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Abstract— Dynamic adaptive systems are systems that change 

their behavior according to the needs of the user at run time, 

based on context information. Since it is not feasible to develop 

these systems from scratch every time, a component model 

enabling dynamic adaptive systems is called for. Moreover, an 

infrastructure is required that is capable of wiring dynamic 

adaptive systems from a set of components in order to provide 

a dynamic and adaptive behavior to the user. In this paper we 

present just such an infrastructure or framework—called 

Dynamic Adaptive System Infrastructure (DAiSI). Because 

DAiSI has been developed for a number of years, we will cover 

as well the history of DAiSI as the newest advances. We will 

present an example illustrating the adaptation capabilities of 

the framework we introduce. The focus of the paper is on the 

underlying component model of DAiSI and the decentralized 

configuration mechanism. 
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I.  INTRODUCTION 

This paper is an extended version of a paper presented at 
the Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications [1]. 

Software-based systems pervade our daily life—at work 
as well as at home. Public administration or enterprise 
organizations can scarcely be managed without software-
based systems. We come across devices executing software 
in nearly every household. The continuous increase in size 
and functionality of software systems has made some of 
them among the most complex man-made systems ever 
devised [2].  

In the last two decades the trend towards ―everything, 
every time, everywhere‖ has been dramatically increased 
through a) smaller mobile devices with higher computation 
and communication capabilities, b) ubiquitous availability of 
the Internet (almost all devices are connected with the 
Internet and thereby connected with each other), and c) 
devices equipped with more and more connected, intelligent 
and sophisticated sensors and actuators. 

 Nowadays, these devices are increasingly used within an 
organically grown, heterogeneous, and dynamic IT 
environment. Users expect them not only to provide their 
primary services but also to collaborate autonomously with 

each other and thus to provide real added value. The 
challenge is therefore to provide software systems that are 
robust in the presence of increasing challenges such as 
change and complexity [3]. 

The reasons for the steady increase in complexity are 
twofold: On the one hand, the set of requirements imposed 
on software systems is becoming larger and larger as the 
extrinsic complexity increases, in the form of, for example, 
additional functionality and variability. In addition, the 
structures of software systems—in terms of size, scope, 
distribution and networking of the system among other 
things—are themselves becoming more complex, which 
leads to an increase in the intrinsic complexity of the system. 

Change is inherent, both in the changing needs of users 
and in the changes, which take place in the operational 
environment of the system. Hence, it is essential that our 
systems are able to adapt to maintain the satisfaction of the 
user expectations and environmental changes in terms of an 
evolutionary change. Dynamic change, in contrast to 
evolutionary change, occurs while the system is operational. 
Dynamic change requires that the system adapts at run time. 

Since the complexity and change may not permit human 
intervention, we must plan for automated management of 
adaptation. The systems themselves must be capable of 
determining what system change is required, and in initiating 
and managing the change process wherever possible. This is 
the aim of self-managed systems. 

Self-managed systems are those capable of adapting to 
the current context as required though self-configuration, 
self-healing, self-monitoring, self-tuning, and so on. These 
are also referred to as self-x, autonomic systems. 
Additionally, new components may enter or leave the system 
at run time. We call those systems ‗dynamic adaptive‘. 

Providing dynamic adaptive systems is a great challenge 
in software engineering [3]. In order to provide dynamic 
adaptive systems, the activities of classical development 
approaches have to be partially or completely moved from 
development time to run time. For instance, devices and 
software components can be attached to a dynamic adaptive 
system at any time. Consequently, devices and software 
components can be removed from the dynamic adaptive 
system or they can fail as the result of a defect. Hence, for 
dynamic adaptive systems, system integration takes place 
during run time. 
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To support the development of dynamic adaptive systems 
a couple of infrastructures and frameworks have been 
developed, as discussed in a related work section, Section II. 
In our research group we have also developed a framework 
for dynamic adaptive (and distributed) systems, called 
DAiSI.  

We believe that service oriented, component based, 
dynamic adaptive systems need to address at least three 
kinds of adaptation: 

1. Component service implementation adaptation: The 
implementation of a service is changed within the 
component that provides it. Thus, only the output of 
the component is affected but not the overall 
structure of the application. A simple example is the 
sorting order of search results that can be modified 
by the end user. 

2. Component service usage adaptation: A component 
that uses a service of another component switches 
the service provider, i.e., another component that 
provides the same service. This can happen, for 
example, because the service quality of the now used 
service is superior compared to the formerly used 
one. Component service usage adaptation may yield 
to a better service quality of the component 
switching services. Only the directly involved 
components are affected by the change in system 
configuration. 

