
620

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Method for Establishing Information System Design Practice

Dalibor Krleža

Global Business Services

IBM

Miramarska 23, Zagreb, Croatia

dalibor.krleza@hr.ibm.com

Krešimir Fertalj

Department of Applied Computing

Faculty of Electrical Engineering and Computing

University of Zagreb

Unska 3, Zagreb, Croatia

kresimir.fertalj@fer.hr

Abstract—Information system design and development

practice did not evolve much in the last decade. Methodologies

for design and development of information systems are still

separating activities for design and development. Design is

always done prior to the development, resulting in deliverables

that cannot be reused in the development process. The

deliverables of the design process are used by developers only

as a blueprint of the information system. The Model Driven

Architecture promised to change that by introducing model

transformations. The whole idea introduced in the Model

Driven Architecture raised the question of model quality. It is

not possible to have a correct and complete transformation if

models of the information system are not of high quality. It is

very hard to achieve a sufficient level of model quality on a big

project. The size of a project team makes it hard to control all

contributions from designers, ensuring that these contributions

comply with the project design practice. In this article, we deal

with these issues by providing a method that allows control of

the information system design process. This method provides

guidance to designers in the project team by offering selection

of patterns and transformations that are applicable to the

current state of the information system design. The library of

patterns and transformations represents previous design and

development practice, containing knowledge developed during

previous projects. The method proposed in this article allows

selection of patterns and transformations that are suitable for

the project, constraining and guiding the contributions of

designers.

Keywords-modeling; guidance; design; pattern;

transformation.

I. INTRODUCTION

The practice of information design and development still
has a number of issues that needs to be addressed. Current
information system design and development practice is still
mainly manual, and uses design mostly for documentation
purposes. In order to improve the ratio of successful and
unsuccessful projects, as well as to cut down the costs of the
projects, more effort needs to be put into defining better and
efficient design practices that can improve project team
coordination and communication, as well as traceability and
quality of the project deliverables.

This article is an extension of work done in [1]. Although
the focus of this article is mainly on design practice, code
development is tackled and mentioned as the result of the
design process. The definition of a design project and the
design process used in this article is given by Ralph and

Wand [2] in the form of a conceptual model. The conceptual
model includes a very precise definition of terms "design
project", "knowledge", and "practice". Ralph and Wand
argue that design is more important than code development,
simply because design elements are better than code for
communicating the rationale for structural and behavioral
decisions. By giving potential applications of their
conceptual model, Ralph and Wand set two challenges
considered in this article:

1. Design knowledge management system - A system
for storing and managing the design knowledge.

2. Design approach classification framework - A
framework that enables classifying of design
approaches. Such framework must give guidance for
selection of a design approach and comparative
research on different approaches to designers.

The proposed method is mainly based on the Model

Driven Architecture (MDA), standardized by the Object
Management Group (OMG) [3]. The MDA is an information
system design approach based on models and model
transformations. Using the MDA, an information system is
designed (and developed) through several abstraction levels,
from business oriented models to technically oriented
models: Computational Independent Model (CIM), Platform
Independent Model (PIM), and Platform Specific Model
(PSM). The process of designing includes transformation of
models between different levels of abstraction. Eventually,
PSM is transformed into code. The promise of the MDA
approach is to reduce the time and effort needed to code an
information system, by refocusing on delivering meaningful
details in the design activities.

However, the MDA is not perfect, and has its own issues.

Gholami and Ramsin [4] are giving Strengths, Weaknesses,
Opportunities, and Threats (SWOT) analysis of the MDA.
Some of the issues recognized in this analysis are addressed
by the proposed method:

1. Need for creation of custom transformations
consumes a lot of time. Resolution of this issue must
be in establishing reusable design practices.

2. Model quality issues. Without models of adequate
quality, transformations cannot be successfully used
and applied.

621

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Methodologies for design and development of
information systems are blueprints for processes [5] that
allow a project team an organized way of designing and
developing of an information system. Relying only on
methodologies for design and development of information
systems is not necessarily producing a model of high quality,
because many of these methodologies do not incorporate
design practices. For reference, the quality model given by
Lange and Chaudron [6] is used. There are MDA specific
methodologies that are addressing some of the MDA issues.
Chitforoush, Yazdandoost, and Ramsin [7] give an overview
of such MDA specific methodologies. Most of these
methodologies were developed for specific projects, having
built-in design practices that do not allow flexibility when
needed. Some generic design and development
methodologies, such as Rational Unified Process (RUP)
[8][9], also rely on model based design.

The absence of the design practices can result with a
model of poor quality, i.e., the model is untraceable, hard to
transform and hard to analyze. One way to solve these
problems is to establish design practices for the project.
Established design practices must ensure that models are
uniform and of high quality. According to the quality model
[6], this means that all models are traceable, complete, and
consistent, and that models correspond to the information
system being designed and developed.

In this article, a method for establishing and imposing

design practices is proposed. In the context of the MDA,
establishing design practices means defining and imposing of
patterns and transformations that need to be used during the
design process of the information system. Reusing successful
patterns and transformations from previous projects can help
to establish design practices. The proposed method extends
methodologies for design and development of information
systems by utilizing existing OMG specifications to achieve
guidance in the design process that addresses some of the
MDA issues [4], and answers challenges set by Ralph and
Wand [2]. The proposed method is an add-on to existing
design and development methodologies. A certain level of
compatibility between a design and development
methodology and the proposed method is needed. Some of
the MDA methodologies might be incompatible with the
proposed method, since they already contain design
practices. Tools used for designing and developing of an
information system must have features that allow a project
team to follow the method proposed in this article.

In Section II, a modeling space is defined. The modeling

space allows combining all models of an information system
together, providing relationship between them, and defining
their purpose. In the same section, a relationship between
pattern instances and models of different abstraction levels is
given. Section II also includes the definition of a modeling
library that contains design practice from previous projects.
In Section III, current design practice in the context of
generic methodologies is discussed, which helps understand
how pattern instances are created during the course of the
project. In Section IV, an overview of the pattern instance

transformation is given. The pattern instance transformation
is essential for the method proposed in this article. In Section
V, the tracing and transformation language is defined. This
language is used to bind pattern instances together, and help
to establish tracing between model elements. In Section VI,
an overview of the method for establishing the design
practice is given. Section VII contains an example that
presents how the proposed method works on a real life
scenario.

II. MODELING SPACE

The proposed method deals with all models involved in
the project. According to the MDA specification [3], "model
transformation is the process of converting one model to
another model". From a transformation point of view, the
MDA deals with models that are directly involved in a
transformation. This can involve at least one model.
However, the transformation does not need to include all
models involved in the project. From a design and
development methodology point of view all models are
somehow connected. All models that are part of the project
need to be accessible by a tool that implements the proposed
method. Many design and development tools use containers
for keeping models and model elements [10] together. More
than one container can be used for the project. Therefore, the
tool itself must have the ability to keep relationships between
modeling elements placed in different containers. The
proposed method must deal with all modeling elements of
the project, no matter how many containers are there. The
conclusion is that all models and model elements must be
observed as a part of one big modeling space.

A modeling space is a notation that can be used to
represent the classification of all models that are part of the
project. The modeling space can be drawn as a square box
containing all possible models of a designed information
system. The modeling space must follow the MDA
philosophy, i.e., support different levels of abstraction given
in the MDA specification.

The modeling space presented in Figure 1 contains

different layers, representing respective aspects or
viewpoints of the designed information system. The
modeling space contains four layers. The application layer is
comprised of models with the business logic. The

Figure 1. Structure of a modeling space

622

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information layer is comprised of information and data
models. Models containing architecture details and
infrastructure nodes are placed in the infrastructure layer.
Finally, there needs to be a specific layer for transformation
and tracing models. Of course, a number of layers and their
purpose depend on a set of models representing an
information system design. One model can belong to
multiple layers. For example, a model containing
requirements can easily be considered for application,
information, and infrastructure related, since requirements
are determining all aspects of the future information system.
The modeling space must also support a clear distinction
between abstract and detailed models. Abstract and
computing independent models are placed on top of each
layer. Models with more details are closer to the bottom of
the layer.

