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Abstract—The common approach for training robots is to
expose them to different environmental scenarios, training their
controllers to have the best possible commands when untrained
scenarios are encountered. When humans train they do the
same. They try new manipulations by performing within different
environments. However, humans training (and in fact develop-
ment from infancy to maturity) also includes a type of training
which, although claimed to improve cognitive capabilities, has
not, to date, been adopted for the training of robots. This type
of training involves the restriction of manipulation capabilities
while performing different tasks, e.g., climbing with just one
hand. Recently a research that facilitates functions instead of
a mechanical systems that aims at exploring the invigorating
idea that such training, would enhance the robustness of robots,
has been published. This type of training has been termed as
Mechanical Cognitivization. In the current paper, the preliminary
published results are detailed and more elaborated examples are
given. Specifically, it is shown that the Mechanical Cognitivization
based training improves the performances when performing
within untrained environments and when malfunctions occur.
The advantages of the suggested training are highlighted through
facilitating a comparison between two schemes that include a
common neural net (with no training of restricted modes) and the
recently introduced Mechanical Cognitivization based neural net
for which the training includes training of restricted modes. The
results highlight the advantages of Mechanical Cognitivization
based training in enhancing robustness.

Keywords—Cognitive robotics, developmental robotics, evolu-
tionary algorithms

I. INTRODUCTION

The use of robots in performing industry-related tasks
and operating within hazardous environments has become
ubiquitous. Yet robots are rarely used in everyday tasks that
are performed mainly by humans. Indeed, humans exhibit
truly amazing competencies in performing arduous and com-
plicated tasks that may involve changing working conditions
(scenarios), while controlling and maneuvering their multi-
degrees-of-freedom body. By repeatedly executing different
tasks, the human brain learns how to control the complex
human body. Two human activities are of interest to the current
research. The first is associated with training for participation
in sports and athletic activities. For example, when training,
climbers often use different techniques such as climbing with
one hand tied behind the back, climbing sloping walls with no

hands, or climbing blindfolded. Clearly, such actual climbing
conditions are not expected. Rather, these are all training
techniques intended to improve climbers’ sense of balance and
movement skills. Restriction of movement as a training method
is found in other sports as well, among them swimming (e.g.,
swimming with just one hand or without using the legs) and
the martial arts (Fighting blindfolded). The second human
training activity of interest here is also related to restricted
movement and involves the way human capabilities develop
from birth. The training of babies’ minds begins on a body
that is not yet fully developed. In contrast to new-born calves
or horses, for example, human babies cannot stand, walk or
run. Evolution has dictated a slow rate of development among
humans and has forced the use of restricted capabilities. Could
this be because in many situations, only some of the body’s
competencies are used so that the body must also be trained
for these sub-manipulations? Note that many sports advocate
starting young in order to let the body and mind adapt to
the demands of the sport. In [1], we suggested exploring
the novel idea of enhancing the robustness of robots by
training them while taking into consideration both their final
bodies/embodiments and their restricted modes (less capable
versions). Such training has the potential to enhance the
robustness of robots in performing untrained maneuvers as
well as in coping with malfunctions and unexpected working
conditions.

For elucidating the idea behind Mechanical Cognitivization
(MC), suppose that a robotic climber (CR) needs to be
developed, so that it is capable of climbing a wall with poles
sticking out of it. The left panel of Figure 1 depicts one pos-
sible mechanical configuration (body) for such a CR. The CR
now must be trained to maneuver up and grasp one of the poles
(A or B). The idea suggested here is that during the training of
the controller of this CR, not only should this body be utilized
but also its restricted modes. Two such restricted modes are
depicted in the middle and right panels of the figure. Clearly,
performing such a maneuver by utilizing one of the restricted
modes might be associated with degraded performances (e.g.,
larger integral of the square error, measured while considering
the planned and actual maneuver performed). Restricted modes
may include the following restrictions: a) using only some of
the mechanical capabilities, such as preventing some of the
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links from moving – that is, if the robot has four arms/links,
it will be restricted to use only two or three of them or will be
prevented from using its gripper; b) restricting the movement
of the arms/links to less than their full possible extent; c)
deliberately imposing friction at the joints; d) changing the
stiffness of the links; or e) restricting the actuator performance,
for example by reducing the power supply to the actuators or
using weaker actuators (smaller motors).

Fig. 1. CR having four links is trained using all of them (left panel) and
using restricted modes (middle and right panels). This figure was from [1]..

