinctly described entities. Two previously distinct
classes declared as equivalent will have, by inference, the same set of properties and
then two individuals of this new class may have only different valued properties. This
mechanism thus supports reconciliation of data from different conceptual models. As
the model evolves, data using different conceptual models remains available and is
instantly accessible without any refactoring of the AIS.

4. Schema enforcement (domain and referential
integrity): Each item of stored data conforms to
a particular entity type definition, which was en-
forced at the time of data entry (or last edit).

In technologies such as OWL, domain integrity and referential integrity can be
validated with reasoners. As for data types, literal data is usually associated with
basic types upon entry in a semantic store.

5. Entity identification (entity integrity): The stored
data relating to each entity is uniquely identified
in a way that is invariant with respect to schema
change.

In RDF technology, entity identification is provided by the URI mechanism, and is
already invariant with respect to schema change.

6. Labelling (data management): The stored data
relating to each entity is labelled such that the
applicable conceptual models can be determined.

Using RDF technology, this principle means that every individual must belong to a
class. It then does not matter how much the class has changed over time since all
individuals in it can have any number of valued or non-valued properties. However,
human-readable labels are necessary to present the information to the users and it is
mandatory to assign such labels to each entity.

B. Proposed adaptive information system

This AIS was developed as a three-tier client-server system:
a triplestore, a generic server and a web interface.

The triplestore is used to store the knowledge bases con-
stituted by a conceptual model and its individuals. In the
proposed AIS, two knowledge bases are used: one for the do-
main of expertise and one for the presentation of information.
The triplestore used in this framework is an Oracle 12c RDF
Semantic Graph.

The server-tier is coded using a standard JAVA Enterprise
Edition technology. It is built as a web service offering
different generic functions with a REST client-server interface.
These services are implemented using the Jena library [28] to
process requests written in the SPARQL query language.

The user interface is implemented in JavaScript with the
Ext.js 4.2.2 library [29]. It uses the REST interface to commu-
nicate with the server. It is thus independent from the server
and could be coded using another technology.

We used our framework to implement a decision support
application to be used at IREQ. The purpose of the applica-
tion is to gather power transformer oil sampling data, such
as methanol and ethanol concentrations, to monitor power

transformer health and provide suitable maintenance advice
to specialists. The application acts as a dashboard, within
which the users can add, update or delete entries, and do
simple searches. It also perform automated calculations, e.g.,
adjusting concentrations of specific molecules depending on
the oil temperature. Engineers use the application to record
maintenance operations and measurements, track and compare
the health of transformers, and test and refine parameters used
in concentration adjustment equations.

The conceptual model of this application has six classes
that will be used in the subsequent examples:

1) PowerStation,
2) PowerTransformer,
3) Measurement,
4) MaintenanceIntervention,
5) ConversionParameter, and
6) PowerStationAndTransformerAssociation.

Each of these classes has between two and twelve prop-
erties and comprises up to 7,000 individuals. This application
has been chosen to validate the framework since it requires
a variety of functionalities that would be suitable for a wide
range of applications in addition to having a small and simple
ontology, easy to build and test at this stage of the project.
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Figure 1. Ontology Browser and Sparql Query Builder overview: Center - Ontology Browser for navigating classes. Right - Filters on datatype properties to be
used in the Sparql Query Builder.

1) Application triplestore setting: Most of this transformer
monitoring application’s data is stored in a RDB. A semantic
meta-model (T-Box) has been designed to model the required
classes (PowerTransformer, PowerStation, etc.). Then, by using
the D2RQ library [30], the data from the RDB has been
converted into an RDF graph of individuals (A-Box). The T-
Box has been designed using RDFS semantics. It contains
solely association relationships and essentially describes the
classes and the properties with their domain and range. Each
class, property and individual has been labeled in order to be
displayed on the visual interface.