Each model is a set of model elements. These elements

originate from a modeling language, such as UML [10]. A
set of models together represent the design of an information
system. However, there are sets of model elements in every
model that are meaningful for designers. These sets of model
elements, or patterns, can be seen as reusable solutions to
problems. Every level of abstraction can have its own
repeating patterns of model elements. For example, CIM can
contain repeating sets of model elements that can be
interpreted as requirements or business processes, PIM can
contain use cases or components, and PSM can contain
implementation of components defined in PIM.

CIM patterns are usually created early in the project, and

they depend on used architecture as well as how business
analysis is performed. These high level abstract patterns have
the biggest impact on the design of an information system.
PIM patterns are derived from architecture and
computational independent patterns. They represent an
elaboration of CIM patterns within an architectural context.
The most detailed are PSM patterns that represent the
implementation of PIM patterns for a specific infrastructure
yielded by the previously determined architecture.

A. Modeling library

In order to establish the proposed method, a library of
modeling patterns and transformations must be established.
The usual way to create a pattern library is by using a
template document [11]. An example of online accessible
pattern library can be found on [12]. This library is created
by using Cloud related pattern language defined by Fehling
et al. [13]. Gamma, Helm, Johnson, and Vlissides [14]
propose the pattern library of basic object-oriented patterns,
visualized in the UML. Hohpe and Woolf [15] propose the
enterprise integration pattern library.

However, previously mentioned pattern libraries are not
suitable for use by the proposed method, since solutions in
these libraries are not structured, and cannot be browsed
directly by a tool that implements the proposed method. In
this article the Meta Object Facility (MOF) [16] family of
modeling languages is used. MOF is a metalanguage
standardized by the OMG. A pattern library suitable for the

proposed method must utilize MOF based repository for the
solution of a pattern. A good description of MOF based
repository is given by Frankel [17].

The proposed modeling library can be used as the design
knowledge system presented in [2]. The modeling library
must have all needed features for storing and managing
patterns and transformations that constitute the design
knowledge.

Collecting modeling patterns can be done from existing

pattern libraries, or models of already developed information
systems in previous projects. Then, these patterns are
inserted into the modeling library suitable for the proposed
method. Collection from existing models can be done
manually or automatically by detecting repetitions. Detection
itself can be done by the graph matching method [18]. Pham
et al. [19] propose the graph matching method for detection
of cloned fragments in graph based models. According to
their definition, repetitive fragments that are similar enough
can be considered for clones or patterns. A similar approach
can be applied to UML models.

Falkenthal, Barzen, Breitenbücher, Fehling, and
Leymann [20], argue that concrete solutions are lost in the
process of pattern writing. The reason for that is the need for
discarding some of the solution details. If a pattern is created
by using already existing information system design, then
discarded model elements are the ones that need to be
contributed by a designer through the process of pattern
elaboration.

A pattern is a class, a blueprint that binds one or more
model elements together. Application of a pattern means
instantiation [20][21] within at least one model in the
modeling space. Applying the pattern does not mean that the
modeling is completed. Adding details and further
elaboration of the pattern instance is needed, to bridge the
gap between the selected pattern and final solution that was
lost in the pattern writing process, which is environment and
context dependent.

Figure 2 represents a pattern that is comprised of an

empty interface and a component. After applying this pattern
a pattern instance is created. Further elaboration of the
pattern instance must add interface details, operations and
parameters, subcomponents, and additional interfaces.

III. MAPPING BETWEEN METHODOLOGY AND PATTERN

SEQUENCE

Porter, Coplien, and Winn [22] have shown that pattern
sequences are important, i.e., aggregation and composition of

Figure 2. Example of a simple modeling pattern: a component and an

interface

623

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

patterns rely on the order how they are applied. A pattern
library is just a set of patterns that have particular
relationships among them. Even with related patterns, a
slightly different order of pattern application can have
different results.

The novelty introduced by the proposed method is a way
to define possible pattern sequences through transformations.
Transformations inside the previously defined modeling
library have purpose to determine relationships between
patterns, and to introduce the possibility to transform pattern
instances based on patterns from the modeling library. This
way, sequences are determined by transformations that are
part of the modeling library.

In this article, we also argue that the selected design and
development methodology (RUP for example) significantly
contributes to the pattern sequence. The selected
methodology defines high-level phases of a pattern sequence
by providing the order how models are created and
elaborated. There is a correlation between the set of
transformations in the modeling library and high-level
pattern sequence driven by the design and development
methodology. The modeling library must contain all needed
transformations that allow this high-level sequence to be
completed according to the methodology.

A pattern sequence has fine course within a single project
task. This fine course, or low-level sequence, is a set of
activities within the task needed to complete a model, or a set
of models. Transformations in the modeling library must also
support these low-level sequences.

A. Methodology driven, high-level pattern sequence

CIMs are usually created very early in the project. In the
RUP, business models are created in the Inception phase. It
means that selecting and applying CIM related patterns, as
well as further elaboration, can be done very early in the
project. These patterns can be classified as functional
requirements, non-functional requirements, business
processes, or business use cases. The idea is to have these
patterns and related transformations ready for use in the
modeling library. Elaboration of newly created pattern
instances in CIMs can be done in the Inception phase.

PIMs, part of the PSMs, architecture models, and
infrastructure models, are created in the Elaboration phase.
In this phase, we do most of an information system design,
and take the most important decisions. In the Elaboration
phase, patterns used in CIMs provide guidance for choosing
patterns that could be used next. For example, usual patterns
that could be used here contain use cases, components, and
nodes.

The PSM is usually the last step in the design of an
information system. The ultimate goal is to get the source
code and deployment units. Therefore, the PSM must contain
pattern instances that define a sufficient level of details for
transformation into the source code, in a way that there is
less work as possible for developers. Pattern instances in the
PSM are mostly implementation of pattern instances in the
PIM. For example, in the Component-Based Design (CBD)
[23], the PSM contains platform specific implementations of
components defined in the PIM.

Figure 3 provides a visual course of a project, high-level

sequence of work on models and low-level sequence of
pattern instantiation, transformation, and elaboration.
Generally, as the project advances through the phases
defined in the RUP, models become more and more
specified and elaborated, until the level of actual program
code. For simplicity, only one pattern instance per model is
used. Models are represented by circles marked as 𝑀𝑖 ,
pattern instances are represented by circles marked as 𝑃𝑗 and
transformations are represented by edges marked as 𝑡𝑘 .
Figure 3 represents an example with the following detailed
low-level sequence:

1. The pattern instance 𝑃1 is created, containing a
business process. This pattern instance can be done
using BPMN [24].

2. The pattern instance 𝑃2 is created, containing a set of
model elements that represents architectural
decisions about selected middleware (application
server, database). UML [10] can be used for this
purpose.

3. Transformation 𝑡1 is used to extract a business object
from the business process information flow into the

Figure 3. RUP and advancement through the design of an information system

624

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resulting pattern instance 𝑃3 that represents an entity
of the information system. Transformation 𝑡1 is also
used to extract the interface from a task that belongs
to the business process in the pattern instance 𝑃1. As
the result of transformation 𝑡1 , the pattern instance
𝑃4 is created, representing the interface of the source
task.