3. System configuration adaptation: If the provided 
services of a component change, these changes can 
cascade through the complete system because 
optional dependencies could be resolved or 
mandatory dependencies can no longer be resolved. 
We speak of system configuration adaptation in such 
cases. 

The development of the DAiSI was always motivated 
through running application examples and demonstrators. 
Based on the evaluation results a couple of drawbacks were 
identified. I) DAiSI‘s component model was not able to 
handle service cardinalities, such as exclusive and shared use 
of a specific service or service reference sets. Most of the 
applications realized needed service cardinalities. Due to the 
absence of service cardinalities we had to create 
workarounds. II) DAiSI‘s dynamic configuration mechanism 
was realized as a centralized component. The centralized 
configuration component was easy to implement but 
obviously it turned out to be a bottleneck. 

For those reasons we have developed and implemented 
an improved version of the DAiSI framework. It contains a 
sophisticated component model including service 
cardinalities and a decentralized system configuration 
mechanism. In this paper, the new version of the DAiSI 
framework will be presented. 

The rest of the paper is structured as follows: After a 
short description of the related work we provide an overview 
of the DAiSI framework in Section III. DAiSI‘s main 
essential, a domain model, an adaptive component model, 
and a decentralized dynamic configuration mechanism are 
introduced in this section. Then we describe a small sample 
application to illustrate the decentralized dynamic 

configuration mechanism of the adaptive components in 
Section IV. A short conclusion will round the paper up. 

II. RELATED WORK 

Component-based software development, component 
models and component frameworks provide a solid approach 
to support evolutionary changes to systems. It is a well 
understood method that proved useful in numerous 
applications. Components are the units of deployment and 
integration. This allows high flexibility and easy 
maintenance. During design time components may be added 
or removed from a system [4]. 

However, the early component models did not provide 
means of adding or removing components from a running 
system. Also, the integration of new interaction links (e.g., 
component bindings) was not possible. Service-oriented 
approaches stepped up to the challenge. These systems 
usually maintain a service repository, in which every 
component that enters the system is registered. A component 
that wants to use such a component can query the service 
register for a matching service and connect to it, if one is 
found. For the domain of dynamic systems this means that a 
component can register its provided and required services. If 
a suitable service provider for one of the required services 
registers itself, it can be bound to satisfy the required service 
[5]. 

Service-oriented approaches have the inconvenient 
characteristic of not dealing with the adaptability of 
components. A component developer is solely responsible 
for the implementation of the adaptive behavior. This starts 
at the application logic and stretches to the discovery of 
unresponsive services, the discovery of newly available 
service, the discovery of services with a better quality of 
service, and so on. A couple of frameworks have been 
developed to support dynamic adaptive behavior, while, at 
the same time, making it easier for the developer to focus on 
implementing the behavioral changes in his component.  

One of the first frameworks to support dynamic adaptive 
components was CONIC. It defines a description language 
that can be used to change the structure of modules of a 
running system. It allows the termination of running and the 
instantiation of new modules and the creation or deletion of 
links between them. CONIC was controlled through a 
centralized management console where the procedures for 
the reconfiguration could be entered [6]. 

REX is another framework for the support of dynamic-
adaptive systems. It used the experience gained in the 
research for CONIC and aimed at dynamic adaptive, parallel, 
distributed systems. The concept was that such systems 
consist of components that are linked by interfaces. A new 
interface description language was invented, to be able to 
describe the interfaces. Components were seen as types, 
allowing multiple instances of every component to be 
present at run-time. Just like CONIC, REX allowed the 
creation and termination of component instances and the 
links between them. Both, CONIC and REX share the 
disadvantage that they support dynamic reconfiguration only 
through explicit reconfiguration programs. These need to be 
different for every situation that is detected and intended. 
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The approach moves the adaptation logic out of the 
component, but nevertheless, the developer has to deal with 
the adaptation strategy for every possible occurring change 
[7], [8]. 

Current frameworks such as ProAdapt [9] and 
Config.NETServices [10] have a more generic adaption and 
configuration mechanism. Components that were not known 
during the design-time of the system can be added or 
removed from the dynamic adaptive system during run-time. 
Therefore, a generic component configuration mechanism is 
provided by the framework.  As with our first version of the 
DAiSI framework, these frameworks are based on a 
centralized configuration mechanism. Moreover, the 
underlying component model is restricted—for instance the 
exclusive usage of services cannot be described.  

These are the two main issues we address with this paper. 
On the one hand, a self-organizing infrastructure is needed to 
remove the centralized configuration service as a single point 
of failure. On the other hand, service cardinalities are called 
for. Many service should only be used exclusively (e.g., 
security relevant services) or might only be used by a certain 
number of service consumers (e.g., a component that is 
running on a node with limited computing power). In the 
following section we will therefore present the DAiSI 
approach that addresses these issues. 