In order to better understand this application, Figure 2
presents a high-level view of its architecture. At the initializa-
tion phase, the application requests the triplestore via a web
service to show a tree view of the data model. The user can
view an individual of a class (e.g., a power transformer) by
selecting a leaf in the tree. When the user clicks on this leaf, the
interface sends a request to the server through its web service.
Upon receipt of the request, the server dynamically gathers
a number of classes determined by the model, all of which
have an association relationship with the class of the selected
individual. For each of these classes, the server will then gather
the list of its properties and the list of its individuals related
to the user’s selection. This information can be transferred
to the client using two systems: (1) a generic JAVA object
and its corresponding JSON representation or (2) a generic
triple model and its corresponding JSON-LD representation.
A triple is “the fundamental RDF structure” [31] consisting of
a subject, a predicate and an object. The W3C describes JSON-
LD as “a JSON-based format to serialize Linked Data [whose]
syntax is designed to easily integrate into deployed systems
that already use JSON” [32]. As both JSON and JSON-LD

Figure 2. Adaptive information system framework.

share a similar data structure, they can both be processed by
most web APIs or frameworks, with the difference that JSON-
LD must be processed by a library beforehand. Those generic
objects or models contain all the information to display on
the UI and to request for further operations to the server, as
Create, Read, Update, and Delete (CRUD) operations.

The next section will describe both data communication
systems (using a generic JAVA object or using a generic triple
model).

2) Two systems for dynamic visualization of the semantic
data: Here are the main design elements for both systems for
dynamic visualization of the information.

a) System 1 - Generic object system: In this system,
a generic JAVA class (meta-class) was designed to support
dynamic gathering of information from the semantic store.
The resulting object is used to transfer information from the
semantic store to the UI. A given object’s instance is built from
generic SPARQL requests using RDF and RDFS semantics.
The object has fixed attributes used to hold information about
the RDFS class, its properties and individuals. It also holds
the path and filters used to select the individuals or the class
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Figure 3. Definition of the JAVA generic object.

itself. See Figure 3 for the definition of the object.
Note here that each individual contains a property-value

mapping for each property in the list of properties and its
corresponding value, if any. The access elements contain the
path in the graph to go to the class (i.e., the property linking the
individuals of the two classes) and the filter (i.e., an individual
in the range class) used to select the individuals in the domain
class. The term “Bridge predicate” will be used to refer to the
property linking the domain class and range class, i.e., the path
(see Figure 5).

In the application developed, selecting a power transformer
in the tree will result in a request to find individuals linked
to it from all classes having a property whose range is the
Transformer class, i.e., individuals from the domain classes of
the Transformer class. For each class found, a generic object
is created.

The example in Figure 4 helps to better understand how
generic objects are created. In this example, the user has
selected the power transformer numbered 123. The frame-
work then queries the model and finds three classes having
an associative relationship with the PowerTransformer class:
Measurement, MaintenanceIntervention and PowerStationAnd-
TransformerAssociation. Those three classes will be fetched
but, for the sake of simplicity, this example only presents the
Measurement class case. Its uniform resource identifier (URI)
[33] and label have first been retrieved, followed by the list
of its properties and the list of its individuals. This second list
contains a mapping for each individual, between every property
in the list of properties and its value for this individual, if any.

In the example in Figure 4, the filter is the specified
individual of the range class, i.e., the power transformer
numbered 123. It is considered a filter because it reduces the
number of individuals to retrieve. Here, the path is simply the
Bridge predicate between the range and the domain classes.
Further development should lead to the creation of more filter
and path options, as well as sequences and aggregations of
these options.

In our AIS, every time a power transformer is selected
in the tree, the model is inspected dynamically to find all
the domain classes of the PowerTransformer class and all
individuals linked to the selected power transformer. Hence, if
a new domain class is added, the application will automatically
present it to the user.

Figure 4. Example of a JAVA generic object.

Figure 5. Graph representation of the range and domain classes in an
associative relationship.

The application uses a tree to show the user a specific
portion of the semantic graph (see Figure 7). In our case, the
tree first shows all the power stations as folders that can be
expanded to see the power transformers in each.

When the user selects a node (e.g., power transformer 123),
the client UI sends a request to the AIS server using a generic
process to dynamically gather the domain classes (e.g., the
Measurement class) in relationship with the range class (e.g.,
the PowerTransformer class). For each of these classes, the
properties will first be found, and then all the individuals of
the domain classes linked with the user-selected individual will
be retrieved. As a result, a list of generic JAVA objects will be
generated, where each object corresponds to a domain class.

