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Abstract—Information system design and development 

practice did not evolve much in the last decade. Methodologies 

for design and development of information systems are still 

separating activities for design and development. Design is 

always done prior to the development, resulting in deliverables 

that cannot be reused in the development process. The 

deliverables of the design process are used by developers only 

as a blueprint of the information system. The Model Driven 

Architecture promised to change that by introducing model 

transformations. The whole idea introduced in the Model 

Driven Architecture raised the question of model quality. It is 

not possible to have a correct and complete transformation if 

models of the information system are not of high quality. It is 

very hard to achieve a sufficient level of model quality on a big 

project. The size of a project team makes it hard to control all 

contributions from designers, ensuring that these contributions 

comply with the project design practice. In this article, we deal 

with these issues by providing a method that allows control of 

the information system design process. This method provides 

guidance to designers in the project team by offering selection 

of patterns and transformations that are applicable to the 

current state of the information system design. The library of 

patterns and transformations represents previous design and 

development practice, containing knowledge developed during 

previous projects. The method proposed in this article allows 

selection of patterns and transformations that are suitable for 

the project, constraining and guiding the contributions of 

designers. 

Keywords-modeling; guidance; design; pattern; 

transformation. 

I.  INTRODUCTION 

The practice of information design and development still 
has a number of issues that needs to be addressed. Current 
information system design and development practice is still 
mainly manual, and uses design mostly for documentation 
purposes. In order to improve the ratio of successful and 
unsuccessful projects, as well as to cut down the costs of the 
projects, more effort needs to be put into defining better and 
efficient design practices that can improve project team 
coordination and communication, as well as traceability and 
quality of the project deliverables. 

This article is an extension of work done in [1]. Although 
the focus of this article is mainly on design practice, code 
development is tackled and mentioned as the result of the 
design process. The definition of a design project and the 
design process used in this article is given by Ralph and 

Wand [2] in the form of a conceptual model. The conceptual 
model includes a very precise definition of terms "design 
project", "knowledge", and "practice". Ralph and Wand 
argue that design is more important than code development, 
simply because design elements are better than code for 
communicating the rationale for structural and behavioral 
decisions. By giving potential applications of their 
conceptual model, Ralph and Wand set two challenges 
considered in this article: 

1. Design knowledge management system - A system 
for storing and managing the design knowledge. 

2. Design approach classification framework - A 
framework that enables classifying of design 
approaches. Such framework must give guidance for 
selection of a design approach and comparative 
research on different approaches to designers. 

 
The proposed method is mainly based on the Model 

Driven Architecture (MDA), standardized by the Object 
Management Group (OMG) [3]. The MDA is an information 
system design approach based on models and model 
transformations. Using the MDA, an information system is 
designed (and developed) through several abstraction levels, 
from business oriented models to technically oriented 
models: Computational Independent Model (CIM), Platform 
Independent Model (PIM), and Platform Specific Model 
(PSM). The process of designing includes transformation of 
models between different levels of abstraction. Eventually, 
PSM is transformed into code. The promise of the MDA 
approach is to reduce the time and effort needed to code an 
information system, by refocusing on delivering meaningful 
details in the design activities. 

 
However, the MDA is not perfect, and has its own issues. 

Gholami and Ramsin [4] are giving Strengths, Weaknesses, 
Opportunities, and Threats (SWOT) analysis of the MDA. 
Some of the issues recognized in this analysis are addressed 
by the proposed method:  

1. Need for creation of custom transformations 
consumes a lot of time. Resolution of this issue must 
be in establishing reusable design practices. 

2. Model quality issues. Without models of adequate 
quality, transformations cannot be successfully used 
and applied. 
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Methodologies for design and development of 
information systems are blueprints for processes [5] that 
allow a project team an organized way of designing and 
developing of an information system. Relying only on 
methodologies for design and development of information 
systems is not necessarily producing a model of high quality, 
because many of these methodologies do not incorporate 
design practices. For reference, the quality model given by 
Lange and Chaudron [6] is used. There are MDA specific 
methodologies that are addressing some of the MDA issues. 
Chitforoush, Yazdandoost, and Ramsin [7] give an overview 
of such MDA specific methodologies. Most of these 
methodologies were developed for specific projects, having 
built-in design practices that do not allow flexibility when 
needed. Some generic design and development 
methodologies, such as Rational Unified Process (RUP) 
[8][9], also rely on model based design.  

The absence of the design practices can result with a 
model of poor quality, i.e., the model is untraceable, hard to 
transform and hard to analyze. One way to solve these 
problems is to establish design practices for the project. 
Established design practices must ensure that models are 
uniform and of high quality. According to the quality model 
[6], this means that all models are traceable, complete, and 
consistent, and that models correspond to the information 
system being designed and developed.  

 
In this article, a method for establishing and imposing 

design practices is proposed. In the context of the MDA, 
establishing design practices means defining and imposing of 
patterns and transformations that need to be used during the 
design process of the information system. Reusing successful 
patterns and transformations from previous projects can help 
to establish design practices. The proposed method extends 
methodologies for design and development of information 
systems by utilizing existing OMG specifications to achieve 
guidance in the design process that addresses some of the 
MDA issues [4], and answers challenges set by Ralph and 
Wand [2]. The proposed method is an add-on to existing 
design and development methodologies. A certain level of 
compatibility between a design and development 
methodology and the proposed method is needed. Some of 
the MDA methodologies might be incompatible with the 
proposed method, since they already contain design 
practices. Tools used for designing and developing of an 
information system must have features that allow a project 
team to follow the method proposed in this article. 

 
In Section II, a modeling space is defined. The modeling 

space allows combining all models of an information system 
together, providing relationship between them, and defining 
their purpose. In the same section, a relationship between 
pattern instances and models of different abstraction levels is 
given. Section II also includes the definition of a modeling 
library that contains design practice from previous projects. 
In Section III, current design practice in the context of 
generic methodologies is discussed, which helps understand 
how pattern instances are created during the course of the 
project. In Section IV, an overview of the pattern instance 

transformation is given. The pattern instance transformation 
is essential for the method proposed in this article. In Section 
V, the tracing and transformation language is defined. This 
language is used to bind pattern instances together, and help 
to establish tracing between model elements. In Section VI, 
an overview of the method for establishing the design 
practice is given. Section VII contains an example that 
presents how the proposed method works on a real life 
scenario. 

II. MODELING SPACE 

The proposed method deals with all models involved in 
the project. According to the MDA specification [3], "model 
transformation is the process of converting one model to 
another model". From a transformation point of view, the 
MDA deals with models that are directly involved in a 
transformation. This can involve at least one model. 
However, the transformation does not need to include all 
models involved in the project. From a design and 
development methodology point of view all models are 
somehow connected. All models that are part of the project 
need to be accessible by a tool that implements the proposed 
method. Many design and development tools use containers 
for keeping models and model elements [10] together. More 
than one container can be used for the project. Therefore, the 
tool itself must have the ability to keep relationships between 
modeling elements placed in different containers. The 
proposed method must deal with all modeling elements of 
the project, no matter how many containers are there. The 
conclusion is that all models and model elements must be 
observed as a part of one big modeling space. 

A modeling space is a notation that can be used to 
represent the classification of all models that are part of the 
project. The modeling space can be drawn as a square box 
containing all possible models of a designed information 
system. The modeling space must follow the MDA 
philosophy, i.e., support different levels of abstraction given 
in the MDA specification. 