The work in [1] explains the idea, which is demonstrated
by using functions. In the current paper, more elaborated
examples are given. It is shown that the MC based training
improves the performances when performing within untrained
environments and when malfunctions occur. The paper is
organized as follows. Section II discusses the needed back-
ground, which includes cognitive architectures and develop-
mental robotics. The methodology is given in Section III. It
includes the way to train and test the different MC related
schemes. Next, in Section IV, the success of MC in enhancing
robustness is demonstrated through using a basic example (in
Subsection IV-A) and further elaboration (Subsection IV-B).
A discussion and envisaged future work are presented in
Section V.

II. BACKGROUND

Over the past several decades, a great deal of research
attention has been directed at cognition and its implementation
for artificial brains. The inspiration provided by human beings
toward producing a machine that will copy human abilities is
evident. Different models of cognition have been adopted to
produce artificial cognitive systems or cognitive architectures.
Cognitive architectures [2] represent attempts to create unified
theories of cognition, i.e., theories that cover a broad range
of cognitive issues, among them attention, memory, problem-
solving, decision-making and learning. These theories consider
several aspects, including psychology, neuroscience, and com-
puter science. Examples of such architectures are the Soar
system [3],[4], and ACT-R [5]. Some of these architectures
have been claimed to be more adequate than others for use as
cognitive brains for robots. This distinction (see, e.g., [6]),
is rooted in the differences between the “cognitivist” and
the “emergent” philosophies of cognition. The philosophy of
emergent cognition contends that the relationship between the
cognitive architecture and the body it is controlling (e.g.,
robots) is essential to the development of cognition, which is

not the case for the “emergent” philosophy. The current paper
deals with the“emergent” philosophy, because the learning
directly depends on the availability of models describing the
controlled entity. An associated philosophy is embodied cogni-
tion [7],[8], which states that cognition can be influenced and
biased by states of the body and that abstract cognitive states
are grounded in states of the body. Among the architectures
that facilitate this view is the biologically plausible brain-
inspired neural-level cognitive architecture proposed by Shana-
han [9], in which cognitive functions such as anticipation and
planning are realized through internal simulation of interaction
with the environment. Burghart et al. [10] proposed a hybrid
cognitive architecture for a humanoid robot that is based on
the interaction of parallel behaviour-based components and a
long-term memory sub-system utilizing a variety of represen-
tational schemas, including object ontologies and geometric
models, Hidden Markov Models, and kinematic models. For
a comprehensive survey of many of the approaches to model
cognition and the resulting cognitive architectures, see [6].

Several approaches have been proposed to improve the
response of artificial entities to specific stimulations by cir-
cumventing complex cognitive architecture. For example, the
computational model of perception and action for cognitive
robots discussed in [11] embraces the view that there is
a direct route from perception to action that may bypass
cognition [12]. A related approach is morphological computing
(see, e.g., [13],[14],[15]), in which the idea is to design the
mechanical structure to respond directly to a stimulus. This
response is a result of the special morphology (shape, materials
inter-relation among parts) of the structure. For example,
in [16] the special features of a hand (Yoki hand) partially
built from flexible deformable materials enable it to easily
grasp different objects with no need for controller feedback.
This notion has gained a great deal of interest, and for the
past several years workshops have been dedicated to consid-
ering different aspects of morphological computing, such as
artificial skin and stretchable sensors, compliant actuators and
mechanisms, and soft materials in robotics.

In contrast the proposed research focuses on the enhance-
ment of cognition by considering the mechanical structure, as
is the case in morphological computing. Here, however, the
cognitive architecture is of vital importance, and the mechan-
ical structure and its possible restricted modes (permutations
of the final structure) are utilized for training the cognitive
architecture. This means that the mechanical structure is
the driving force for the enhancement of cognition/learning.
This enhancement of cognition by facilitating the mechanical
structure of the robot has been termed as Mechanical Cogni-
tivization (MC) [1].

Most relevant to the current paper are studies conducted
by Mark Lee’s group at Aberystwyth, UK. Their research
is related to Developmental Robotics [17]. According to
this approach, which is rooted in the way babies develop,
cognitive development is achieved through staged growth of
cognition as the sensomotoric competencies are gradually and
sequentially improved. In several publications [18],[19],[20]
Lee’s group introduced and developed what they term as
‘constraint lifting’. At each stage, learning takes place with
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certain constraints imposed on the sensomotoric system. At the
next stage, some of these constraints are removed or ‘lifted’.
For example, learning hand-eye coordination in manipulating
a robotic arm has been investigated. In that case, as leaning
progressed, constraints imposed on moving parts of the robot
(e.g., using the fingers) were ‘lifted’.