III. DAISI – DYNAMIC ADAPTIVE SYSTEM 

INFRASTRUCTURE 

Our approach for self-organizing systems is based on a 
specific framework called DAiSI [11], [12], [13], [14]. 
DAiSI consists of three main parts or elements: a domain 
model, an adaptive component model, and a decentralized 
dynamic configuration mechanism. In the following section, 
we will cover the history of the DAiSI approach, which gives 
an overview of the underlying concepts and realized industry 
projects and prototypes.  

A. History of the DAiSI Approach 

The research towards DAiSI started in 2004 [15] and the 
first version was implemented and published in 2006/07 
[11], [12], [13], [14]. Based on the DAiSI framework, a 
couple of dynamic adaptive systems (research and industrial 
demonstrators) were developed and evaluated. Some of them 
were developed into successful business applications, for 
example [16] and [17]. The demonstrators that have been 
built were summarized in [18] and are briefly sketched in the 
following paragraphs: 

Assisted Bicycle Training: In 2005, we proposed an 
ambient intelligence system for the training of a cycling 
group [19]. The individual training of one cyclist in the 
group is optimized based on the readings of numerous 
sensors, which evaluate his physical condition. Based on this 
information and the physical condition of the other cyclists 
in the group an optimal position for every cyclist is 
calculated, which has an influence on the training mainly 
because of the slipstream. We published the results of the 
research regarding the simulation of a cycling group in [20]. 
DAiSI was used in this scenario to connect the cyclist among 
each other, as well as the cyclists with a team cycling trainer, 

if he belongs to the same team. The resulting demonstrator 
has been exhibited at the CeBIT fair in 2005. 

Assisted Living: In the assisted living scenario the focus 
lay on the monitoring of elderly people – more specific on 
their food and beverage consumption and their overall health 
status. The research started in 2005 under the assumption 
that our society is aging continuously and the expenses for 
health care are steadily increasing.  On the other hand, more 
and more people prefer to stay in their known environment 
when they are aging. To address this issue, we proposed an 
apartment equipped with a multitude of sensors and 
intelligent devices (e.g., a fridge that monitors its contents). 
All these devices monitor and evaluate the state of the 
elderly person (e.g., vital data, did the person fall, did he/she 
drink enough, etc.) and the apartment (e.g., if the food in the 
refrigerator is still edible or already spoilt). DAiSI was used 
in this scenario to connect all sensors and devices so that 
new components can be installed and removed at run time 
[21], [12], [22]. 

Assisted Cross Country Skiing: In 2008, at the CeBIT 
fair, the Sport Information System (SiS) was exhibited. It 
was targeted at the cross country skiing domain. The system 
allowed a skiing trainer to analyze the skiing technique of 
one or more cross country skiers. If no radio connection 
between the trainer and the trainee could be established, the 
DAiSI configured the system in a way that the trainee got 
feedback regarding his technique based on an automated 
analysis of the movement of his skiing sticks. The analysis 
was possible because the skiing sticks were equipped with 
sensor nodes and the trainee carried a personal digital 
assistant (PDA) with himself. 

Emergency Management System: In 2009, the 
Emergency Management System was exhibited at the CeBIT 
fair. Its goal was to support rescue workers in a mass 
casualty incident, also known as major incident. In these 
incidents, the rescue workers are usually outnumbered by the 
amount of casualties. To be able to deal best with such 
incidents, a good overview of the incident site and the 
casualties is mandatory. The casualties‘ treatment needs to 
be prioritized to save as many lives as possible. The 
emergency management system includes sensor nodes for 
every casualty and tablet-like computers for medics. These 
devices allow the computation of an interactive map that 
displays all rescue workers and casualties. Additional special 
hardware allows the monitoring of vital data of casualties 
and therefore the automatic suggestion of treatment priorities 
[23], [24], [25], [26]. The system is highly dynamic, because 
casualties and medic are continuously entering or leaving the 
system.   

SmartSchank: In 2008, the project launched under the 
name ―HomeS‖. It was designed to reduce the loss of 
beverage in the gastronomy through drawn, but not sold 
drinks. As hardware components, the system featured 
intelligent beer taps and registers with a credit/debit system. 
One requirement was the installation of the system without 
the need to manually configure it. Additionally, it was 
supposed to work in small pubs as well as in large arenas. 
DAiSI was used as a conceptual platform that could fulfill  
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these requirements. In 2010, the prototype was exhibited at 
the CeBIT fair [16]. It was later evolved to a commercial 
product by the project partner [17]. 