4. Pattern instances 𝑃3 and 𝑃4 are elaborated by adding
operations and attributes.

5. Transformation 𝑡2 is used to create the pattern
instance 𝑃5 from pattern instances 𝑃3 and 𝑃4 . The
pattern instance 𝑃5 contains a component [10][23]
that has an association to the entity in the pattern
instance 𝑃3, and realizes the interface in the pattern
instance 𝑃4.

6. Transformation 𝑡3 is used to create the pattern
instance 𝑃6 from pattern instances 𝑃2 and 𝑃3 . The
pattern instance 𝑃6 represents a table that reflects the
entity in the pattern instance 𝑃3 . Transformation 𝑡4
must take in account modeling element that contains
the architectural decision about used database.

7. Transformation 𝑡4 is used to create the pattern
instance 𝑃7 from pattern instances 𝑃2 and 𝑃5 . The
pattern instance 𝑃7 represents implementation details
of the component in the pattern instance 𝑃5, taking
into account the architectural decision about used
application server.

8. Optionally, transformation 𝑡5 can be used in case
when additional standard implementation is added to
the implementation of the component in the pattern
instance 𝑃7.

9. Transformation 𝑡6 is used to create a Structured
Query Language (SQL) script that can be used to
create the table from the pattern instance 𝑃6.

10. Transformation 𝑡7 is used to create the Java code for
the EJB defined in the pattern instance 𝑃7.

As the design of an information system advances through

the project, designers can create new pattern instances, or
elaborate on existing ones. A new pattern instance can be
created to document business need, reflect already existing
functionality that can be reused, or by transforming from
already existing pattern instance in the modeling space.
Transformation between pattern instances is probably the
most used option. Elaboration of the existing pattern
instances is also very important. Once a new pattern instance
has been created, it must be elaborated in subsequent project
activities.

IV. PATTERN INSTANCE TRANSFORMATION

Model transformation is a key procedure in the MDA.
The MDA specification [3] contains various different model-
to-model transformation combinations and examples.
Transformation can be done within the same model, between
two different models, for model aggregation, or model
separation. Grunske et al. [25] are presenting an important
notion of "horizontal" and "vertical" transformations.
Horizontal transformation is done between models of the

same abstraction level. Typical horizontal transformation is
PIM to PIM, or PSM to PSM. Any transformation within the
same model is also a horizontal transformation. Vertical
transformation is done between models of different
abstraction levels, or from a model to the source code. A
transformation from PIM to PSM, or from PSM to the source
code is vertical transformation.

Model transformation can be done either manually or
automatically. Manual model transformation is more
common than we think. It is not unusual for a designer to
start modeling from scratch by using models delivered earlier
in the project. When a modeling language is structured and
formal enough, automatic transformation can be used. All
modeling languages derived from MOF can be transformed
automatically.

Automatic transformation takes elements of a source
model and converts them into elements of a target model by
using transformation mapping. Transformation can be
additionally used to establish relationships between models,
or to check consistency of elements between source and
target model. Czarnecki and Helsen [26] elaborate a number
of model transformation approaches. Most used are graph
based transformations and transformation languages.
Transformation languages can be declarative or imperative.
The OMG standardized group of MOF based transformation
languages named Query/View/Transformation (QVT) [27].
QVT Relational language (QVT-R) is a typical example of a
declarative approach with the graphical notation. QVT
Operational language (QVT-O) is an example of an
imperative approach. In this article, we are using the
declarative approach.

In order to understand which transformation features are

needed for the method proposed in this article, basic
principles of a model transformation must be observed. Let
us define a modeling space as a finite set of models

 𝑀𝑆 = {𝑀1 , 𝑀2, … , 𝑀𝑛}

Each model is a finite set of elements

 𝑀𝑖 = {𝑒1, 𝑒2, … , 𝑒𝑚 }

A transformation is a function

 𝑡𝑟: 𝑀𝑆 → 𝑀𝑆

that takes a set of elements 𝑒𝑟𝑆𝑜 from a set of source models
𝑆𝑜 ⊆ 𝑀𝑆 such that 𝑒𝑟𝑆𝑜 ⊆ 𝑆𝑜 , and translates them into
another set of elements 𝑒𝑟𝑇𝑎 in a set of target models
𝑇𝑎 ⊆ 𝑀𝑆 , such that 𝑒𝑟𝑇𝑎 ⊆ 𝑇𝑎. A transformation can be
done within the same model 𝑆𝑜 = 𝑇𝑎 = 𝑀𝑖 , or between two
disjunctive sets of models 𝑆𝑜 ≠ 𝑇𝑎. Since a transformation
can have multiple models from source and target side, these
sets do not need to be disjunctive 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅, meaning that
the transformation can include the same model 𝑀𝑖 on source
and target side, or 𝑀𝑖 ∈ 𝑆𝑜 ∧ 𝑀𝑖 ∈ 𝑇𝑎. A transformation can
use the same source and target elements, meaning that

625

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

𝑒𝑟𝑆𝑜 ∩ 𝑒𝑟𝑇𝑎 ≠ ∅ when 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅ , or it can use two
disjunctive sets of elements 𝑒𝑟𝑆𝑜 ∩ 𝑒𝑟𝑇𝑎 = ∅.

From a pattern point of view, each pattern instance is a
set of model elements. This definition is valid for cross
model pattern instances as well. All pattern instances in the
modeling space 𝑀𝑆 form a finite set of pattern instances

 𝑀𝑃 = {𝑝𝑖 : 0 < 𝑖 ≤ 𝑚 ∧ 𝑝𝑖 ⊆ 𝑀𝑆}

In this context, transformation is a function

 𝑡𝑟: 𝑀𝑃 → 𝑀𝑃

Such transformation takes a set of source pattern
instances 𝑝𝑆𝑜 ⊆ 𝑀𝑝 , and translates them into model elements

that form a set of target pattern instances 𝑝𝑇𝑎 ⊆ 𝑀𝑝 . More

precisely, transformation can be written as

 𝑡𝑟: 𝑝𝑆𝑜 → 𝑝𝑇𝑎

Every transformation can be encapsulated in a black box
implementation. Such an approach is used in [27] along with
the QVT specification. According to the QVT specification,
every transformation can be defined as a black box having an
interface that depends on the context of transformation
usage.

A. Transformation rules

Using a declarative approach for transformation of
pattern instances means that every transformation can be
represented as a set of transformation rules that define the
relationship between a set of source model elements and a set
of target model elements [26][27][28].

Czarnecki and Helsen [26] are giving important features
of a declarative transformation consisting of transformation
rules. As defined in [26], each transformation rule has "the
left-hand side (LHS) that accesses the source model and the
right-hand side (RHS) that expands in the target model". In
this article, LHS is referred as "the source side" and RHS as
"the target side".

Jouault and Kurtev in [29] are defining execution model
for ATLAS Transformation Language (ATL) rules.
Matching transformation rules in their model have a
declarative part and an optional imperative part. The
execution algorithm is matching the declarative part of a
transformation rule, which is then fully executed (the
declarative and the imperative part) in case that the
transformation rule matches the supplied source pattern. It is
very important to notice that declarative transformation rules
are independent of each other, and that the execution
algorithm does not guarantee the order of execution.

Transformation and related transformation rules,

especially if they are written in a declarative way, are logic
programs [30]. Transformation 𝑡𝑟 (6) can be defined as a
logic program comprised of a set of rules

 𝑡𝑟 = {𝑟1(𝑝𝑆𝑜), 𝑟2(𝑝𝑆𝑜), … , 𝑟𝑛(𝑝𝑆𝑜)}

The conditional part of every rule in previously defined
set is comprised of atomic logic functions that involve model
elements

 𝑟𝑖 𝑝𝑆𝑜 ← 𝑎1 𝑦1 , 𝑝𝑆𝑜 ∧ 𝑎2 𝑦2 , 𝑝𝑆𝑜 ∧ …𝑎𝑚 𝑦𝑚 , 𝑝𝑆𝑜

where 𝑦𝑗 ∈ 𝑝𝑆𝑜 is a model element in source pattern instances

of the transformation 𝑡𝑟. According to (8), rule 𝑟𝑖 is matched
only if all of the atoms are evaluated as true.