The current paper and the MC idea involve several basic
differences from the works such as [19]: a) In contrast to the
sequential staged growth, MC may be enhanced simultane-
ously. b) In the proposed approach, constraining manipulations
may take place any time along the robot’s life time and
c) In one of the hereby proposed schemes, the knowledge
gained through training in a restricted mode, may be preserved
separately, and utilized when needed. As discussed above,
cognition involves among other issues, learning, anticipation,
conceptualization etc. The current paper deals just with the
learning phase. For this reason and for the sake of focusing
the current study on proving the applicability and impact of
MC on robustness, we chose to utilize architectures, which are
merely neural nets as was done in [1].

Previous studies on embodied cognition concentrated on
how to construct a sophisticated artificial cognitive architec-
ture, by utilizing one embodiment of the controlled entity. In
contract here, we elaborate on the MC idea, which is aimed
at fully exploiting the capabilities of any controller (artificial
brain), by facilitating the learning of its embodiment including
its related restricted modes (less capable embodiments). Here
we further elaborate on the results attained in [1], through con-
sidering different combinations of restricted modes, allowing
a more in depth look into the suggested learning approach.

III. METHODOLOGY

In order to elucidate the MC idea and to demonstrate its
potential, mathematical functions are used here as was done
in [1], instead of a CR or any other mechanical system. Repre-
senting the “environment” (the climbing wall) to which the CR
has to adapt to (able to climb in the best way), is a polynomial
function Y (x), of order m where x is a vector of inputs (e.g.,
location of poles). In other words Y (x) may be viewed as a
planned route for the robot to follow. The CR’s controller is
a neural net (NN) for which the outputs are coefficients of a
polynomial of order n, y(x) = a1x

n + a2x
n−1 + ... + an.

Each output may be viewed as a control signal (here it is
a coefficient) to a motor of a manipulator that moves a
robotic arm. The sum of the arm’s movements results (through
kinematics) in the location of the CR on the wall. Here, this
summing is represented by y(x). The correlation between the
CR case and the function representation, is summarized using
Figure 2.

A. Training schemes

The training of the NN may be enhanced by, e.g., minimiz-
ing the square Error, Error = (Y (x)− y(x))2 averaged over
the available function’s points. In order to train the net to give
an output, which is adequate to the environment (the function
of order n), the artificial learning system was set as depicted
in Figure 3.
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Fig. 2. The correlation between the CR and the related function representa-
tion.

Fig. 3. The artificial NN with no restricted modes.

The input to the NN, is a list of k, x and corresponding Y (x)
values, which are fed sequentially to the net. The Net has extra
n inputs (flags), namely:A = [a∗1, a

∗
2, .., a

∗
n]. Each flag may be

assigned a binary value. If a∗i = 1.0, it means that the net’s
i-th output is not prohibited and the related coefficient (link
or DOF) participates in evaluating Y (x). If a∗i = 0.0, the i-
th coefficient would be disregarded and the net is trained to
produce just n−1 outputs in order to still fit, in the best way,
to the original function (environment), which is of order m.

Definition: If ¬∃a∗i = 0 then the net is training/operating
in a non-restricted mode. If ∃a∗i = 0 then the net is train-
ing/operating in a restricted mode.

Fig. 4. The artificial NN training setting for a restricted mode.

While training, two NN schemes are considered. The first
is merely the common NN, termed here as CNN, for which
all flags’ values are one. The other training involves a series
of training sessions, which include a training in the non-
restricted mode as well as a series of different restricted modes
training. The same net is trained for accommodating all of
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the restricted modes and therefore this trained net is termed
here as Amalgamated Modes Neural Net (AMNN). In [1], for
each restricted mode, the training of the AMNN exploited not
more than the system’s available resources (K pairs). K/n
of the inputs, were pairs fed to the net together with all the
flags set to one, as was in the non-restricted mode. For the
next K/n of inputs, the output a1 has been prohibited and
the corresponding flag was set to zero, a∗1 = 0 and so forth.
In the current paper this approach is not maintained. Here,
the training at each mode, facilitates the entire set of available
examples. The reasons for this change include: a) It is possible
that the number of available training points is limited, leading
to insufficient training resources for each restricted mode, b)
It is conceivable that training the restricted modes and the
non-restricted modes would require more resources. When
human train, it is acknowledged that for getting better (e.g., by
climbing with one hand) more training time and commitment
is mandatory. The training of the different neural nets was
done using the (µ + λ) evolution strategy with self-adaptive
mutation strengths [21], where µ = 50 and λ = 50.