 
The modeling space presented in Figure 1 contains 

different layers, representing respective aspects or 
viewpoints of the designed information system. The 
modeling space contains four layers. The application layer is 
comprised of models with the business logic. The 

 

Figure 1.  Structure of a modeling space 
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information layer is comprised of information and data 
models. Models containing architecture details and 
infrastructure nodes are placed in the infrastructure layer. 
Finally, there needs to be a specific layer for transformation 
and tracing models. Of course, a number of layers and their 
purpose depend on a set of models representing an 
information system design. One model can belong to 
multiple layers. For example, a model containing 
requirements can easily be considered for application, 
information, and infrastructure related, since requirements 
are determining all aspects of the future information system. 
The modeling space must also support a clear distinction 
between abstract and detailed models. Abstract and 
computing independent models are placed on top of each 
layer. Models with more details are closer to the bottom of 
the layer. 

 
Each model is a set of model elements. These elements 

originate from a modeling language, such as UML [10]. A 
set of models together represent the design of an information 
system. However, there are sets of model elements in every 
model that are meaningful for designers. These sets of model 
elements, or patterns, can be seen as reusable solutions to 
problems. Every level of abstraction can have its own 
repeating patterns of model elements. For example, CIM can 
contain repeating sets of model elements that can be 
interpreted as requirements or business processes, PIM can 
contain use cases or components, and PSM can contain 
implementation of components defined in PIM.  

 
CIM patterns are usually created early in the project, and 

they depend on used architecture as well as how business 
analysis is performed. These high level abstract patterns have 
the biggest impact on the design of an information system. 
PIM patterns are derived from architecture and 
computational independent patterns. They represent an 
elaboration of CIM patterns within an architectural context. 
The most detailed are PSM patterns that represent the 
implementation of PIM patterns for a specific infrastructure 
yielded by the previously determined architecture.  

A. Modeling library 

In order to establish the proposed method, a library of 
modeling patterns and transformations must be established.  
The usual way to create a pattern library is by using a 
template document [11]. An example of online accessible 
pattern library can be found on [12]. This library is created 
by using Cloud related pattern language defined by Fehling 
et al.  [13]. Gamma, Helm, Johnson, and Vlissides [14] 
propose the pattern library of basic object-oriented patterns, 
visualized in the UML. Hohpe and Woolf [15] propose the 
enterprise integration pattern library. 

However, previously mentioned pattern libraries are not 
suitable for use by the proposed method, since solutions in 
these libraries are not structured, and cannot be browsed 
directly by a tool that implements the proposed method. In 
this article the Meta Object Facility (MOF) [16] family of 
modeling languages is used. MOF is a metalanguage 
standardized by the OMG. A pattern library suitable for the 

proposed method must utilize MOF based repository for the 
solution of a pattern. A good description of MOF based 
repository is given by Frankel [17]. 

The proposed modeling library can be used as the design 
knowledge system presented in [2]. The modeling library 
must have all needed features for storing and managing 
patterns and transformations that constitute the design 
knowledge. 

 
Collecting modeling patterns can be done from existing 

pattern libraries, or models of already developed information 
systems in previous projects. Then, these patterns are 
inserted into the modeling library suitable for the proposed 
method. Collection from existing models can be done 
manually or automatically by detecting repetitions. Detection 
itself can be done by the graph matching method [18]. Pham 
et al. [19] propose the graph matching method for detection 
of cloned fragments in graph based models. According to 
their definition, repetitive fragments that are similar enough 
can be considered for clones or patterns. A similar approach 
can be applied to UML models.  

Falkenthal, Barzen, Breitenbücher, Fehling, and 
Leymann [20], argue that concrete solutions are lost in the 
process of pattern writing. The reason for that is the need for 
discarding some of the solution details. If a pattern is created 
by using already existing information system design, then 
discarded model elements are the ones that need to be 
contributed by a designer through the process of pattern 
elaboration.  

A pattern is a class, a blueprint that binds one or more 
model elements together. Application of a pattern means 
instantiation [20][21] within at least one model in the 
modeling space. Applying the pattern does not mean that the 
modeling is completed. Adding details and further 
elaboration of the pattern instance is needed, to bridge the 
gap between the selected pattern and final solution that was 
lost in the pattern writing process, which is environment and 
context dependent. 

 
Figure 2 represents a pattern that is comprised of an 

empty interface and a component. After applying this pattern 
a pattern instance is created. Further elaboration of the 
pattern instance must add interface details, operations and 
parameters, subcomponents, and additional interfaces. 

III. MAPPING BETWEEN METHODOLOGY AND PATTERN 

SEQUENCE 

Porter, Coplien, and Winn [22] have shown that pattern 
sequences are important, i.e., aggregation and composition of 

 
Figure 2.  Example of a simple modeling pattern: a component and an 

interface 
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patterns rely on the order how they are applied. A pattern 
library is just a set of patterns that have particular 
relationships among them. Even with related patterns, a 
slightly different order of pattern application can have 
different results. 

The novelty introduced by the proposed method is a way 
to define possible pattern sequences through transformations. 
Transformations inside the previously defined modeling 
library have purpose to determine relationships between 
patterns, and to introduce the possibility to transform pattern 
instances based on patterns from the modeling library. This 
way, sequences are determined by transformations that are 
part of the modeling library. 

In this article, we also argue that the selected design and 
development methodology (RUP for example) significantly 
contributes to the pattern sequence. The selected 
methodology defines high-level phases of a pattern sequence 
by providing the order how models are created and 
elaborated. There is a correlation between the set of 
transformations in the modeling library and high-level 
pattern sequence driven by the design and development 
methodology. The modeling library must contain all needed 
transformations that allow this high-level sequence to be 
completed according to the methodology. 

A pattern sequence has fine course within a single project 
task. This fine course, or low-level sequence, is a set of 
activities within the task needed to complete a model, or a set 
of models. Transformations in the modeling library must also 
support these low-level sequences. 

A. Methodology driven, high-level pattern sequence 

CIMs are usually created very early in the project. In the 
RUP, business models are created in the Inception phase. It 
means that selecting and applying CIM related patterns, as 
well as further elaboration, can be done very early in the 
project. These patterns can be classified as functional 
requirements, non-functional requirements, business 
processes, or business use cases. The idea is to have these 
patterns and related transformations ready for use in the 
modeling library. Elaboration of newly created pattern 
instances in CIMs can be done in the Inception phase. 

PIMs, part of the PSMs, architecture models, and 
infrastructure models, are created in the Elaboration phase. 
In this phase, we do most of an information system design, 
and take the most important decisions. In the Elaboration 
phase, patterns used in CIMs provide guidance for choosing 
patterns that could be used next. For example, usual patterns 
that could be used here contain use cases, components, and 
nodes. 

The PSM is usually the last step in the design of an 
information system. The ultimate goal is to get the source 
code and deployment units. Therefore, the PSM must contain 
pattern instances that define a sufficient level of details for 
transformation into the source code, in a way that there is 
less work as possible for developers. Pattern instances in the 
PSM are mostly implementation of pattern instances in the 
PIM. For example, in the Component-Based Design (CBD) 
[23], the PSM contains platform specific implementations of 
components defined in the PIM. 

 
Figure 3 provides a visual course of a project, high-level 

sequence of work on models and low-level sequence of 
pattern instantiation, transformation, and elaboration. 
Generally, as the project advances through the phases 
defined in the RUP, models become more and more 
specified and elaborated, until the level of actual program 
code. For simplicity, only one pattern instance per model is 
used. Models are represented by circles marked as 𝑀𝑖 , 
pattern instances are represented by circles marked as 𝑃𝑗 and 
transformations are represented by edges marked as 𝑡𝑘 . 
Figure 3 represents an example with the following detailed 
low-level sequence: 

1.  The pattern instance 𝑃1  is created, containing a 
business process. This pattern instance can be done 
using BPMN [24]. 