These JAVA objects are then automatically converted to
JSON, using the Jackson library [34] and sent to the UI.
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Figure 6. Example of individual CRUD form.

b) System 2 - Generic triples system: Using JAVA
generic objects and transmitting them in the JSON format
seems natural in an object-oriented paradigm. However, since
the database is part of the semantic world, keeping the data in
RDF format should also be appropriate.

An important difference between the first and the second
system is that generic SELECT queries in the former are
replaced by a generic CONSTRUCT query in the latter. The
use of SELECT queries leads to the parsing of result sets in
the object-oriented paradigm, i.e., the generic JAVA object. The
CONSTRUCT query, on the other hand, leads to the creation
of a new set of RDF statements. Using the Jena library, this
set can be directly mapped into JSON-LD format.

By building the generic CONSTRUCT query, it was possi-
ble to extract the same data from the triplestore as when using
System 1. This query was designed to produce an RDF graph
with the same data structure as that of the JAVA generic object
of System 1, so the client interface could use both transmission
methods without any major change.

In order to transform the JSON-LD RDF graphs into a
tree-like structure, the JSON-LD library for JavaScript was
used [35]. This library enables the system to frame the RDF
graph in a non-redundant data tree and to compact its URIs
into keywords, thus presenting the information just as a normal
JSON would do.

3) After data transmission: No matter which method is
used, once transmission is complete and the data is sent to the
client side, the UI will produce a 2D matrix for every class in
the list (see Figure 7). These matrices show the information
to the user using human readable labels. The user can then
request CRUD operations on individuals represented in the
matrices (see Figure 7).

Due to the genericity of the functions, changes made to the
data model are immediately available to all AIS users. This
genericity was obtained as discussed in the first and second
principles of Table I. From then on, every request will retrieve
individuals and classes from the new model with no need to
recompile the client or server. This is because both the data
model and its instances are queried. In addition to adapting to
any model, a request used in runtime will inspect the actual

version of the model.
In the current state of the framework implementation, if

changes are made in the T-Box, either by modifying the prop-
erties of some domain classes or by adding a new domain class
related to the class of the tree leaves, the users will instantly
begin to navigate in the new model. Without code refactoring,
no other changes are possible in this implementation.

The main presentation tree does not grant access to every
class in the semantic graph. Therefore, the UI has been given
other access points, from which the user can request directly
previously inaccessible classes. The system uses a similar
generic function to request this information, except that it
retrieves the class itself and all its individuals instead of using
the previously presented domain class mechanism. Either the
same generic JAVA object or generic triples model can be
used, but they do not contain any access information. The same
CRUD operations can still be performed on individuals.

4) The CRUD services: Our framework allows CRUD
services only on individuals, not on classes or properties. Other
means are used to edit the conceptual model. Further work will
be done to allow modeling of the T-Box from the UI, either
by adding capabilities to the OB or by developing ontology
edition components usable in any AIS made with the AAB.
The CRUD services on the A-Box are done on the client side
using forms showing the properties of the class and their value
for the selected individuals, if any (see Figure 6). These forms
are created from the properties listed in the generic JAVA
object or the generic triples model.

In order to help the user and validate the input, a presenta-
tion knowledge base comprising the various presentation op-
tions has been established. This information is associated with
every property of the domain knowledge base and is passed
on by the JAVA generic object or the generic triples model.
It indicates how to establish every entry field of the forms.
Those forms are constructed dynamically, adapting the user’s
interaction options based on the values of properties according
to the presentation knowledge base information. This dynamic
type retrieval is in line with conceptual independence principle
4 in Table I.

In further developments, mechanisms will be designed to
automatically link domain ontology properties to presentation
ontology individuals. Some ontologies contain semantics, such
as Enumeration or Bag, that can be used to predict the
correct entry field’s type for a given property. Enumeration, for
instance, can be represented as a list of individuals that may
be selected by the user. In general, the range of a property is
a good indicator of the required type of a given entry field.
Finally, functions will be implemented to allow the user to
change the type of the entry field at runtime.