A transformation written in the QVT-R has two different

modes: checking mode and enforcement mode. In the
checking mode, transformation rules can be used to validate
correctness and completeness of involved pattern instances.
In the enforcement mode, transformation rules can be used
for creating, updating, or deleting model elements in target
pattern instances, in order to reflect all the details found in
source pattern instances.

1) Applying transformation

As already defined, a transformation takes a set of

modeling space model elements and translates them into
another set of model elements. Earlier definition (6) shows
that the transformation can include pattern instances as
model element containers.

According to (8), every transformation rule consists of a
set of atoms that are used to determine whether model
elements in a set of source pattern instances are matching
conditions of the transformation rule or not. So far, there are
no additional conditions in (7) that would indicate whether a
transformation can be applied to the source pattern instances
or not. In order to define conditions whether a transformation
can be applied or not, a set of transformations is divided on
two disjunctive subsets. We define a set of "mandatory
transformation rules", which need to match the source
pattern instances for transformation to be applicable.

 𝑚𝑡𝑟(𝑡𝑟) = {𝑚𝑟1 𝑝𝑆𝑜 , 𝑚𝑟2 𝑝𝑆𝑜 , … , 𝑚𝑟𝑛(𝑝𝑆𝑜)} ⊆ 𝑡𝑟

When a transformation is applied, is it certain that all
action parts of mandatory transformation rules will be
executed, if all mandatory transformation rules match
supplied source pattern instances, i.e., transformation is
applicable to this set of pattern instances. We also define a
set of "optional transformation rules", which do not need to
match the source pattern instances for transformation to be
applicable.

It is possible that an atom in a transformation rule of the
applied transformation matches more than one model
element in the source pattern instances. A tool implementing
the proposed method must allow a designer to choose which
model element will be transformed. For example, a model
can contain a set of use cases. The designer applies a generic
transformation that can be applied to any use case.
Obviously, the tool must allow him to choose which use case
will be transformed by the applied transformation.

626

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 𝑜𝑡𝑟(𝑡𝑟) = {𝑜𝑟1 𝑝𝑆𝑜 , 𝑜𝑟2 𝑝𝑆𝑜 , … , 𝑜𝑟𝑚 (𝑝𝑆𝑜)} ⊆ 𝑡𝑟

If conditional part of an optional transformation rule does
not match supplied set of source patterns, the action part of
this rule is not executed. Optional transformation rules can
be used to transform elaborated details.

This might lead to a conclusion that mandatory
transformation rules need to cover transformation of model
elements that comprise a pattern in the pattern library, and
that optional transformation rules must cover transformation
of all model elements added after a pattern instance was
created, i.e., elaborated model elements. While this is
generally correct, mandatory transformation rules might
include some elaborated details, making this transformation
applicable only after elaboration of the pattern instance. This
way, a designer is forced to contribute details before
proceeding further in a pattern sequence.

When a transformation is applied, execution of the

transformation must perform several different steps.
As the first step, the set of mandatory transformation

rules of the applied transformation must be matched with the
supplied source pattern instances. If all mandatory
transformation rules are matched on the source side then the
transformation can be applied to the supplied source, i.e., the
transformation can be applied to the source pattern instances
that contains all model elements needed by the mandatory
transformation rules. Transformation applicability can be
expressed as

 𝐴 𝑚𝑡𝑟 𝑡𝑟 , 𝑝𝑆𝑜 ← 𝑚𝑟1 𝑝𝑆𝑜 ∧ …∧ 𝑚𝑟𝑛 𝑝𝑆𝑜

The second step is the creation of the target pattern
instances. Matched transformation rules, execute their action
parts creating all target pattern instances and their model
elements. Every pattern is characterized by the mandatory
model elements that define the essence of the pattern, or
what makes this pattern different from other patterns.
Redefining (8) for use in (9) results with

 𝑚𝑟𝑖 𝑝𝑆𝑜 ← 𝑎i,1 𝑦i,1, 𝑝𝑆𝑜 ∧ …∧ 𝑎𝑖 ,𝑚 (𝑖)(𝑦𝑖 ,𝑚 (𝑖), 𝑝𝑆𝑜)

where 𝑚(𝑖) is a number of atoms in i-th mandatory
transformation rule. Mandatory model elements in the
supplied source pattern instances for the applied
transformation 𝑡𝑟, can be expressed as

 𝑚𝑒 𝑝𝑆𝑜 , 𝑡𝑟 = yi,j
m (i)
j=1

 𝑚𝑡𝑟 (𝑡𝑟)
𝑖=1

Whether a model element in the set of target patterns
created by the applied transformation is mandatory or not,
can be determined only in the context of another
transformation from the library. However, in the context of
the transformation that created the set of target pattern
instances, all model elements created by mandatory
transformation rules of the applied transformation are
considered for mandatory model elements.

The last step is to create a set of constraints that will
disallow designers to change some of the model elements in
the involved pattern instances. Transformation binds
involved pattern instances together by imposing constraints
on their model elements. Each pattern instance can be bound
with other pattern instances through several different
transformations. Constraints are imposed by the mandatory
transformation rules.

Imposed constraints are used to limit designer changes in
the modeling space to prevent:

1. Violating correctness and completeness of the
pattern instances by changing their mandatory
model elements. Obviously, all mandatory model
elements must be constrained.

2. Breaking transformation bindings by changing
model elements that match source and target side of
the mandatory transformation rules. In this case,
constrained model elements do not need to be
mandatory.

One constraint can be applied to a set of model elements.
Each constraint also must contain a set of forbidden actions.
At the moment, it is expected that constraining updating and
deleting specific model elements is sufficient.

Let us define an involved pattern instance made of 𝑙

model elements

 𝑝𝑖 = {𝑒1, 𝑒2, … , 𝑒𝑙} ⊆ 𝑀𝑆

and a finite set of transformations applied to 𝑝𝑖

 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑝𝑖) = {𝑡𝑟1(pi), 𝑡𝑟2(pi), … , 𝑡𝑟𝑘(pi)} (15)

From (14) and (15), we can derive a mapping function

 𝐶: 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑝𝑖) → 𝑋

where 𝑋 ⊆ 𝑝𝑖 is a set of model elements in 𝑝𝑖 constrained by
all transformations from (15). Every pair of applied
transformations can constrain a different subset of model
elements in 𝑝𝑖

 𝐶(𝑡𝑟𝑗 (pi)) ∩ 𝐶 𝑡𝑟𝑘(pi) = ∅ ∧ 𝑗 ≠ 𝑘

In the context of (13) and (15), a set of mandatory model
elements of the pattern instance 𝑝𝑖 can be defined as

𝑚𝑒 𝑝𝑖 = 𝑚𝑒(𝑝𝑖 , 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑝𝑖) = 𝑚𝑒(𝑝𝑖 , 𝑡𝑟𝑗 𝑝𝑖)k
j=1

having the following condition satisfied

 𝐶(𝑡𝑟𝑗 (𝑝𝑖)) = 𝑚𝑒(𝑝𝑖) ∧ 𝐶 𝑡𝑟𝑘(𝑝𝑖) ∩ 𝑚𝑒(𝑝𝑖) = ∅

The conclusion is that the set of mandatory model
elements for (14) is just a subset of constrained model
elements by the set of applied transformations.

627

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 𝑚𝑒(𝑝𝑖) ⊆ 𝐶(𝑡𝑟𝑗)𝑘
𝑗=1

Each pattern instance can be a result of several different
pattern instances done earlier in the same project, or it can be
a reason for creating several new pattern instances later in
the same project. Several good examples can be found in
[14]: a facade associated with a web service client can be
used as a mediator between two different subsystems. In this
example, the mediator is the pattern whose instance is bound
by two different transformations.