2.  The pattern instance 𝑃2 is created, containing a set of 
model elements that represents architectural 
decisions about selected middleware (application 
server, database). UML [10] can be used for this 
purpose. 

3.  Transformation 𝑡1 is used to extract a business object 
from the business process information flow into the 

 

Figure 3.  RUP and advancement through the design of an information system 
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resulting pattern instance 𝑃3 that represents an entity 
of the information system. Transformation 𝑡1 is also 
used to extract the interface from a task that belongs 
to the business process in the pattern instance 𝑃1. As 
the result of transformation 𝑡1 , the pattern instance 
𝑃4 is created, representing the interface of the source 
task. 

4.  Pattern instances 𝑃3 and 𝑃4 are elaborated by adding 
operations and attributes. 

5.  Transformation 𝑡2  is used to create the pattern 
instance 𝑃5  from pattern instances 𝑃3  and 𝑃4 . The 
pattern instance 𝑃5  contains a component [10][23] 
that has an association to the entity in the pattern 
instance 𝑃3, and realizes the interface in the pattern 
instance 𝑃4. 

6.  Transformation 𝑡3  is used to create the pattern 
instance 𝑃6  from pattern instances 𝑃2  and 𝑃3 . The 
pattern instance 𝑃6 represents a table that reflects the 
entity in the pattern instance 𝑃3 . Transformation 𝑡4 
must take in account modeling element that contains 
the architectural decision about used database. 

7.  Transformation 𝑡4  is used to create the pattern 
instance 𝑃7  from pattern instances 𝑃2  and 𝑃5 . The 
pattern instance 𝑃7 represents implementation details 
of the component in the pattern instance 𝑃5, taking 
into account the architectural decision about used 
application server. 

8.  Optionally, transformation 𝑡5  can be used in case 
when additional standard implementation is added to 
the implementation of the component in the pattern 
instance 𝑃7. 

9.  Transformation 𝑡6  is used to create a Structured 
Query Language (SQL) script that can be used to 
create the table from the pattern instance 𝑃6. 

10.  Transformation 𝑡7 is used to create the Java code for 
the EJB defined in the pattern instance 𝑃7. 

 
As the design of an information system advances through 

the project, designers can create new pattern instances, or 
elaborate on existing ones. A new pattern instance can be 
created to document business need, reflect already existing 
functionality that can be reused, or by transforming from 
already existing pattern instance in the modeling space. 
Transformation between pattern instances is probably the 
most used option. Elaboration of the existing pattern 
instances is also very important. Once a new pattern instance 
has been created, it must be elaborated in subsequent project 
activities. 

IV. PATTERN INSTANCE TRANSFORMATION 

Model transformation is a key procedure in the MDA. 
The MDA specification [3] contains various different model-
to-model transformation combinations and examples. 
Transformation can be done within the same model, between 
two different models, for model aggregation, or model 
separation. Grunske et al. [25] are presenting an important 
notion of "horizontal" and "vertical" transformations. 
Horizontal transformation is done between models of the 

same abstraction level. Typical horizontal transformation is 
PIM to PIM, or PSM to PSM. Any transformation within the 
same model is also a horizontal transformation. Vertical 
transformation is done between models of different 
abstraction levels, or from a model to the source code. A 
transformation from PIM to PSM, or from PSM to the source 
code is vertical transformation. 

Model transformation can be done either manually or 
automatically. Manual model transformation is more 
common than we think. It is not unusual for a designer to 
start modeling from scratch by using models delivered earlier 
in the project. When a modeling language is structured and 
formal enough, automatic transformation can be used. All 
modeling languages derived from MOF can be transformed 
automatically. 

Automatic transformation takes elements of a source 
model and converts them into elements of a target model by 
using transformation mapping. Transformation can be 
additionally used to establish relationships between models, 
or to check consistency of elements between source and 
target model. Czarnecki and Helsen [26] elaborate a number 
of model transformation approaches. Most used are graph 
based transformations and transformation languages. 
Transformation languages can be declarative or imperative. 
The OMG standardized group of MOF based transformation 
languages named Query/View/Transformation (QVT) [27]. 
QVT Relational language (QVT-R) is a typical example of a 
declarative approach with the graphical notation. QVT 
Operational language (QVT-O) is an example of an 
imperative approach. In this article, we are using the 
declarative approach. 

 
In order to understand which transformation features are 

needed for the method proposed in this article, basic 
principles of a model transformation must be observed. Let 
us define a modeling space as a finite set of models 

 𝑀𝑆 = {𝑀1 , 𝑀2, … , 𝑀𝑛} 

Each model is a finite set of elements  

 𝑀𝑖 = {𝑒1, 𝑒2, … , 𝑒𝑚 } 

A transformation is a function  

 𝑡𝑟: 𝑀𝑆 → 𝑀𝑆  

that takes a set of elements 𝑒𝑟𝑆𝑜  from a set of source models 
𝑆𝑜 ⊆ 𝑀𝑆  such that 𝑒𝑟𝑆𝑜 ⊆  𝑆𝑜 , and translates them into 
another set of elements 𝑒𝑟𝑇𝑎  in a set of target models 
𝑇𝑎 ⊆ 𝑀𝑆 , such that 𝑒𝑟𝑇𝑎 ⊆  𝑇𝑎. A transformation can be 
done within the same model 𝑆𝑜 = 𝑇𝑎 = 𝑀𝑖 , or between two 
disjunctive sets of models 𝑆𝑜 ≠ 𝑇𝑎. Since a transformation 
can have multiple models from source and target side, these 
sets do not need to be disjunctive 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅, meaning that 
the transformation can include the same model 𝑀𝑖  on source 
and target side, or 𝑀𝑖 ∈ 𝑆𝑜 ∧ 𝑀𝑖 ∈ 𝑇𝑎. A transformation can 
use the same source and target elements, meaning that 
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𝑒𝑟𝑆𝑜 ∩ 𝑒𝑟𝑇𝑎 ≠ ∅  when 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅ , or it can use two 
disjunctive sets of elements 𝑒𝑟𝑆𝑜 ∩ 𝑒𝑟𝑇𝑎 = ∅.  

From a pattern point of view, each pattern instance is a 
set of model elements. This definition is valid for cross 
model pattern instances as well. All pattern instances in the 
modeling space 𝑀𝑆  form a finite set of pattern instances 

 𝑀𝑃 = {𝑝𝑖 : 0 < 𝑖 ≤ 𝑚 ∧ 𝑝𝑖 ⊆  𝑀𝑆} 

In this context, transformation is a function  

 𝑡𝑟: 𝑀𝑃 → 𝑀𝑃 

Such transformation takes a set of source pattern 
instances 𝑝𝑆𝑜 ⊆ 𝑀𝑝 , and translates them into model elements 

that form a set of target pattern instances 𝑝𝑇𝑎 ⊆ 𝑀𝑝 . More 

precisely, transformation can be written as 

 𝑡𝑟: 𝑝𝑆𝑜 → 𝑝𝑇𝑎  

Every transformation can be encapsulated in a black box 
implementation. Such an approach is used in [27] along with 
the QVT specification. According to the QVT specification, 
every transformation can be defined as a black box having an 
interface that depends on the context of transformation 
usage. 