In the current state of the framework, four types of entry
fields are implemented: numerical field, text field, list field and
date field. Upon expansion, the list field requests a service that
finds all the existing values associated to this property. For the
fields used to update literals, the range type of the property
is used for validation. Cardinalities exist in the presentation
knowledge base so the forms can specify to the user the
required fields, if any.

5) Graphics: Graphic classes and related properties have
been added to the presentation knowledge base to represent
graphic views, such as histograms or clouds of points. Graphic
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Figure 7. Application -(1) tree view, (2) matrices and (3) buttons for CRUD operations.

properties are used to specify the association between the
graphic elements such as X-axis data, Y-axis data, labels, etc.
The axes are linked to domain ontology properties.

C. Organization of knowledge bases
This use-case application required the use of multiple stores

to distinguish between domain information, presentation infor-
mation, conceptual-model knowledge, individuals, editable and
non-editable information. The application requires that all this
information integrate seamlessly on the UI. When information
is requested, a virtual aggregation is done, depending on which
data sources the user wants to visualize.

The semantic graphs are organized as follows: the T-Box
semantic models, one for the presentation knowledge and one
for the domain knowledge, are separated from their respective
A-Box semantic models (see Figure 8).

The presentation T-Box graph represents knowledge that
will be common to all applications using the framework. Its
A-Box contains form entry field types and application-specific
graphics.

The domain T-Box graph represents knowledge specific to
the application domain of expertise. Its A-Box is divided into
four semantic graphs. It is first split into two graphs since
data may come from two sources: the organization RDB or
users themselves. For security reasons, it is impossible to apply
changes to the organization RDB from the application. The A-
Box is hence split into two graphs depending on the origin of
the data: a non-editable one with data from the organization
RDB and an editable one with user-created data. It is then easy
to synchronize the non-editable graph to keep it updated, while
not losing any user-created information. Moreover, this divi-
sion enables the two data sets to be displayed independently,
but only if another separation is created.

Independent data can be presented on their own to the
user but other data depend upon these independent data to
be shown. Therefore, a division relative to the dependence of
the information is needed. Dependent A-Box individuals are

Figure 8. Organization of semantic graphs.

located in one graph and independent individuals are located
in another. For example, if the user only wants to see the user-
entered power transformer measurements imported from the
organization database, information from both sources will be
needed. Holding the power transformers in the independent
graphs and the measurements in the dependent one will allow
the display of user-entered measurements exclusively, even the
ones describing power transformers held in the RDB. When
CRUD services are used, a service is called upon to indicate
on the form whether data can be modified or suppressed,
depending on its source.

This organization of the A-Box in four semantic graphs
was established for convenience, but it would be beneficial for
this mechanism to be generic to the many applications used in
an organization where information comes from various sources
with different security constraints. Further testing must be done
to establish a completely generic methodology.

IV. RESULTS

The OBAISF has been used to create a client-server de-
cision support application. Using the generic services of the
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framework, the classes and properties in the conceptual model
can be modified directly in the triplestore without affecting
the application. The UI presentation will adjust automati-
cally according to the latest update of the conceptual model,
since the request queries the semantic graph dynamically.
The proposed framework supports all CRUD operations to be
performed on individuals. Moreover, the framework will query
the conceptual model in the semantic graph for each request.
This differs from a standard application where the conceptual
model is taken into consideration only at compile time. The
resulting application is ready to be put into production. Once
in production, since it will be able to automatically adapt
to conceptual model changes, it should easily evolve as the
framework is extended.

As stated, the OBAISF will enable the AAB. The AAB will
help to create many information systems to be used throughout
Hydro-Québec and its research institute. This should shorten
the time needed to create applications. In research institute
context where new knowledge in the domain of electric utilities
is constantly emerging, auto-adaptive applications should re-
quire minimal time to maintain, thus reducing the time between
discoveries and their practical implementation. As seen in
Table I, RDF technologies have inherent properties facilitating
the design of adaptive applications.

The adaptiveness of those applications is in large part due
to the way the database is queried. Of the various ways that
could have been used to obtain the data in a generic manner,
the two below have been tested and compared.