Definition: The measure of transformation applicability

The measure of transformation applicability is a
percentage of transformation's mandatory rules that match
supplied source pattern instances.

We already defined transformation applicability in (11).

If not all of the mandatory transformation rules are matching
supplied source pattern instances, then the transformation
cannot be applied. The information on how much and which
rules are not matched can be very valuable for a designer.
This way, the designer can see how to elaborate piece of the
information system design he is working on, in order to
proceed in the pattern sequence. If we define a subset of
mandatory transformation rules that are matching supplied
source pattern instances as

 𝑚𝑡𝑟𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 𝑡𝑟 ⊆ 𝑚𝑡𝑟 𝑡𝑟 (21)

then the measure of transformation applicability can be
expressed as

 𝑀𝐴 𝑚𝑡𝑟 𝑡𝑟 , 𝑝𝑆𝑜 =
 mtr matched (tr)

 mtr (tr)

Of course, the rest of the set of mandatory transformation
rules, i.e., those that are not matched

 𝑚𝑡𝑟(𝑡𝑟) ∖ 𝑚𝑡𝑟𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 (𝑡𝑟)

can be used to determine what exactly is missing in the
information system design. Consulting the measure of
transformation applicability is one aspect of the design
guidance.

The applicability of a pattern is previously considered by

Fehling et al. in [13]. The pattern library presented in their
article can give the applicability of a pattern based on the
context which needs to be supplied manually. In the
proposed method, the context is calculated from the model
space, i.e., the model space makes a transformation in the
modeling library applicable or not.

2) Pattern instance elaboration

A transformation can be used to perform changes on

involved pattern instances. This approach is used when new
pattern instances are created, or existing instances are

updated or deleted. Even when two pattern instances are
bound with the transformation, the source pattern instance
can be elaborated by adding new details and model elements.
A transformation can be made so that these newly added
details automatically update the target pattern instance.

Model elements that are not constrained by one of the
binding transformations are handled by optional
transformation rules responsible for spreading of elaboration
details. Bidirectionality is a very important transformation
aspect described in [27] and [28]. While transformation
might constrain changes of some model elements in target
pattern instances, changes of unconstrained model elements
in pattern instances across the modeling space are
encouraged. Such changes must be propagated throughout
the modeling space, wherever transformation between
pattern instances allows it. This propagation must be
automatic and seamless.

3) Top-level pattern instances

Top-level pattern instances do not have predecessors.

These pattern instances can be modeled manually by a
designer without using any transformation, instantiated
directly from the modeling library, or they can be created by
using a transformation.

If a top-level pattern instance is instantiated directly from
the modeling library, then all model elements from the
selected pattern are copied from the MOF repository directly
to the model in the model space. Of course, the instantiation
process must rename the selected pattern model elements,
and impose constraints on the newly created pattern instance.
In order to know which model elements are constrained, this
information must be kept together with the solution of a
pattern in the MOF repository of the modeling library.

If a transformation is used, such transformation does not
need to have input source pattern instances. In order to give
the transformation some instructions, input parameters can
be used. Transformations that create only target pattern
instances can be used both for validation and enforcement
purposes. All transformation rules in this transformation are
mandatory transformation rules that create an initial version
of target pattern instances, and impose constraints on them.
Obviously, these mandatory transformation rules are always
matched, even when there is no supplied set of source pattern
instances. However, imposed constraints must allow
elaboration of newly created top-level pattern instances in
order to allow adding needed details. Functional and non-
functional requirements are typical examples of top-level
patterns. An external service definition is another example of
such pattern.

V. TRANSFORMATION AND TRACING LANGUAGE

Relationship between model elements and a pattern
instance is not established within the UML. Although there
is the Package element defined within the UML, its purpose
is not the same as "the pattern instance". Also,
transformation application and imposing constraints on
involved pattern instances must leave some trail. Creation of
a Transformation and Tracing Model (TTM), either

628

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

automatically or manually, can help to resolve before
mentioned issues. Every time a new pattern instance is
created, a new model element is added into TTM
representing this pattern instance. All model elements
belonging to this pattern instance are automatically bound to
it. It can be the result of the transformation, or it can be done
manually. In both cases, the modeling tool must have
capabilities for it. Also, each time when a transformation is
used, this transformation is added to TTM including all
relationships between pattern instances and used
transformation. Each time a transformation is used, and this
transformation is imposing constraints on involved pattern
instances, these constraints are added to pattern instances in
TTM and related to the transformation that created them. In
order to do this kind of model, a Transformation and Tracing
Language (TTL) must be defined. The UML and the TTL
must be compatible, meaning that they must have a common
M0 ancestor [28]. Therefore, the TTL must be a MOF
metamodel. An overview of the TTL is presented in Figure
4.

The TTL is having the following elements:
1. Pattern - A pattern type. Allows classification of

pattern instances.
2. PatternInstance - An element similar to the UML

Package element. Represents a container for model
elements. This element is defined by its name and
type. Pattern type (or class) can be very helpful when
constructing transformation rules, and it can impact
the transformation applicability since
transformations can be applied to the pattern
instances of specific types.

3. Transformation - An element defined by its name
and type, representing applied transformation,
defined in (6) and (7). It contains transformation
rules used in the transformation, here represented by
the element TransformationRule. The transformation
must be connected to a set of source and target
pattern instances, being connected to at least one
target pattern instance. Connector direction is
determined by the TransformationConnectorType
enumeration.

4. TransformationConnector,
TransformationConnectorEnd,
PatternConnectorEnd - A connector is a directed
relationship between a pattern instance and a
transformation. Connector direction must have a
visual notation. If the connector is directed from the
pattern instance to the transformation, it represents
the source pattern instance in the context of the
transformation. If the connector is directed from the
transformation to the pattern instance, it represents
the target pattern instance in the context of the
transformation. Connector end elements represent
the point of touch between the connector and the
pattern instance, or the connector and the
transformation.

5. TransformationConstraint - An element defined by
its name, representing a constraint on members of a
pattern instance imposed by used transformation. At
least one model element in the pattern instance needs
to be constrained. Also, a transformation must
contain a set of forbidden actions, i.e., actions on
constrained model elements that must be prevented
by a tool. This element is contained by the pattern

Figure 4. The Transformation and Tracing Language

629

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instance, and connected to the transformation
responsible for the creation of the constraint. This
element is the result of the transformation, and can
be used to validate the pattern instance correctness
and completeness.

6. TransformationConstraintConnector - A relationship
between resulting constraint and the transformation
that created it, directed from the transformation to
the constraint. Each constraint can be imposed by
only one transformation, but one transformation can
impose multiple constraints within multiple pattern
instances.

In the TTM example in Figure 5, model elements in
pattern instances 𝑝1 and 𝑝2 were created before 𝑡1 was
applied. We can say that pattern instances 𝑝1 and 𝑝2 were
designed manually. Model elements in the pattern instance
𝑝3 are produced by the transformation 𝑡1 . Actions taken
during an information system design are automatically stored

to a TTM for multiple purposes: preserving correctness and
completeness of the modeling space, reconstruction of
activities in the design process, and analysis of the resulting
design work.

VI. DESIGN PRACTICE

The definition of the term "design practice" is given in
[2]. A common situation is having to explain to designers
what is the preferred design practice, and how an information
system design should look like? The answer to this question
is also the answer to the design approach classification
framework given in [2].

Many companies have well established design practices,
from the methodology, project activities, and modeling point
of view. The selection of architectures, technology, and
practical experience gives a company starting point in the
information system design. The idea is to take this
experience, put it into the modeling library in the form of

Figure 5. Example of a Transformation and Tracing Model

Figure 6. The proposed method

630

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

patterns and transformations, i.e., create a design knowledge
system.