IV. TESTING THE SUCCESS OF MC IN ENHANCING
ROBUSTNESS

Testing the different schemes for their robustness, is done
here through considering two different uncertainties that in-
volve untrained-for changes. These changes include, a) Mal-
function: where one of the coefficients (robot’s links/DOF) is
prohibited. In such a case a more robust scheme would be the
one for which the error with respect to the original function
is smaller. This means that although malfunction occurs, the
system is aiming at doing its “job” in the best way, and b)
Environmental change: where the function is no more the
original trained-for function (a new climbing route etc.). While
testing the different schemes the following is assumed. The
MC related neural net namely the AMNN has a feedback
from the net’s output (robot’s links) such that if one or more
malfunction, their related flags are changed to zero. In the
case of the AMNN system, deliberately setting flags to zero
for restricting movements along specific DOF, may be done.
Decision on such a deliberate restriction may be done by a
higher level controller that, e.g., uses vision to assess the
accessibility to the target point. This means that a rational
decision on, which of the modes to use may be done. When
using just two fingers to lift a small object instead of using all
fingers, humans are also using vision to make such a decision.
For point b above another scenario may be envisaged. In such
a scenario, manipulation takes place using the non-restricted
mode. If the function is not satisfactorily estimated (target
is not reached), another mode may be tried (the robot may
retrieve to its initial configuration and retry). For the functions
case, this means that the original function alters to a new one
(new route) and a scheme that is more robust would be the
one that adapts to the changed environment and acts to follow
it with less error.

A. Example 1: Basic results
In this example an NN, which serves as the controller is

to approximate a function of order two (m = 2), which

was arbitrarily chosen to be: Y (x) = 3x2 + 2x + 1. The
approximating function has been chosen to be of order three
(n=3): y = a1x

3 + a2x
2 + a3x+ a4. It is noted that justifying

this redundancy for the current case is rather hard and for now
the importance of redundancy may be only borrowed from the
correlation to the fact that human mechanics is redundant. The
CNN’s NN is a forward neural network with five inputs (two
for the x and corresponding y(x) and three for the flags a∗1, a

∗
2

and a∗3), four hidden neurons (tansig activation functions were
used), and four output neurons (for a1, a2, a3 and a4). For
finding the best net, one hundred evolutionary runs, involving
each 5000 generations, were run for each training mode.
The best net is chosen such that the average of the fitness
function, over all training points, is the smallest. Hear k = 10
such that: x = [0.2, 0.4, ..., 2.0]. Figures 5(a), 5(b) depict the
approximation of the target function by the CNN and AMNN
schemes, respectively.
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Fig. 5. This plot shows the performance of the a) CNN system and b) AMNN
system with all flags set to be one.

It can be seen that the CNN approximation is somewhat
better than that of the AMNN. This is not surprising because
the the AMNN is trained using different restricted modes,
some of which are not adequate for the function at hand (e.g.,
training when a∗2 = 0.0). The superiority of the CNN over
the AMNN is further depicted in Figure 6, where the fitness
value over 5000 generations of the evolutionary strategy run,
is shown. As can be seen in the figure, the AMNN training
needs more time to attain a reasonable good performance,
while for the CNN, good performance is achieved rather
quickly. Nevertheless, it will be shown that the merit of using
the AMNN will be apparent when robustness to untrained
scenarios would be tested.

1) Malfunction in example 1: The first test of robustness
involves testing the robustness of the two schemes to malfunc-
tions. For the current example a malfunction means prohibiting
one of the DOF (one coefficient of y(x) is set to zero).
The performances of the two schemes are tested while both
are to reach the training points. The performances of these
schemes are compared using a box plot that are depicted in
Figure 7. In all of the following box plots the line inside the
box represents the median of the data. The edges of the box
represent the lower and the upper quartiles (25-th and 75-
th percentiles) of the data, whereas the whiskers represent
the lowest and the highest data points that are within 1.5
times the inter-quartile range from the lower and the upper
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Fig. 6. The fitness of the best trained individual in each generation for the
CNN and AMNN schemes.

quartiles, respectively. Circles represent outliers. In Figure 7,
each box depicts the statistical data attained by one of the
schemes over all training points, where the performances
are the squared errors computed for each data point by:
Error(x) = (Y (x))2 − (y(x))2.
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Fig. 7. The performance of CNN and AMNN system when malfunctions
occur (index 1/2/3 corresponds to set the coefficients of third/second/first order
of the function to zero). The p values for this figure (for the second and third
DOF) are 0.0115 and 4.33e-05, respectively.