A. Transformation rules 

Using a declarative approach for transformation of 
pattern instances means that every transformation can be 
represented as a set of transformation rules that define the 
relationship between a set of source model elements and a set 
of target model elements [26][27][28].  

Czarnecki and Helsen [26] are giving important features 
of a declarative transformation consisting of transformation 
rules. As defined in [26], each transformation rule has "the 
left-hand side (LHS) that accesses the source model and the 
right-hand side (RHS) that expands in the target model". In 
this article, LHS is referred as "the source side" and RHS as 
"the target side".  

Jouault and Kurtev in [29] are defining execution model 
for ATLAS Transformation Language (ATL) rules. 
Matching transformation rules in their model have a 
declarative part and an optional imperative part. The 
execution algorithm is matching the declarative part of a 
transformation rule, which is then fully executed (the 
declarative and the imperative part) in case that the 
transformation rule matches the supplied source pattern. It is 
very important to notice that declarative transformation rules 
are independent of each other, and that the execution 
algorithm does not guarantee the order of execution. 

 
Transformation and related transformation rules, 

especially if they are written in a declarative way, are logic 
programs [30]. Transformation 𝑡𝑟  (6) can be defined as a 
logic program comprised of a set of rules 

 𝑡𝑟 = {𝑟1(𝑝𝑆𝑜), 𝑟2(𝑝𝑆𝑜), … , 𝑟𝑛(𝑝𝑆𝑜)} 

The conditional part of every rule in previously defined 
set is comprised of atomic logic functions that involve model 
elements 

 𝑟𝑖 𝑝𝑆𝑜 ← 𝑎1 𝑦1 , 𝑝𝑆𝑜 ∧ 𝑎2 𝑦2 , 𝑝𝑆𝑜 ∧ …𝑎𝑚  𝑦𝑚 , 𝑝𝑆𝑜  

where 𝑦𝑗 ∈ 𝑝𝑆𝑜 is a model element in source pattern instances 

of the transformation 𝑡𝑟. According to (8), rule 𝑟𝑖  is matched 
only if all of the atoms are evaluated as true. 

 
A transformation written in the QVT-R has two different 

modes: checking mode and enforcement mode. In the 
checking mode, transformation rules can be used to validate 
correctness and completeness of involved pattern instances. 
In the enforcement mode, transformation rules can be used 
for creating, updating, or deleting model elements in target 
pattern instances, in order to reflect all the details found in 
source pattern instances. 

 

1) Applying transformation 
 
As already defined, a transformation takes a set of 

modeling space model elements and translates them into 
another set of model elements. Earlier definition (6) shows 
that the transformation can include pattern instances as 
model element containers. 

According to (8), every transformation rule consists of a 
set of atoms that are used to determine whether model 
elements in a set of source pattern instances are matching 
conditions of the transformation rule or not. So far, there are 
no additional conditions in (7) that would indicate whether a 
transformation can be applied to the source pattern instances 
or not. In order to define conditions whether a transformation 
can be applied or not, a set of transformations is divided on 
two disjunctive subsets. We define a set of "mandatory 
transformation rules", which need to match the source 
pattern instances for transformation to be applicable. 

 𝑚𝑡𝑟(𝑡𝑟) = {𝑚𝑟1 𝑝𝑆𝑜 , 𝑚𝑟2 𝑝𝑆𝑜 , … , 𝑚𝑟𝑛(𝑝𝑆𝑜)} ⊆ 𝑡𝑟 

When a transformation is applied, is it certain that all 
action parts of mandatory transformation rules will be 
executed, if all mandatory transformation rules match 
supplied source pattern instances, i.e., transformation is 
applicable to this set of pattern instances. We also define a 
set of "optional transformation rules", which do not need to 
match the source pattern instances for transformation to be 
applicable. 

It is possible that an atom in a transformation rule of the 
applied transformation matches more than one model 
element in the source pattern instances. A tool implementing 
the proposed method must allow a designer to choose which 
model element will be transformed. For example, a model 
can contain a set of use cases. The designer applies a generic 
transformation that can be applied to any use case. 
Obviously, the tool must allow him to choose which use case 
will be transformed by the applied transformation. 
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 𝑜𝑡𝑟(𝑡𝑟) = {𝑜𝑟1 𝑝𝑆𝑜 , 𝑜𝑟2 𝑝𝑆𝑜 , … , 𝑜𝑟𝑚 (𝑝𝑆𝑜)} ⊆ 𝑡𝑟  

If conditional part of an optional transformation rule does 
not match supplied set of source patterns, the action part of 
this rule is not executed. Optional transformation rules can 
be used to transform elaborated details. 

This might lead to a conclusion that mandatory 
transformation rules need to cover transformation of model 
elements that comprise a pattern in the pattern library, and 
that optional transformation rules must cover transformation 
of all model elements added after a pattern instance was 
created, i.e., elaborated model elements. While this is 
generally correct, mandatory transformation rules might 
include some elaborated details, making this transformation 
applicable only after elaboration of the pattern instance. This 
way, a designer is forced to contribute details before 
proceeding further in a pattern sequence. 

 
When a transformation is applied, execution of the 

transformation must perform several different steps.  
As the first step, the set of mandatory transformation 

rules of the applied transformation must be matched with the 
supplied source pattern instances. If all mandatory 
transformation rules are matched on the source side then the 
transformation can be applied to the supplied source, i.e., the 
transformation can be applied to the source pattern instances 
that contains all model elements needed by the mandatory 
transformation rules. Transformation applicability can be 
expressed as 

 𝐴 𝑚𝑡𝑟 𝑡𝑟 , 𝑝𝑆𝑜 ← 𝑚𝑟1 𝑝𝑆𝑜 ∧ …∧ 𝑚𝑟𝑛 𝑝𝑆𝑜   

The second step is the creation of the target pattern 
instances. Matched transformation rules, execute their action 
parts creating all target pattern instances and their model 
elements. Every pattern is characterized by the mandatory 
model elements that define the essence of the pattern, or 
what makes this pattern different from other patterns. 
Redefining (8) for use in (9) results with 

 𝑚𝑟𝑖 𝑝𝑆𝑜 ← 𝑎i,1 𝑦i,1, 𝑝𝑆𝑜 ∧ …∧ 𝑎𝑖 ,𝑚 (𝑖)(𝑦𝑖 ,𝑚 (𝑖), 𝑝𝑆𝑜)  

where 𝑚(𝑖)  is a number of atoms in i-th mandatory 
transformation rule. Mandatory model elements in the 
supplied source pattern instances for the applied 
transformation 𝑡𝑟, can be expressed as 

 𝑚𝑒 𝑝𝑆𝑜 , 𝑡𝑟 =   yi,j
m (i)
j=1

 𝑚𝑡𝑟 (𝑡𝑟) 
𝑖=1   

Whether a model element in the set of target patterns 
created by the applied transformation is mandatory or not, 
can be determined only in the context of another 
transformation from the library. However, in the context of 
the transformation that created the set of target pattern 
instances, all model elements created by mandatory 
transformation rules of the applied transformation are 
considered for mandatory model elements. 

The last step is to create a set of constraints that will 
disallow designers to change some of the model elements in 
the involved pattern instances. Transformation binds 
involved pattern instances together by imposing constraints 
on their model elements. Each pattern instance can be bound 
with other pattern instances through several different 
transformations. Constraints are imposed by the mandatory 
transformation rules.  