The way of applying this knowledge is very important as
well. The design practice method proposed in this article,
and outlined in Figure 6, consists of the following elements:

 Task 1: Selection and instantiation of appropriate
pattern from the modeling library.

 Task 2: Elaboration of pattern instances.

 Task 3: Checking transformations from the modeling
library that are applicable or nearly applicable onto
elaborated pattern instances. If such transformation
cannot be found, return to elaboration in task 2.

 Task 4: Transformation of the pattern instance by
selecting applicable transformation from the
modeling library. Continue on task 2 with newly
created pattern instances.

Using the process in Figure 6 will create a pattern

sequence. Depending on patterns and transformations in the
modeling library, a big set of potential pattern sequences can
be generated. Giving guidance to designers on a project
means selecting appropriate pattern sequences from the set of
all potential pattern sequences. By selecting appropriate
pattern sequences, the design process is directed into the
desired direction and outcome.

A. Guidance given through the modeling library

The modeling library is comprised of patterns and
transformations. Since a transformation binds two pattern
instances together (as described in Section III), selection of a
transformation imposes a selection of involved patterns.
Similarly, a selection of patterns imposes a selection of
potentially applicable transformations.

Applicability and the measure of transformation
applicability are important transformation features that can
be used to form a pattern sequence. A designer can elaborate
a model or a pattern instance, and occasionally check for
transformations that are applicable to the model or pattern
instance he is working on. If there is no transformation
currently applicable, the designer can check transformations
that are nearly applicable, and the gap that needs to be closed
in the model or the pattern instance in order for this nearly
applicable transformation to become applicable. Of course,
many designers have enough experience to know which
transformation would need to be used next, even before

modeling of the pattern instance is finished. If there is a
problem with selected transformation, and transformation
rules in the transformation are not correct, meaning that the
transformation will never become applicable, this particular
transformation can be changed as part of the design practice
evolution.

Giving guidance means selecting transformations from
the modeling library that will be used in the project. A design
lead can manage the set of allowed transformations for the
project, limiting designer's choice of applicable or nearly
applicable transformations. For example, the architectural
decision will influence the choice of transformations for the
project. Similarly, the design lead can manage a set of
allowed patterns that are going to form the pattern sequences
in the project, and by doing that implicitly to select a set of
allowed transformations.

B. Guidance given through a model

More specific guidance can be given through a specific
model that predetermines patterns and transformations used
in the information system design process. Such model is
created a priori, before the start of the design activities.
Creation of the guidance model is an ongoing activity
through the whole project. The TTL can be used for this
purpose. This model must represent a selection of allowed
pattern types and related transformations. Such model can be
used by a designer to check guidance, or directly by a
modeling tool for selection of allowed transformation list for
particular pattern type. It is the same approach as in the
previous section, with additional visualization of selected
design practice for the project.

VII. EXAMPLE: BUSINESS PROCESS ORIENTED SYSTEM

The example in Figure 3 is business process oriented.
The common name for this kind of system is Business
Process Management (BPM) System. In this section, a
detailed walk through for the example in Figure 3 is given.
The first step is to create a business process model. Such
business process model can be done using BPMN [24].

In this case, a very simple business process is modeled
from scratch. A new pattern instance 𝑝1 is created and placed
in the TTM. When modeling, the model elements of the
business process are associated with the pattern instance 𝑝1.
The business process contains one human task having the

Figure 7. The business process

631

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user interface, where a user must enter customer's
identification data, such as "social id", "account number", or
something else. The customer's identification is then sent to
the automatic task named "Retrieve customer's data", which
invokes an information service that finds and read the data. If
the identified customer cannot be found in the system, a null
is returned back from the invoked service. Returned data are
then tested, and if customer's data exists, it is displayed in the
human task "Display customer's data".

Each automatic task contains a signature that involves
input parameters and output results. These details must be
observed on a correctly modeled business process, as in
Figure 7. This signature is used for transforming this
automatic task into a number of pattern instances, containing
entities and interfaces needed for building the service that
will be invoked by this task. Each business process can have
more than one automatic task. This means that one
transformation from the modeling library can be applied
more than once per one pattern instance. A designer must be
presented with the list of applicable transformations along
with all details, including model elements in source pattern
instances that can be used in the transformation. In case of a
business process that contains more than one automatic task,
an applicable transformation can be applied to each
automatic task.

Figure 8 presents a transformation from the automatic

task in the business process into a set of entities and an
interface. After applying the transformation 𝑡1 , the pattern
instance 𝑝3 is created. Along with the pattern instance,
model elements representing entities of two business objects
constituting information flow of the transformed task are
created. The transformation 𝑡1 must create constraints that
will prevent deleting business objects, the task in the
business process, and both of the entities in the pattern
instance 𝑝3.

The transformation 𝑡1 is also responsible for creation of
the pattern instance 𝑝4 , which consists of model elements

that represents the interface of the task in the business
process: one operation receiving the input business object as
the input parameter, and returning the output business object
as the result. The transformation 𝑡1 must create constraints
that will prevent deleting the involved model elements in
pattern instances 𝑝3 and 𝑝4 . Another constraint that will
prevent direct updating the operation on the interface must
be created by the transformation 𝑡1 as well, because updates
on transformation's target pattern instances must be result of
the elaboration of the source pattern instances. It is worth
noticing that an operation and comprising parameters are,
according to the MOF, not the same model elements. While
an operation can be constrained, comprised parameters can
be updated by the transformation if there are changes on
business objects in the business process.

The next step is to elaborate the pattern instance 𝑝3. As
presented in Figure 9, a designer is filling additional details
for entities in the pattern instance 𝑝3. These details include
attributes and their types for each entity.

At the same time, a lead IT architect is defining the

architecture of the information system. It is very important
that the architecture is a part of the modeling space, so that it
can be used by the proposed method for selection of allowed
transformations. This way, the architecture guides the design
process as well.

The architecture presented in Figure 10 defines a couple
of very important elements for the selection of applicable

Figure 9. Elaborated entities

Figure 8. Transformation of the task to entities and the interface

632

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transformations. First, JAX-WS2 will be used for invoking
the service from the automated task in the business process.
Second, the service will be deployed on Java Enterprise
Edition application server. Third, entities will become tables
in the DB2 database.

Figure 10 is one pattern instance. This would suggest that

the whole architecture is placed in the single pattern instance
container. In fact, Figure 10 represents a typical business
process oriented architectural pattern specified for the
concrete environment and products.

So far, the design is still not platform specific. Pattern

instances 𝑝3 and 𝑝4 can be transformed into a component.

Such transformation must create a component, and define

that it is realized using already created interface, as in Figure
11. For reference purpose, transformation 𝑡2 adds
dependencies between the created component and entities
contained in the realized interface.

After this, work on the platform specific design can

begin. The next step is to elaborate additional details in the

pattern instance 𝑝3 in order to make transformation 𝑡3
applicable.

During elaboration, entities in the pattern instance 𝑝3 are

enriched with JPA related stereotypes, as in Figure 12. Since
transformation 𝑡3 takes in consideration model elements
marked with Entity stereotype, this elaboration is needed in
order to make the transformation applicable. During the
elaboration of entities, a designer must also define additional
properties for applied stereotypes. For example, a Column
stereotype has a set of very important properties that need to
be defined, and can be used by transformations that will be
applied next. Figure 13 presents a set of properties for the
Entity stereotype.

However, this elaboration makes the pattern instance 𝑝3

more platform specific than platform independent. Although
there is still no precise definition about the concrete database
that will be used, this information can be found in the
architecture contained in the pattern instance 𝑝2.