Restricting the first DOF (index “1” in Figure 7), namely
a1, does not result in any superiority of one scheme over
the others. This is not surprising due to this DOF being
of higher order than needed. However, when prohibiting the
other two DOF, a2 and a3, which are designated by “2” and
“3”, respectively, the enhanced robustness of the AMNN, is
highlighted. This is especially profound when a2 is prohibited.

The AMNN system performs significantly better than CNN
system in the second and third case of malfunction (two-
sided MannWhitney test, 5 percent significance level). Clearly,
this advantage is built on training on restricted modes and
preparing the scheme for such cases. Nevertheless, this training
is just part of the training and the non-restricted mode is also
part of the training.

2) Environmental Changes in example 1: For examining
the robustness of the two schemes to environmental changes,
the same x points as those of the training points are used,
however, Y (x) does not stay the same. For a mechanical
system this would mean for the input, the output changes
due to unexpected influences such as friction. To simulate
such unexpected changes, the original function Y (x) has been
altered by changing its powers. The statistical data of changing
the power two (second order) from one until three (skipping
the original power, two) in steps of 0.2 and changing the power
one (first order) from zero until two (skipping the original
power, one), is depicted in Figure 8. Each data point in that
figure is computed by computing the squared error between
that function value at that point and the point reached by the
scheme, averaged over all x points. The training followed the
approach explained in Section IV.
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Fig. 8. The average fitness value of the CNN and AMNN system when
changing the powers of the original function. The p value for this figure is
2.605e-11.

Depicting the results that are represented in Figure 8, it is
clear that the MC related idea, which is realized through the
AMNN scheme, promotes the robustness of the system when
dealing with environmental changes as they are presented here
(assuming the correlation between environmental changes and
function changes).

For further testing the robustness to environmental changes,
the original function is subjected to different changes, this
time, instead of altering the powers, the coefficients are
changed. In this case, the coefficients corresponding to the
second order are changed from two to four in steps of
0.2, and the coefficients corresponding to the first order are
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changed from one to three. There are total of 11 ∗ 11 = 121
combinations. The combination of three and two for the
second and first coefficients, respectively, which corresponds
to the original function, is excluded from the statistics (thus
just 120 combinations are presented). The statistical data is
presented in Figure 9. It can be easily seen that here again
the AMNN performed significantly better than the CNN (two-
sided MannWhitney test, 5 percent significance level).
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Fig. 9. The average fitness value of the CNN and AMNN system when
changing the coefficients of the original function. The p value for this figure
is 5.011e-11.

For elucidating the enhanced robustness of the AMNN
scheme, Figure 10 depicts the performances of the AMNN
scheme, designated in green and the CNN scheme, designated
by blue and the changed environment related function shown
by the doted red curve. Here the original (target) function has
been altered to Y = 3x1.5 + 2x0.5 + 1.

The improved robustness of the AMMN is highlighted
through its adaptation to the newly introduced function. Fig-
ure 11 depicts the same but for the case for which new
coefficients are represented into the original function, namely,
the function is altered to be Y = 3.5x2 + 2.5x1 + 1.

Again the competency of the AMNN scheme to respond to
the needed changes, which is rooted in its ability to choose
and activate/prohibit DOF, is highlighted.

B. Example 2: Elaborated results

In this section, the basic results, which were presented in
Section IV-A, are elaborated and the approach is further tested.
The main investigation concerns the effect of what restricted
modes are utilized for the training phase. Consideration is
given to the original CNN scheme and to three different
training settings used for the AMNN scheme. The settings
differ one from the other by the restricted modes that are
used for the training. In all of these training settings, the
non-restricted mode serves as one training mode and the
other modes are as follows. AMNN1 is trained by a setting
that is similar to the setting used for training the AMNN of
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Fig. 10. One example showing how the CNN and AMNN system approximate
a new function with different powers (simulating environmental changes).
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Fig. 11. One example showing how the CNN and AMNN system approximate
a new function with different coefficients (simulating environmental changes).