Imposed constraints are used to limit designer changes in 
the modeling space to prevent: 

1. Violating correctness and completeness of the 
pattern instances by changing their mandatory 
model elements. Obviously, all mandatory model 
elements must be constrained. 

2. Breaking transformation bindings by changing 
model elements that match source and target side of 
the mandatory transformation rules. In this case, 
constrained model elements do not need to be 
mandatory.  

One constraint can be applied to a set of model elements. 
Each constraint also must contain a set of forbidden actions. 
At the moment, it is expected that constraining updating and 
deleting specific model elements is sufficient. 

 
Let us define an involved pattern instance made of 𝑙 

model elements 

 𝑝𝑖 = {𝑒1, 𝑒2, … , 𝑒𝑙} ⊆  𝑀𝑆  

and a finite set of transformations applied to 𝑝𝑖  

 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑝𝑖) = {𝑡𝑟1(pi), 𝑡𝑟2(pi), … , 𝑡𝑟𝑘(pi)} (15)

From (14) and (15), we can derive a mapping function  

 𝐶: 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑 (𝑝𝑖) → 𝑋 

where 𝑋 ⊆ 𝑝𝑖  is a set of model elements in 𝑝𝑖  constrained by 
all transformations from (15). Every pair of applied 
transformations can constrain a different subset of model 
elements in 𝑝𝑖  

 𝐶(𝑡𝑟𝑗 (pi)) ∩ 𝐶 𝑡𝑟𝑘(pi) = ∅ ∧ 𝑗 ≠ 𝑘 

In the context of (13) and (15), a set of mandatory model 
elements of the pattern instance 𝑝𝑖  can be defined as 

𝑚𝑒 𝑝𝑖 = 𝑚𝑒(𝑝𝑖 , 𝑡𝑟𝑎𝑝𝑝𝑙𝑖𝑒𝑑  𝑝𝑖 ) =  𝑚𝑒(𝑝𝑖 , 𝑡𝑟𝑗  𝑝𝑖 )k
j=1  

having the following condition satisfied 

 𝐶(𝑡𝑟𝑗 (𝑝𝑖)) = 𝑚𝑒(𝑝𝑖) ∧ 𝐶 𝑡𝑟𝑘(𝑝𝑖) ∩ 𝑚𝑒(𝑝𝑖) = ∅ 

The conclusion is that the set of mandatory model 
elements for (14) is just a subset of constrained model 
elements by the set of applied transformations. 
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  𝑚𝑒(𝑝𝑖) ⊆  𝐶(𝑡𝑟𝑗 )𝑘
𝑗=1  

Each pattern instance can be a result of several different 
pattern instances done earlier in the same project, or it can be 
a reason for creating several new pattern instances later in 
the same project. Several good examples can be found in 
[14]: a facade associated with a web service client can be 
used as a mediator between two different subsystems. In this 
example, the mediator is the pattern whose instance is bound 
by two different transformations. 

 
Definition: The measure of transformation applicability 

The measure of transformation applicability is a 
percentage of transformation's mandatory rules that match 
supplied source pattern instances. 

 
We already defined transformation applicability in (11). 

If not all of the mandatory transformation rules are matching 
supplied source pattern instances, then the transformation 
cannot be applied. The information on how much and which 
rules are not matched can be very valuable for a designer. 
This way, the designer can see how to elaborate piece of the 
information system design he is working on, in order to 
proceed in the pattern sequence. If we define a subset of 
mandatory transformation rules that are matching supplied 
source pattern instances as 

 𝑚𝑡𝑟𝑚𝑎𝑡𝑐 ℎ𝑒𝑑  𝑡𝑟 ⊆ 𝑚𝑡𝑟 𝑡𝑟  (21) 

then the measure of transformation applicability can be 
expressed as 

  𝑀𝐴 𝑚𝑡𝑟 𝑡𝑟 , 𝑝𝑆𝑜 =
 mtr matched (tr ) 

 mtr (tr ) 
 

Of course, the rest of the set of mandatory transformation 
rules, i.e., those that are not matched  

 𝑚𝑡𝑟(𝑡𝑟) ∖ 𝑚𝑡𝑟𝑚𝑎𝑡𝑐 ℎ𝑒𝑑 (𝑡𝑟) 

can be used to determine what exactly is missing in the 
information system design. Consulting the measure of 
transformation applicability is one aspect of the design 
guidance. 

 
The applicability of a pattern is previously considered by 

Fehling et al. in [13]. The pattern library presented in their 
article can give the applicability of a pattern based on the 
context which needs to be supplied manually. In the 
proposed method, the context is calculated from the model 
space, i.e., the model space makes a transformation in the 
modeling library applicable or not. 

 

2) Pattern instance elaboration 

 
A transformation can be used to perform changes on 

involved pattern instances. This approach is used when new 
pattern instances are created, or existing instances are 

updated or deleted. Even when two pattern instances are 
bound with the transformation, the source pattern instance 
can be elaborated by adding new details and model elements. 
A transformation can be made so that these newly added 
details automatically update the target pattern instance.  

Model elements that are not constrained by one of the 
binding transformations are handled by optional 
transformation rules responsible for spreading of elaboration 
details. Bidirectionality is a very important transformation 
aspect described in [27] and [28]. While transformation 
might constrain changes of some model elements in target 
pattern instances, changes of unconstrained model elements 
in pattern instances across the modeling space are 
encouraged. Such changes must be propagated throughout 
the modeling space, wherever transformation between 
pattern instances allows it. This propagation must be 
automatic and seamless. 

 

3) Top-level pattern instances 

 
Top-level pattern instances do not have predecessors. 

These pattern instances can be modeled manually by a 
designer without using any transformation, instantiated 
directly from the modeling library, or they can be created by 
using a transformation.  

If a top-level pattern instance is instantiated directly from 
the modeling library, then all model elements from the 
selected pattern are copied from the MOF repository directly 
to the model in the model space. Of course, the instantiation 
process must rename the selected pattern model elements, 
and impose constraints on the newly created pattern instance. 
In order to know which model elements are constrained, this 
information must be kept together with the solution of a 
pattern in the MOF repository of the modeling library. 

If a transformation is used, such transformation does not 
need to have input source pattern instances. In order to give 
the transformation some instructions, input parameters can 
be used. Transformations that create only target pattern 
instances can be used both for validation and enforcement 
purposes. All transformation rules in this transformation are 
mandatory transformation rules that create an initial version 
of target pattern instances, and impose constraints on them. 
Obviously, these mandatory transformation rules are always 
matched, even when there is no supplied set of source pattern 
instances. However, imposed constraints must allow 
elaboration of newly created top-level pattern instances in 
order to allow adding needed details. Functional and non-
functional requirements are typical examples of top-level 
patterns. An external service definition is another example of 
such pattern. 

V. TRANSFORMATION AND TRACING LANGUAGE 

Relationship between model elements and a pattern 
instance is not established within the UML. Although there 
is the Package element defined within the UML, its purpose 
is not the same as "the pattern instance". Also, 
transformation application and imposing constraints on 
involved pattern instances must leave some trail. Creation of 
a Transformation and Tracing Model (TTM), either 
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automatically or manually, can help to resolve before 
mentioned issues. Every time a new pattern instance is 
created, a new model element is added into TTM 
representing this pattern instance. All model elements 
belonging to this pattern instance are automatically bound to 
it. It can be the result of the transformation, or it can be done 
manually. In both cases, the modeling tool must have 
capabilities for it. Also, each time when a transformation is 
used, this transformation is added to TTM including all 
relationships between pattern instances and used 
transformation. Each time a transformation is used, and this 
transformation is imposing constraints on involved pattern 
instances, these constraints are added to pattern instances in 
TTM and related to the transformation that created them. In 
order to do this kind of model, a Transformation and Tracing 
Language (TTL) must be defined. The UML and the TTL 
must be compatible, meaning that they must have a common 
M0 ancestor [28]. Therefore, the TTL must be a MOF 
metamodel. An overview of the TTL is presented in Figure 
4. 