Figure 14 is the result of applying transformation 𝑡3 to
the pattern instances 𝑝2 and 𝑝3 . The transformation takes
only entities marked with Entity stereotypes. All properties
of applied stereotypes are used in the transformation. Also,
the transformation matches the database node in the
architecture pattern instance 𝑝2 . The result of the
transformation is the pattern instance 𝑝6 that comprises a
number of DB2 specific model elements, representing
database tables of entities.

In case of having an Oracle database node in the
architecture, another transformation would become
applicable, which would create Oracle specific model
elements in the pattern instance 𝑝6.

Figure 13. Entity stereotype properties

Figure 12. Entities with JPA stereotypes

Figure 11. The component

Figure 10. The architecture

633

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The pattern instance 𝑝6 is a true example of a platform

specific design. Now that the information part of the design
is done, designing component details is the next step.

The component implementation presented in Figure 15 is

a result of two steps. The first step is applying transformation
𝑡4 for creation of a component implementation. This
transformation is applicable only when JAX-WS2 and Java
Enterprise Edition Server stereotypes are found in the
architecture pattern instance. It creates a class with
appropriate stereotypes for further transformations, an
interface realization between the newly created class and the

component's interface, and a relationship that marks the
newly created class as an instance of the component.
However, transformation 𝑡4 did not create any specific
implementation details. Everything that was created is the
class will be eventually transformed into a JAX-WS2 web
service provider.

The second step is applying transformation 𝑡5 that adds
implementation details to the service provider created in the
previous step. Again, a designer can have a number of
transformations at disposal that can look for certain model
elements in the existing pattern instances. In this case,
transformation 𝑡5 takes the signature of the invoke method,
parameter types and creates a method in a new JPA reading

Figure 14. Entities with JPA stereotypes

Figure 15. The component implementation

634

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

helper class. This method is marked with the IDReader
stereotype, which can be used later to transform this method
into a code snippet. Transformation 𝑡5 also creates an
association between the component's implementation and the
newly created JPA reading helper class. A collaboration
sequence between the component's implementation class and
the JPA reading helper class is created as well. This
collaboration sequence can be used in creating the code later
on.

As mentioned in [26], transformations from model to

code need to be treated slightly differently. Template based
approach is suitable for this example.

Source Code 1: Transformed JPA entity
@Table(name = "CUSTOMER_ID", schema = "CUSTOMERS")

@Entity

public class CustomersID implements Serializable {

 private static final long serialVersionUID = 0;

 public CustomersID() {}

 @Id

 private Long id;

 @Column(nullable = false, columnDefinition =

 "SOCIAL_ID", length = 50)

 private String socialId;

 @Column(nullable = false, columnDefinition =

 "ACCOUNT_NUMBER", length = 50)

 private String accountNumber;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getSocialId() {

 return socialId;

 }

 public void setSocialId(String socialId) {

 this.socialId = socialId;

 }

 public String getAccountNumber() {

 return accountNumber;

 }

 public void setAccountNumber(String accountNumber) {

 this.accountNumber = accountNumber;

 }

}

The listing in Source Code 1 is the final result of

transforming from entities in the pattern instance 𝑝3 . Such
transformations can be applicable only on InformationModel
pattern instances, i.e., including only model elements that are
contained in specific pattern instances.

Using pattern instance 𝑝6 and the applicable
transformation, the following SQL script is generated.

SQL Script 1: Database DDL script
CREATE SCHEMA "CUSTOMER";

CREATE TABLE "CUSTOMER"."CUSTOMER_DATA" (

 "NAME" VARCHAR(50) NOT NULL,

 "SURNAME" VARCHAR(50) NOT NULL,

 "DATE_OF_BIRTH" DATE,

 "CUSTOMER_SINCE" VARCHAR(50),

 "ID" BIGINT NOT NULL

)

 DATA CAPTURE NONE;

CREATE TABLE "CUSTOMER"."CUSTOMER_ID" (

 "ID" BIGINT NOT NULL GENERATED BY

DEFAULT AS IDENTITY (START WITH 1 INCREMENT BY 1

MINVALUE 1 MAXVALUE 9223372036854775807 NO CYCLE CACHE

20),

 "ACCOUNT_NUMBER" VARCHAR(50),

 "SOCIAL_ID" VARCHAR(50)

)

 DATA CAPTURE NONE;

ALTER TABLE "CUSTOMER"."CUSTOMER_DATA" ADD CONSTRAINT

"CUSTOMER_DATA_PK" PRIMARY KEY

 ("ID");

ALTER TABLE "CUSTOMER"."CUSTOMER_ID" ADD CONSTRAINT

"CUSTOMERS_ID_PK" PRIMARY KEY

 ("ID");

ALTER TABLE "CUSTOMER"."CUSTOMER_DATA" ADD CONSTRAINT

"CUSTOMER_DATA_CUSTOMER_ID_FK" FOREIGN KEY

 ("ID")

 REFERENCES "CUSTOMER"."CUSTOMER_ID"

 ("ID")

 ON DELETE CASCADE;

Finally, pattern instances 𝑝5 and 𝑝7 can be transformed
into the web service that can be called from the task in the
business process.

Source Code 2: The web service interface
@WebService(targetNamespace="customer")

public interface RetrieveCustomersDataInterface {

 @WebMethod

 public CustomersData invoke(CustomersID input1);

}

Source Code 3: The web service
@WebService(targetNamespace="customer")

public class RetrieveCustomersDataComponentImpl

implements RetrieveCustomersDataInterface {

 private JPAReader jpaReader;

 public CustomersData invoke(CustomersID input1) {

 // begin-user-code

 return jpaReader.readCustomersData(input1);

 // end-user-code

 }

}

Source Code 4: The JPA reader
public class JPAReader {

 @PersistenceContext

 private EntityManager entityManager;

 // TODO Finish instancing entity manager

 public CustomersData readCustomersData(CustomersID

 input1) {

 // begin-user-code

 Query q=null;

 if(input1!=null && input1.getId()!=null) {

 q=entityManager.createQuery("select obj from

 CustomersData obj where

 obj.customersID.id = :id");

 q.setParameter("id", input1.getId());

 } else if(input1!=null &&

 input1.getSocialId()!=null) {

 q=entityManager.createQuery("select obj from

 CustomersData obj where

 obj.customersID.socialId = :socialId");

 q.setParameter("socialId",

 input1.getSocialId());

635

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 } else if(input1!=null &&

 input1.getAccountNumber()!=null) {

 q=entityManager.createQuery("select obj from

 CustomersData obj where

 obj.customersID.accountNumber =

 :accountNumber");

 q.setParameter("accountNumber",

 input1.getAccountNumber());

 }

 if(q!=null) {

 return (CustomersData)q.getSingleResult();

 }

 return null;

 // end-user-code

 }

}

The call between the component's implementation and

the JPA helper class is transformed from the collaboration
sequence. All additional details in the code, such as
annotations, are added from stereotype information.
Stereotypes on the JPA helper class help to select an
appropriate template for the code.

VIII. CONCLUSION AND FUTURE WORK

We have demonstrated that even such small example can
be full of details and rules, enforcing us to use specific model
elements, stereotypes, and patterns. It is obvious that patterns
are not just a couple of documented ways of solving
problems, which can be found in the books. It is everything
that we want to use to repeat our solutions. Patterns are a
good start for defining our designing practice.

MDA has two major practical problems: designers have

too much freedom while creating the information system
design so that the transformation scope can become very
ambiguous. Usage of a pattern as the main building element
for the information system design is a well known approach.
In the context of this article, design of an information system
is done block by block by reusing patterns, allowing a design
lead to choose blocks to be used. Such approach allows a
design team to use past positive experience to select or
define best patterns for the information system they are
designing. This approach also helps to build pattern
sequences that can fit into a design and development
methodology used for the project.