Section IV-A. This means that three restricted modes are used
(k = 3). In each of the restricted modes, one coefficient in
y is cancelled. For AMNN2, each training involves restricting
two modes. Because three coefficients are involved (a1, a2 and
a3, there are three restricted modes that are trained (again
k = 3). For the AMNN3 setting the trainings used for both
the AMNN1 and the AMNN2 are amalgamated. This means
that restricting both one coefficient and two coefficients is
practised, resulting in six restricted modes training (k = 6).

1) Normal Situation: Figure 12 shows the output (blue
curves) of the best individuals (with the lowest fitness value)
in the 5000th generation for the CNN and AMNNs training
in normal situation (In normal situation, all DOF of the robot
are enabled, that is, all flags are set to 1.0.). Clearly, all train-



658

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ing schemes approximate the target function in a reasonable
accuracy. The fitness values of the the CNN scheme and the
three AMNN’s settings (AMNN1, AMNN2 and AMNN3) are
6.0 · 10−5, 0.052, 0.125, and 0.072, respectively. The lower
the fitness is, the better is the training. Therefore, the CNN
training performs best in the normal situation. The advantage
of the CNN scheme over all of the AMNN settings may be
further highlighted by depicting Figure 13. The figure shows
the fitness value of the best individuals in each generation
during the evolutionary process for the CNN and AMNNs
settings. As may be depicted, the fitness of CNN is always
the lowest among the schemes in each generation. The training
time required for the CNN is also much shorter than that of the
AMNN settings. Comparing within the three AMNN settings,
it may be observed that the fewer the DOF (i.e., k is smaller)
is restricted during the training, the better average performance
is attained.
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Fig. 12. This plot shows the output (blue curves) of the best individuals in
the 5000th generation for the CNN and AMNNs training to approximate the
target function. The red (dotted) curve represents the target function.

In the following, the robustness of the different schemes and
settings are examined based on the two unexpected changes,
which were discussed in Section IV, namely malfunction and
environmental changes.

2) Malfunction in example 2: For testing the robustness
of the different schemes and related settings to malfunctions,
each of them will be tested for different malfunction combi-
nations. This means that the performances will be evaluated
by restricting one coefficient at a time as well as when
prohibiting more than one coefficient. Figure 14(a) shows the
performance of each scheme when malfunctions occur using
box plot. When the third DOF malfunctions (a1 is prohibited),
all the training modes can still approximate the target function
well, since this DOF is redundant. For all the other cases
of malfunction, the CNN scheme does not perform well, as
may be comprehended from the relatively large square error
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Fig. 13. This plot shows the fitness value of the best individuals in each
generation of the evolution for the CNN and AMNNs training schemes.

shown in Figure 14(a). For the AMNN1, when only one DOF
malfunctions, the system performs well. Surprisingly, it still
performs very well when the third and first DOF malfunction
(a1 and a3 are prohibited). Note that the system is not trained
for this case. For the AMNN2 training, the system can handle
more malfunction cases (1, 3, 4, 5 and 6). For the AMNN3,
in all of the malfunction cases the trained system can perform
well. It seems that the more degrees of freedom are restricted
during the training, the higher robust the trained system is, at
least when dealing with malfunctions.
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Fig. 14. This plot shows the performance of the trained system when
malfunctions occur for the CNN and AMNNs training. 1/2/3: only the
third/second/first DOF malfunctions. 4: the third and second DOF malfunc-
tion; 5: the third and first DOF malfunction; 6: the second and first DOF
malfunction.
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Generally saying, it is hard to envisage what would be
the success of each training before analysing the statistical
data. Moreover, it is rather unclear how to relate a success or
failure of one specific training with respect to a specific DOF
(e.g., the failure of AMNN2 with respect to the second DOF).
Clearly, the non-linearity of the equations, the tansig function
etc. hinders success in such a forecast.

3) Environmental Change for example 2: Here, the envi-
ronmental change is simulated by changing the powers or
coefficients of the trained function, i.e., the trained system has
to approximate different, untrained-for, functions. Figure 15
and Figure 16 show the performance of the CNN and AMNNs
training schemes when the powers and coefficients of the target
function are changing, respectively. The x coordinates are the
same as those in the 10 training points, but the y coordinates
have changed depending on the testing functions.
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Fig. 15. This plot shows the performance of the CNN and AMNNs training
when changing the powers of the target function.