 
The TTL is having the following elements: 
1. Pattern - A pattern type. Allows classification of 

pattern instances.  
2. PatternInstance - An element similar to the UML 

Package element. Represents a container for model 
elements. This element is defined by its name and 
type. Pattern type (or class) can be very helpful when 
constructing transformation rules, and it can impact 
the transformation applicability since 
transformations can be applied to the pattern 
instances of specific types. 

3. Transformation - An element defined by its name 
and type, representing applied transformation, 
defined in (6) and (7). It contains transformation 
rules used in the transformation, here represented by 
the element TransformationRule. The transformation 
must be connected to a set of source and target 
pattern instances, being connected to at least one 
target pattern instance. Connector direction is 
determined by the TransformationConnectorType 
enumeration. 

4. TransformationConnector, 
TransformationConnectorEnd, 
PatternConnectorEnd - A connector is a directed 
relationship between a pattern instance and a 
transformation. Connector direction must have a 
visual notation. If the connector is directed from the 
pattern instance to the transformation, it represents 
the source pattern instance in the context of the 
transformation. If the connector is directed from the 
transformation to the pattern instance, it represents 
the target pattern instance in the context of the 
transformation. Connector end elements represent 
the point of touch between the connector and the 
pattern instance, or the connector and the 
transformation. 

5. TransformationConstraint - An element defined by 
its name, representing a constraint on members of a 
pattern instance imposed by used transformation. At 
least one model element in the pattern instance needs 
to be constrained. Also, a transformation must 
contain a set of forbidden actions, i.e., actions on 
constrained model elements that must be prevented 
by a tool. This element is contained by the pattern 

 
Figure 4.  The Transformation and Tracing Language 
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instance, and connected to the transformation 
responsible for the creation of the constraint. This 
element is the result of the transformation, and can 
be used to validate the pattern instance correctness 
and completeness.  

6. TransformationConstraintConnector - A relationship 
between resulting constraint and the transformation 
that created it, directed from the transformation to 
the constraint. Each constraint can be imposed by 
only one transformation, but one transformation can 
impose multiple constraints within multiple pattern 
instances. 

In the TTM example in Figure 5, model elements in 
pattern instances 𝑝1  and 𝑝2  were created before 𝑡1  was 
applied. We can say that pattern instances 𝑝1  and 𝑝2  were 
designed manually. Model elements in the pattern instance 
𝑝3  are produced by the transformation 𝑡1 . Actions taken 
during an information system design are automatically stored 

to a TTM for multiple purposes: preserving correctness and 
completeness of the modeling space, reconstruction of 
activities in the design process, and analysis of the resulting 
design work. 

VI. DESIGN PRACTICE 

The definition of the term "design practice" is given in 
[2]. A common situation is having to explain to designers 
what is the preferred design practice, and how an information 
system design should look like? The answer to this question 
is also the answer to the design approach classification 
framework given in [2]. 

Many companies have well established design practices, 
from the methodology, project activities, and modeling point 
of view. The selection of architectures, technology, and 
practical experience gives a company starting point in the 
information system design. The idea is to take this 
experience, put it into the modeling library in the form of 

 
Figure 5.  Example of a Transformation and Tracing Model 

 

Figure 6.  The proposed method 
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patterns and transformations, i.e., create a design knowledge 
system.  

The way of applying this knowledge is very important as 
well. The design practice method proposed in this article, 
and outlined in Figure 6, consists of the following elements: 

 Task 1: Selection and instantiation of appropriate 
pattern from the modeling library. 

 Task 2: Elaboration of pattern instances. 

 Task 3: Checking transformations from the modeling 
library that are applicable or nearly applicable onto 
elaborated pattern instances. If such transformation 
cannot be found, return to elaboration in task 2. 

 Task 4: Transformation of the pattern instance by 
selecting applicable transformation from the 
modeling library. Continue on task 2 with newly 
created pattern instances. 

 
Using the process in Figure 6 will create a pattern 

sequence. Depending on patterns and transformations in the 
modeling library, a big set of potential pattern sequences can 
be generated. Giving guidance to designers on a project 
means selecting appropriate pattern sequences from the set of 
all potential pattern sequences. By selecting appropriate 
pattern sequences, the design process is directed into the 
desired direction and outcome. 

A. Guidance given through the modeling library 

The modeling library is comprised of patterns and 
transformations. Since a transformation binds two pattern 
instances together (as described in Section III), selection of a 
transformation imposes a selection of involved patterns. 
Similarly, a selection of patterns imposes a selection of 
potentially applicable transformations.  

Applicability and the measure of transformation 
applicability are important transformation features that can 
be used to form a pattern sequence. A designer can elaborate 
a model or a pattern instance, and occasionally check for 
transformations that are applicable to the model or pattern 
instance he is working on. If there is no transformation 
currently applicable, the designer can check transformations 
that are nearly applicable, and the gap that needs to be closed 
in the model or the pattern instance in order for this nearly 
applicable transformation to become applicable. Of course, 
many designers have enough experience to know which 
transformation would need to be used next, even before 

modeling of the pattern instance is finished. If there is a 
problem with selected transformation, and transformation 
rules in the transformation are not correct, meaning that the 
transformation will never become applicable, this particular 
transformation can be changed as part of the design practice 
evolution. 

Giving guidance means selecting transformations from 
the modeling library that will be used in the project. A design 
lead can manage the set of allowed transformations for the 
project, limiting designer's choice of applicable or nearly 
applicable transformations. For example, the architectural 
decision will influence the choice of transformations for the 
project. Similarly, the design lead can manage a set of 
allowed patterns that are going to form the pattern sequences 
in the project, and by doing that implicitly to select a set of 
allowed transformations. 

B. Guidance given through a model 

More specific guidance can be given through a specific 
model that predetermines patterns and transformations used 
in the information system design process. Such model is 
created a priori, before the start of the design activities. 
Creation of the guidance model is an ongoing activity 
through the whole project. The TTL can be used for this 
purpose. This model must represent a selection of allowed 
pattern types and related transformations. Such model can be 
used by a designer to check guidance, or directly by a 
modeling tool for selection of allowed transformation list for 
particular pattern type. It is the same approach as in the 
previous section, with additional visualization of selected 
design practice for the project. 

VII. EXAMPLE: BUSINESS PROCESS ORIENTED SYSTEM 

The example in Figure 3 is business process oriented. 
The common name for this kind of system is Business 
Process Management (BPM) System. In this section, a 
detailed walk through for the example in Figure 3 is given. 
The first step is to create a business process model. Such 
business process model can be done using BPMN [24]. 
 

In this case, a very simple business process is modeled 
from scratch. A new pattern instance 𝑝1 is created and placed 
in the TTM. When modeling, the model elements of the 
business process are associated with the pattern instance 𝑝1. 
The business process contains one human task having the 

 

Figure 7.  The business process 
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user interface, where a user must enter customer's 
identification data, such as "social id", "account number", or 
something else. The customer's identification is then sent to 
the automatic task named "Retrieve customer's data", which 
invokes an information service that finds and read the data. If 
the identified customer cannot be found in the system, a null 
is returned back from the invoked service. Returned data are 
then tested, and if customer's data exists, it is displayed in the 
human task "Display customer's data". 