The novelty introduced in this article is the way of
building pattern sequences through use of transformation, an
approach typically used in the MDA. Applicability and the
measure of applicability are very important features of the
transformation definition, given in this article. They enable
controlled application of transformations, which represents
guidance for the design team. They also represent a way how
new designers can learn the established design practice.

Of course, designers are still free to model according to
their preferences, as long as they are within boundaries
imposed by the proposed method, which is assured by an
optional part of each transformation helping team to keep
model elements of bound pattern instances synchronized.
The bidirectionality feature of the transformation helps to
reflect changes in both directions. Chains of pattern instances
can be easily updated through transformations used to form a
chain. Since a pattern instance is supposed to have smaller

scope than a model, keeping several pattern instances
synchronized during elaboration should be much easier than
with big models.

The proposed method successfully answers challenges
introduced in Section I. The modeling library contains design
knowledge, and offers a selection of the design approach
based on the current context in the modeling space. The
article also successfully answers question of transformation
reusability. The result of all these improvements is a higher
quality of models comprising the design of an information
system.

Current modeling tools are introducing a high level of

automation. This automation is mostly related to elements of
the modeling languages supported by a modeling tool.
Changing the modeling tool behavior to follow the model in
a modeling space is needed feature.

The TTL defined in this article can be extended with
elements for interaction with modeling tool, model analysis
capabilities, and model quality assessment. Interaction
between a TTM and a modeling tool can be extended with
modeling events, allowing a design lead to define modeling
tool actions associated with patterns and transformations. For
example, a TTM can include an event handler on a pattern
that can be triggered by the modeling tool when a new
subcomponent is added into a pattern instance. The event
handler initiates execution of a specific transformation that
automatically adds interface and interface realization
relationship for this newly added subcomponent.

REFERENCES

[1] D. Krleža and K. Fertalj, "A method for situational and

guided information system design," Proceedings of the 6th
International Conference on Pervasive Patterns and
Applications, IARIA, May 2014, pp. 70-78.

[2] P. Ralph and Y. Wand, "A proposal for a formal definition of
the design concept," in Design requirements engineering: A
ten-year perspective, Springer Berlin Heidelberg, vol. 14, pp.
103-136, 2009, doi: 10.1007/978-3-540-92966-6_6.

[3] Object Management Group, "MDA guide, version 1.0.1,
2003". Available from http://www.omg.org/cgi-
bin/doc?omg/03-06-01.pdf 2014.11.15

[4] M.F. Gholami and R. Ramsin, "Strategies for improving
MDA-based development processes," Proceedings of the
2010 International Conference on Intelligent Systems,
Modelling and Simulation (ISMS), IEEE, Jan. 2010, pp. 152-
157, doi: 10.1109/ISMS.2010.38.

[5] L. Osterweil, "Software processes are software too, revisited:
an invited talk on the most influential paper of ICSE 9,"
Proceedings of the 19th international conference on Software
engineering ICSE '97, ACM, May 1997, pp. 540-548, doi:
10.1145/253228.253440.

[6] C. F. J. Lange and M. R. V. Chaudron, "Managing model
quality in UML-based software development," 13th IEEE
International Workshop on Software Technology and
Engineering Practice, IEEE, Sep. 2005, pp. 7-16, doi:
10.1109/STEP.2005.16.

[7] F. Chitforoush, M. Yazdandoost, and R. Ramsin,
"Methodology support for the model driven architecture,"
Proceedings of the 14th Asia-Pacific Software Engineering
Conference, IEEE, Dec. 2007, pp. 454-461, doi:
10.1109/ASPEC.2007.58.

636

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified
software development process - the complete guide to the
unified process from the original designers, Addison-Wesley,
1999.

[9] P. Kroll and P. Kruchten, The rational unified process made
easy: a practitioner's guide to the RUP, Addison-Wesley,
2003.

[10] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley,
1999.

[11] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I.Fiksdahl-King, and S. Angel, A pattern language: towns,
buildings, constructions, Oxford University Press, 1977.

[12] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck, “A
collection of patterns for cloud types, cloud service models,
and cloud-based application architectures”. Available from
http://www.cloudcomputingpatterns.org 2014.11.15

[13] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.
Schupeck, "An architectural pattern language of cloud-based
applications," Proceedings of the 18th Conference on Pattern
Languages of Programs, ACM, Oct. 2011, pp. 2, doi:
10.1145/2578903.2579140

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: Elements of reusable object-oriented software, 28th
ed., Addison-Wesley, 2004.

[15] G. Hohpe and B. Woolf, Enterprise Integration Patterns,
Addison Wesley, 2004.

[16] Object Management Group, "Meta object facility (MOF) core
specification, version 2.4.2, 2014". Available from
http://www.omg.org/spec/MOF/2.4.2/PDF/ 2014.11.15

[17] S.D. Frankel, Model driven architecture: applying MDA to
enterprise computing, Wiley Publishing, 2003.

[18] M. Gupta, R. Singh Rao, and A. Kumar Tripathi, "Design
pattern detection using inexact graph matching," 2010
International Conference on Communication and
Computational Intelligence, IEEE, Dec. 2010, pp. 211-217.

[19] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen, "Complete and accurate clone detection in
graph-based models," Proceedings of the 31st International
Conference on Software Engineering, IEEE, May 2009, pp.
276-286, doi: 10.1109/ICSE.2009.5070528.

[20] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F.
Leymann, "From pattern languages to solution

implementations," Proceedings of the 6th International
Conference on Pervasive Patterns and Applications, IARIA,
May 2014, pp. 12-21.

[21] D.R. Stevenson, J.R. Abbott, J.M. Fischer, S.E. Schneider,
B.K. Roberts, M.C. Andrews, D.J. Ruest, S.K. Gardner, and
C.D. Maguire, "Pattern implementation technique," U.S.
Patent 8 661 405, Feb. 25, 2014.

[22] R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis
for pattern language composition,” Science of Computer
Programming, Elsevier, vol. 56, pp. 231–249, Apr. 2005.

[23] W. Hasselbring, "Component-based software engineering,"
Handbook of Software Engineering and Knowledge
Engineering, World Scientific Publishing, vol. 2, pp. 289-305,
2002, doi: 10.1142/9789812389701_0013.

[24] Object Management Group, "Business process model
notation, version 2.0.2, 2013". Available from
http://www.omg.org/spec/BPMN/2.0.2/PDF/ 2014.11.15

[25] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van
Gorp, and D. Varro, "Using graph transformation for practical
model-driven software engineering," in Model-driven
Software Development, Springer Berlin Heidelberg, pp. 91-
117, 2005, doi: 10.1007/3-540-28554-7_5.

[26] K. Czarnecki and S. Helsen, "Classification of model
transformation approaches," Proceedings of the 2nd OOPSLA
Workshop on Generative Techniques in the Context of the
Model Driven Architecture, vol. 45, no. 3, Oct. 2003, pp. 1-
17.

[27] Object Management Group, "Meta object facility (MOF) 2.0
query/view/transformation (QVT), version 1.1, 2011".
Available from http://www.omg.org/spec/QVT/1.1/PDF/
2014.11.15

[28] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained,
the model driven architecture: Practice and promise, Addison-
Wesley, 2003.

[29] F. Jouault and I. Kurtev, "Transforming models with ATL,"
Proceedings of the MoDELS 2005 Conference, Springer
Berlin Heidelberg, Oct. 2005, pp. 128-138, doi:
10.1007/11663430_14.

[30] A. Van Gelder, K. A. Ross, and J. S. Schlipf, "The well-
founded semantics for general logic programs," Journal of the
ACM (JACM), ACM, vol. 38, no. 3, pp. 619-649, Jul. 1991,
doi: 10.1145/116825.116838.