A. Results - Comparison of two communication systems
Two client-server communication systems were tested on

the same virtual machine using 16 gigabytes of RAM and
four cores. The first involves a generic JAVA object populated
by generic SPARQL queries and automatically transformed
to the JSON data format. The second uses another generic
SPARQL query but to construct triple models sent to the
client in the JSON-LD data format. Both communication
systems manage to transmit the same data, formatted in the
same structure, in a generic manner, thus bringing the same
flexibility to the applications. Except for the communication
systems, all the other methods of the AIS were shared between
the two configurations. The two communication systems were
compared for speed, code length and possibilities.

In our implementation, the generic JAVA object system
retrieved small data sets faster, but became slower than the
JSON-LD system as the data sets increased in size. This is
primarily because the generic JAVA object is populated by
several SPARQL SELECT queries; whereas the JSON-LD
system is populated by only one CONSTRUCT query, less
efficient for processing small data sets but gaining efficiency
with larger ones.

To be completely fair in comparing the speed of the two
systems, an effort should be made to minimize the number of
queries in the first, and to optimize all the queries in both. Even
doing so, the first technique will always require more queries
than the second to obtain the same results. This is because
SPARQL SELECT query outputs are result sets organized as
2D matrices. In order to have meaningful result sets, it is
useful to split the queries; failing to do so creates numerous
near identical lines in 2D matrices due to data replication. The
number of queries needed for the first system is 1 + 2c, where

c is the number of classes describing the selected individual
retrieved. CONSTRUCT query output being a set of triples,
the results are in the form of an oriented graph. In the second
system, a single CONSTRUCT query can thus yield all the
required results in a meaningful manner.

Code length was compared between the two systems.
Though not a really meaningful metric, it is a first attempt
at characterizing the two systems. Further work is needed to
calculate better metrics to account for code maintainability,
readability and complexity when comparing systems. For code
length, the JSON-LD system is more advantageous, requiring
three times fewer lines on the server side to yield the same
result. On the client side, the code is almost exactly the same
in both cases with the exception of the use of the JSON-
LD.JS library [35] for the second system. This library is used
to transform the triples in the received JSON-LD into JSON
format by first rearranging them into a tree shape by framing
them according to a pre-defined frame and then compacting the
properties’ URI into pre-set keywords. These two operations
result in a JSON object usable by any JSON-friendly library.

A major advantage of the second system is only visible
when picturing the AAB. With this system, SPARQL queries
used for application customization can be stored as a set of
triples. As the visual queries made from the SQB are stored
in the form of triples, they can be easily linked to the domain
ontology by simply joining the query repository with the on-
tology. This enables automatic validation of applications upon
modification of the ontology. Thus, the changes in the ontology
that will not be tackled by the auto-adaptive properties of the
OBAISF will still be automatically spotted, marked and sent
to a power user or an administrator. The same mechanism is
conceivable with the first system but would be more difficult
to implement.

Another advantage of the second system is potential use
of inference capabilities on the client side of the applications.
While it has not yet been tested, bringing triples from the
triplestore to the client side would make it possible to use
RDF-friendly algorithms, like inferencing, without any com-
munication with the database server. This could be useful in
some use cases, like for portable applications.

B. Limitations
The main limitation of the entire framework is how it

explores the model at each request. It can now only retrieve
individuals from classes that are one associative relationship
away from a desired individual. Further work is required to
find ways to expand this exploration, a crucial factor for the
framework to be effective in large-scale ontologies. The OB
should help to develop this mechanism rapidly. Associating
classes and properties with annotations seems like an easy
way to solve this problem but more sophisticated solutions
may yield better results.

Tests must still be run to determine performance differences
between a dynamic application such as the one we developed
and a static one, and to observe the scaling potential. The
resulting application from the proposed framework is not
expected to perform as well as a similar application developed
from a more conventional framework but the difference in per-
formance has yet to be established. It will then be possible to
evaluate over the long run how much the lower costs incurred
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during the AIS development and maintenance processes offset
any reduced performance.