Each automatic task contains a signature that involves 
input parameters and output results. These details must be 
observed on a correctly modeled business process, as in 
Figure 7. This signature is used for transforming this 
automatic task into a number of pattern instances, containing 
entities and interfaces needed for building the service that 
will be invoked by this task. Each business process can have 
more than one automatic task. This means that one 
transformation from the modeling library can be applied 
more than once per one pattern instance. A designer must be 
presented with the list of applicable transformations along 
with all details, including model elements in source pattern 
instances that can be used in the transformation. In case of a 
business process that contains more than one automatic task, 
an applicable transformation can be applied to each 
automatic task. 

 
Figure 8 presents a transformation from the automatic 

task in the business process into a set of entities and an 
interface. After applying the transformation 𝑡1 , the pattern 
instance 𝑝3  is created. Along with the pattern instance, 
model elements representing entities of two business objects 
constituting information flow of the transformed task are 
created. The transformation 𝑡1  must create constraints that 
will prevent deleting business objects, the task in the 
business process, and both of the entities in the pattern 
instance 𝑝3. 

The transformation 𝑡1 is also responsible for creation of 
the pattern instance 𝑝4 , which consists of model elements 

that represents the interface of the task in the business 
process: one operation receiving the input business object as 
the input parameter, and returning the output business object 
as the result. The transformation 𝑡1  must create constraints 
that will prevent deleting the involved model elements in 
pattern instances 𝑝3  and 𝑝4 . Another constraint that will 
prevent direct updating the operation on the interface must 
be created by the transformation 𝑡1 as well, because updates 
on transformation's target pattern instances must be result of 
the elaboration of the source pattern instances. It is worth 
noticing that an operation and comprising parameters are, 
according to the MOF, not the same model elements. While 
an operation can be constrained, comprised parameters can 
be updated by the transformation if there are changes on 
business objects in the business process. 
 

The next step is to elaborate the pattern instance 𝑝3. As 
presented in Figure 9, a designer is filling additional details 
for entities in the pattern instance 𝑝3. These details include 
attributes and their types for each entity. 

 
At the same time, a lead IT architect is defining the 

architecture of the information system. It is very important 
that the architecture is a part of the modeling space, so that it 
can be used by the proposed method for selection of allowed 
transformations. This way, the architecture guides the design 
process as well. 

The architecture presented in Figure 10 defines a couple 
of very important elements for the selection of applicable 

 
Figure 9.  Elaborated entities 

 

Figure 8.  Transformation of the task to entities and the interface 
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transformations. First, JAX-WS2 will be used for invoking 
the service from the automated task in the business process. 
Second, the service will be deployed on Java Enterprise 
Edition application server. Third, entities will become tables 
in the DB2 database. 

 

 
Figure 10 is one pattern instance. This would suggest that 

the whole architecture is placed in the single pattern instance 
container. In fact, Figure 10 represents a typical business 
process oriented architectural pattern specified for the 
concrete environment and products. 

 
So far, the design is still not platform specific. Pattern 

instances 𝑝3 and 𝑝4 can be transformed into a component. 
 

 
Such transformation must create a component, and define 

that it is realized using already created interface, as in Figure 
11. For reference purpose, transformation 𝑡2  adds 
dependencies between the created component and entities 
contained in the realized interface. 

 
After this, work on the platform specific design can 

begin. The next step is to elaborate additional details in the 

pattern instance 𝑝3  in order to make transformation 𝑡3 
applicable. 

 

 
During elaboration, entities in the pattern instance 𝑝3 are 

enriched with JPA related stereotypes, as in Figure 12. Since 
transformation 𝑡3  takes in consideration model elements 
marked with Entity stereotype, this elaboration is needed in 
order to make the transformation applicable. During the 
elaboration of entities, a designer must also define additional 
properties for applied stereotypes. For example, a Column 
stereotype has a set of very important properties that need to 
be defined, and can be used by transformations that will be 
applied next. Figure 13 presents a set of properties for the 
Entity stereotype. 

 

 
 
However, this elaboration makes the pattern instance 𝑝3 

more platform specific than platform independent. Although 
there is still no precise definition about the concrete database 
that will be used, this information can be found in the 
architecture contained in the pattern instance 𝑝2. 
 

Figure 14 is the result of applying transformation 𝑡3  to 
the pattern instances 𝑝2  and 𝑝3 . The transformation takes 
only entities marked with Entity stereotypes. All properties 
of applied stereotypes are used in the transformation. Also, 
the transformation matches the database node in the 
architecture pattern instance 𝑝2 . The result of the 
transformation is the pattern instance 𝑝6  that comprises a 
number of DB2 specific model elements, representing 
database tables of entities. 

In case of having an Oracle database node in the 
architecture, another transformation would become 
applicable, which would create Oracle specific model 
elements in the pattern instance 𝑝6. 

 
Figure 13.  Entity stereotype properties 

 
Figure 12.  Entities with JPA stereotypes 

 
Figure 11.  The component 

 

Figure 10.  The architecture 
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The pattern instance 𝑝6 is a true example of a platform 

specific design. Now that the information part of the design 
is done, designing component details is the next step. 

 
The component implementation presented in Figure 15 is 

a result of two steps. The first step is applying transformation 
𝑡4  for creation of a component implementation. This 
transformation is applicable only when JAX-WS2 and Java 
Enterprise Edition Server stereotypes are found in the 
architecture pattern instance. It creates a class with 
appropriate stereotypes for further transformations, an 
interface realization between the newly created class and the 

component's interface, and a relationship that marks the 
newly created class as an instance of the component. 
However, transformation 𝑡4  did not create any specific 
implementation details. Everything that was created is the 
class will be eventually transformed into a JAX-WS2 web 
service provider. 

The second step is applying transformation 𝑡5 that adds 
implementation details to the service provider created in the 
previous step. Again, a designer can have a number of 
transformations at disposal that can look for certain model 
elements in the existing pattern instances. In this case, 
transformation 𝑡5 takes the signature of the invoke method, 
parameter types and creates a method in a new JPA reading 

 
Figure 14.  Entities with JPA stereotypes 

 
Figure 15.  The component implementation 
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helper class. This method is marked with the IDReader 
stereotype, which can be used later to transform this method 
into a code snippet. Transformation 𝑡5  also creates an 
association between the component's implementation and the 
newly created JPA reading helper class. A collaboration 
sequence between the component's implementation class and 
the JPA reading helper class is created as well. This 
collaboration sequence can be used in creating the code later 
on. 

 
As mentioned in [26], transformations from model to 

code need to be treated slightly differently. Template based 
approach is suitable for this example. 