For the case of changing powers, the second order of the
target function is changing from [1.0, 1.2, · · · , 3.0], and the
first order is changing from [0.0, 0.2, · · · , 2.0]. We deleted the
combination of 2.0 and 1.0, which corresponds to the same
target function used for training. For each new testing function,
we tested the performance of CNN and AMNNs using the
new inputs. To approximate each point in the testing function,
we selected the best mode operation that can obtain the
least square error. For the CNN, we only have one operation
mode. For the AMNN1, AMNN2 and AMNN3 training, the
number of selected operation modes is four (one for the non-
restricted mode and three for the one DOF restriction modes),
four (one for the non-restricted mode and three for the two
DOF restriction modes), and seven (one for the non-restricted
mode three for the one DOF restriction and three for the
two DOF restriction modes), respectively. For each testing
function, we assigned an fitness, which is the average square
errors for all the 10 points. The case of changing coefficients
is similar. In this case, the coefficients corresponding to the
second order is changing from [2.0, 2.2, · · · , 4.0], and the
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Fig. 16. This plot shows the performance of the CNN and AMNNs training
when changing the coefficients of the target function.

coefficients corresponding to the first order is changing from
[1.0, 1.2, · · · , 3.0]. We also deleted the combination of 3.0 and
2.0, which corresponds to the original, trained-for, function.
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Fig. 17. This plot shows an example of how the CNN and AMNNs
approximate a new function when changing the powers of the target function.

It is clear that the AMNN’S settings perform significantly
better than that of the CNN, when environmental changes
occur (two-sided Mann–Whitney test, 5% significance level).
The p values are smaller than 0.02. In the case of changing
powers and coefficients, the AMNN1 and AMNN3 outper-
forms the AMNN2 training. Although we find that restricting
two degrees of freedom in the training (AMNN2) benefits
more on the malfunctions comparing with restricting only one
DOF. In the case of environmental changes, AMNN1 benefits
more, as it has more degrees of freedom to approximate the
new functions. Comparing the performance of AMNN1 and
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Fig. 18. This plot shows an example of how the CNN and AMNNs
approximate a new function when changing the coefficients of the target
function.

AMNN3, there is no significant difference in the case of
changing the power, but AMNN3 performs significantly better
in the case of changing the coefficients. From the results,
we can see that the system trained with all combinations of
restricted modes possesses the highest robustness.

Figure 17 and Figure 18 show an example of the two
cases of environmental changes. The testing functions are still
y = 3 ∗ x1.5 + 2 ∗ x0.5 + 1 and y = 3.5 ∗ x2 + 2.5 ∗ x1 + 1
respectively. As we can see, since the AMNNs have the ad-
vantage of choosing different operation modes to approximate
the new functions, they perform better than the CNN scheme.

V. DISCUSSION AND FUTURE WORK

The Mechanical Cognitivization idea has been further tested
and elaborated here. Although the purpose of MC is the
enhancement of robots’ robustness, functions are still facili-
tated here. Clearly, using functions to prove a concept that
is to enhance robustness of robots, which are not modeled as
functions, requires a leap of faith on behalf of the reader. Nev-
ertheless, much progress on the utilization of neural nets was
instigated by using functions and therefore they are used as a
fundamental base for our planned study. It has been shown in
the paper that learning that includes both non-restricted modes
as well as restricted modes, enhances robustness to environ-
mental changes and to malfunctions. Although the training
is done on the same training set as trained by the common
scheme, the MC based schemes attain improved robustness.
The improved robustness is attained through embedding a set
of flags that open the way for deliberately restricting modes
to attain improved performances. The enhanced robustness
comes on the expense of extended training time. In the current
paper, an insight is gained on the influence of choosing the
restricted modes to be trained with. From analysing the results,
it is evident that as more restricted modes are trained for,
so does the robustness improves. As for future work, clearly

the next step would be proving the MC idea by utilizing a
mechanical system such as manipulator/robot. Further research
should take place for finding an optimization approach that
will optimize the number of DOF (size of n) such that the
robustness would be maximized. A multi objective approach
could be also taken in order to maximize robustness and
training time. Due to the contradiction among these objectives
that was highlighted in the current paper, a trade-off set might
be found. The utilization of neural nets as the controller’s
architecture should be also revisited and more sophisticated
ones should be considered to serve as the cognitive, learning
entity.
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