C. Lessons learned
While implementing this proof of concept, we learned that

many of the properties needed to achieve conceptual inde-
pendence are inherent to RDF technology. Exclusively hard-
coding resources from RDF, RDFS and OWL semantics in all
SPARQL requests and leaving all other resources soft-coded
are necessary conditions to obtain conceptual independence.
Because the semantics of these three languages (RDF, RDFS,
and OWL) are shared across RDF-based ontologies, they form
a common conceptual basis to all the domains they can repre-
sent. Limiting conceptual dependencies to their semantics, the
applications developed can use any such ontology, regardless
of its knowledge domain.

AISs built using the AAB will fall into the MDE paradigm,
in the sense that a meta-model language is used to describe
all AISs independently of their domain and that by designing
their model using WAO components will suffice to generate
their code. The AIS will be considered M0; WAO, M1; OWL,
M2; and RDFS, M3. This architecture mainly uses RDF
for the platform-independent model (PIM) and JavaScript for
the platform-specific language (PSL). By encapsulating the
PSL into the PIM, i.e., by inserting application components
inside the classes of an ontology, the transformation model
can become generic. This transformation model will work
independently from the PSL. Indeed, as long as the engine
reading the WAO instances and transforming them into web
applications uses generic functions, it can build them in any
web-friendly language. This should also make it possible
to easily change PSL components, thus making application
maintenance processes even more flexible. This technique
should also increase code reuse across the entire application-
building process since all applications built with it can share
the same components and processes. Lastly, this should reduce
refactoring efforts.

V. CONCLUSION AND FUTURE WORK

As hypothesized, an AIS based on a triplestore is easier
to implement than an AIS using XML to dynamize functions
on an RDB. Many artifices must be considered to build an
AIS from a RDB, something not required with semantic
technologies, as seen from Table I. The use of a library to map
the RDB into a triplestore appears a judicious way to quickly
and easily achieve the conceptual independence needed in an
AIS.

With the use of an RDF representation to store the
information, generic SPARQL queries that can search any
semantic graph for both conceptual knowledge and individual
information are easily devised. This makes the AIS able to
adapt to changes in the conceptual model and to be used for
different application domains. The framework could also be
used with evolutionary prototyping application development
as the future AAB. At Hydro-Québec, other large-scale client-
server applications have already been successfully developed
using evolutionary prototyping, highlighting the benefits of
such technologies compared to standard development pro-
cesses [25].

A deeper analysis is needed to determine which of the
two communication systems to choose. So far, the second

system seems more promising, mainly due to greater speed in
processing large data sets and its capability to automatically
spot the impact a modification to the ontology will have on the
applications. More exhaustive tests are underway and should
improve results.

Based on this proof of concept, the proposed AAB will
be designed to use this OBAISF in order to build numerous
AISs. Our goal is to produce interpreted applications with their
code and processes maintained inside the domain ontology.
Any instantiation of the WAO will be a custom aggregation
of different generic components using the generic functions of
the OBAISF. The last part of the AAB is building an engine
capable of reading a WAO instantiation and generating the
application on the fly. A technique to encode treatment of the
data inside the ontology should also be developed.

Using the OBAISF through the AAB to build new applica-
tions will further test the approach. In doing so, new functions
will be developed eventually leading to more complete AISs.
Ideally, the AISs should be able to take advantage of all RDF,
RDFS, and OWL semantics. The current OBAISF uses only
RDFS semantics; adding OWL capabilities will make the use
of inference reasoners possible. This will be a major benefit
to the AAB, the reasoner supporting validation during the
creation of applications.

In the current release, only individuals can be edited by the
user through forms. Editing features on the meta-model should
be enabled by adding an ontology editor on top of the OB and
by incorporating these capabilities into the framework. The
OB should eventually also be enhanced to enable the insertion
of treatments of data inside the domain model. This will help
reduce refactoring time and improve code reuse throughout the
company.

The framework and the application demonstrate that an
AIS can work easily and efficiently by capitalizing on RDF
technology and its inherent properties. The future AAB should
leverage the framework by giving power users an easy means
to implement it in a wide variety of adaptive applications.
Such systems can be useful in fast-evolving knowledge do-
mains. They are fully in line with the AGILE development
philosophy, allowing the data model to evolve freely at each
iteration. Those considerations suggest that OBAISF and self-
adapting applications could bring substantial cost reductions in
application development and maintenance in the coming years.
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