 
Source Code 1: Transformed JPA entity 
@Table(name = "CUSTOMER_ID", schema = "CUSTOMERS") 

@Entity 

public class CustomersID implements Serializable { 

 

   private static final long serialVersionUID = 0; 

 

   public CustomersID() {} 

 

   @Id 

   private Long id; 

  

   @Column(nullable = false, columnDefinition =    

 "SOCIAL_ID", length = 50) 

   private String socialId; 

 

   @Column(nullable = false, columnDefinition = 

 "ACCOUNT_NUMBER", length = 50) 

   private String accountNumber; 

 

   public Long getId() { 

      return id; 

   } 

 

   public void setId(Long id) { 

      this.id = id; 

   } 

 

   public String getSocialId() { 

      return socialId; 

   } 

 

   public void setSocialId(String socialId) { 

      this.socialId = socialId; 

   } 

 

   public String getAccountNumber() { 

      return accountNumber; 

   } 

 

   public void setAccountNumber(String accountNumber) { 

      this.accountNumber = accountNumber; 

   } 

} 

 
The listing in Source Code 1 is the final result of 

transforming from entities in the pattern instance 𝑝3 . Such 
transformations can be applicable only on InformationModel 
pattern instances, i.e., including only model elements that are 
contained in specific pattern instances. 

Using pattern instance 𝑝6  and the applicable 
transformation, the following SQL script is generated. 

 
SQL Script 1: Database DDL script 
CREATE SCHEMA "CUSTOMER"; 

 

CREATE TABLE "CUSTOMER"."CUSTOMER_DATA" ( 

  "NAME" VARCHAR(50) NOT NULL, 

  "SURNAME" VARCHAR(50) NOT NULL, 

  "DATE_OF_BIRTH" DATE, 

  "CUSTOMER_SINCE" VARCHAR(50), 

  "ID" BIGINT NOT NULL 

 ) 

 DATA CAPTURE NONE; 

 

CREATE TABLE "CUSTOMER"."CUSTOMER_ID" ( 

  "ID" BIGINT NOT NULL GENERATED BY 

DEFAULT AS IDENTITY ( START WITH 1 INCREMENT BY 1 

MINVALUE 1 MAXVALUE 9223372036854775807 NO CYCLE CACHE 

20), 

  "ACCOUNT_NUMBER" VARCHAR(50), 

  "SOCIAL_ID" VARCHAR(50) 

 ) 

 DATA CAPTURE NONE; 

 

ALTER TABLE "CUSTOMER"."CUSTOMER_DATA" ADD CONSTRAINT 

"CUSTOMER_DATA_PK" PRIMARY KEY 

 ("ID"); 

 

ALTER TABLE "CUSTOMER"."CUSTOMER_ID" ADD CONSTRAINT 

"CUSTOMERS_ID_PK" PRIMARY KEY 

 ("ID"); 

 

ALTER TABLE "CUSTOMER"."CUSTOMER_DATA" ADD CONSTRAINT 

"CUSTOMER_DATA_CUSTOMER_ID_FK" FOREIGN KEY 

 ("ID") 

 REFERENCES "CUSTOMER"."CUSTOMER_ID" 

 ("ID") 

 ON DELETE CASCADE; 

 

Finally, pattern instances 𝑝5  and 𝑝7  can be transformed 
into the web service that can be called from the task in the 
business process. 

 
Source Code 2: The web service interface 
@WebService(targetNamespace="customer") 

public interface RetrieveCustomersDataInterface { 

   @WebMethod 

   public CustomersData invoke(CustomersID input1); 

} 

 

Source Code 3: The web service 
@WebService(targetNamespace="customer") 

public class RetrieveCustomersDataComponentImpl 

implements RetrieveCustomersDataInterface { 

   private JPAReader jpaReader; 

 

   public CustomersData invoke(CustomersID input1) { 

      // begin-user-code 

      return jpaReader.readCustomersData(input1); 

      // end-user-code 

   } 

} 

 
Source Code 4: The JPA reader 
public class JPAReader { 

   @PersistenceContext 

   private EntityManager entityManager; 

   // TODO Finish instancing entity manager 

  

   public CustomersData readCustomersData(CustomersID 

 input1) { 

      // begin-user-code 

      Query q=null; 

      if(input1!=null && input1.getId()!=null) { 

         q=entityManager.createQuery("select obj from 

  CustomersData obj where   

  obj.customersID.id = :id"); 

         q.setParameter("id", input1.getId()); 

      } else if(input1!=null && 

 input1.getSocialId()!=null) { 

         q=entityManager.createQuery("select obj from 

  CustomersData obj where   

  obj.customersID.socialId = :socialId"); 

         q.setParameter("socialId",   

  input1.getSocialId()); 
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      } else if(input1!=null &&  

 input1.getAccountNumber()!=null) { 

         q=entityManager.createQuery("select obj from 

  CustomersData obj where   

  obj.customersID.accountNumber =  

  :accountNumber"); 

         q.setParameter("accountNumber",   

  input1.getAccountNumber()); 

      } 

      if(q!=null) { 

         return (CustomersData)q.getSingleResult(); 

      } 

      return null; 

      // end-user-code 

   } 

} 
 
The call between the component's implementation and 

the JPA helper class is transformed from the collaboration 
sequence. All additional details in the code, such as 
annotations, are added from stereotype information. 
Stereotypes on the JPA helper class help to select an 
appropriate template for the code. 

VIII. CONCLUSION AND FUTURE WORK 

We have demonstrated that even such small example can 
be full of details and rules, enforcing us to use specific model 
elements, stereotypes, and patterns. It is obvious that patterns 
are not just a couple of documented ways of solving 
problems, which can be found in the books. It is everything 
that we want to use to repeat our solutions. Patterns are a 
good start for defining our designing practice. 

 
MDA has two major practical problems: designers have 

too much freedom while creating the information system 
design so that the transformation scope can become very 
ambiguous. Usage of a pattern as the main building element 
for the information system design is a well known approach. 
In the context of this article, design of an information system 
is done block by block by reusing patterns, allowing a design 
lead to choose blocks to be used. Such approach allows a 
design team to use past positive experience to select or 
define best patterns for the information system they are 
designing. This approach also helps to build pattern 
sequences that can fit into a design and development 
methodology used for the project.  

The novelty introduced in this article is the way of 
building pattern sequences through use of transformation, an 
approach typically used in the MDA. Applicability and the 
measure of applicability are very important features of the 
transformation definition, given in this article. They enable 
controlled application of transformations, which represents 
guidance for the design team. They also represent a way how 
new designers can learn the established design practice. 

Of course, designers are still free to model according to 
their preferences, as long as they are within boundaries 
imposed by the proposed method, which is assured by an 
optional part of each transformation helping team to keep 
model elements of bound pattern instances synchronized. 
The bidirectionality feature of the transformation helps to 
reflect changes in both directions. Chains of pattern instances 
can be easily updated through transformations used to form a 
chain. Since a pattern instance is supposed to have smaller 

scope than a model, keeping several pattern instances 
synchronized during elaboration should be much easier than 
with big models. 

The proposed method successfully answers challenges 
introduced in Section I. The modeling library contains design 
knowledge, and offers a selection of the design approach 
based on the current context in the modeling space. The 
article also successfully answers question of transformation 
reusability. The result of all these improvements is a higher 
quality of models comprising the design of an information 
system. 

 
Current modeling tools are introducing a high level of 

automation. This automation is mostly related to elements of 
the modeling languages supported by a modeling tool. 
Changing the modeling tool behavior to follow the model in 
a modeling space is needed feature. 

The TTL defined in this article can be extended with 
elements for interaction with modeling tool, model analysis 
capabilities, and model quality assessment. Interaction 
between a TTM and a modeling tool can be extended with 
modeling events, allowing a design lead to define modeling 
tool actions associated with patterns and transformations. For 
example, a TTM can include an event handler on a pattern 
that can be triggered by the modeling tool when a new 
subcomponent is added into a pattern instance. The event 
handler initiates execution of a specific transformation that 
automatically adds interface and interface realization 
relationship for this newly added subcomponent. 
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