Smart City and Smart Airport: In the context of the NTH 
Focused Research School for IT Ecosystems a demonstrator 
for a smart airport as an example for an IT ecosystem was 
built. All users within the smart airport were supposedly 
represented by devices called SmartFolks. These devices 
also served as an interface to the ecosystem in the airport. 
Two sub projects in this project were the Smart CheckIn and 
the RuleIT methodology. While the first scenario enables 
travelers to choose if they would rather pay less, but wait 
longer in a line for a standard check in, or if they would 
prefer to pay a little bit extra and get a guaranteed time slot 
to check in without needing to wait at all, the latter scenario 
focused on rule based application configuration and 
introduced user decisions into the application configuration 
process [14], [27], [28], [29].  

Pac-Man: In the OPEN project (in 2010), the migration 
of an application at run time was researched. The focus lay 
on preserving the internal state of the application so that the 
end user can migrate his application from one device to the 
other. Additionally, the graphical user interface was 
supposed to adjust to the device the application was migrated 
to. The classic game Pac-Man was chosen as an application 
example, while DAiSI served as the underlying system 
infrastructure [30], [31]. 

Biathlon Training: This is the sample application that is 
used in this publication. The details will be introduced in 
Section IV.  

We found that the three basic adaptation requirements 
that have been mentioned above, as well as some additional 
features can best be realized by a number of different 
architectural concepts: 

Component Model: DAiSI was invented to support the 
development of service oriented, component based systems. 
Components communicate with each other through provided 
and required services. A subset of the required services can 
enable the component to provide a subset of the provided 
services. This relation is expressed by the so-called 
component configuration. The component model features all 
these elements since early development stages and will be 
further explained throughout the rest of this paper. 

Configuration Service: The configuration service 
composes the application at run time of the present DAiSI 
components, by binding required and provided services to 
each other and configuring every component. 

Registry Service: The configuration service requires 
knowledge of the present component in order to configure 
the system. The registry service maintains a database of all 
installed DAiSI components and the nodes they are deployed 
on. It monitors their responsiveness to discover and remove 
unresponsive components from the system. 

Device Bay: Small scale devices do not always have the 
necessary computing power or memory to be able to 
participate directly in a DAiSI application. The device bay 
concept enables nodes with a higher computing power to 
represent those devices using an adapter pattern. 

Dependability: In early DAiSI implementations provided 
services could satisfy required services if the interfaces 
describing the services were syntactically compatible. 
Further research enabled the requirement of semantic 
compatibility that can be ensured based on run time 
equivalence class testing. 

Migrateability: Moving a running DAiSI component 
from one node to another was a requirement the DAiSI 
needed to satisfy for a particular research project. Through 
an extension of the component model, which allows the 
extraction and insertion of a consistent internal state, this 
requirement can be met. The migration is realized in three 
steps. At first the internal state of the component is extracted. 
In the second step, the component is stopped on the old node 
and started on the new node. Before it is activated, the 
internal state is inserted into the freshly started component in 
a third step. 

Self-Organization: In early versions of the DAiSI, the 
system was configured by the configuration service, which 
followed an optimization algorithm and configured one 
component after the other. With large scale applications the 
configuration through one central configuration service 
becomes a bottleneck. Therefore, the configuration logic was 
moved into the individual components and they became self-
organizing components. Details to the self-organization 
capabilities of the DAiSI can be found in Sections III and IV. 

Architecture Awareness: Although syntactic and 
semantic compatibility already limit, which components can 
use which services of other components, this is often not 
enough. Dependent on the application domain, additional 
architectural rules may need to be enforced. For example, 
should a cross country skier only be linked to two skiing 
sticks; both need to belong to him. Just ensuring that he is 
connected to two skiing sticks does not fulfill the 
requirements of the end user. How the self-organizing 
components ensure that the application architecture 
requirements are met can be found in Sections III and IV. 

Component Market: In conflicting cases where two or 
more components would like to use a particular service that 
cannot be used by all of them, a decision needs to be made. 
A component market solves this issue by introducing a 
currency into the system. Components that want to use 
service of a different component can use their currency to bid 
for a service. If they are chosen, they transfer their currency, 
and the component providing the service has both, the newly 
earned and its default currency. It can use that to bid for 
other services to improve its service quality. The underlying 
idea is that overall system quality improves if a component 
that has its provided services used by many other 
components improves its service quality. 

User Decisions: The composition of an application out of 
the available components follows either an optimization goal 
(e.g., build the application that integrates the most 
components), or a set of rules. In different scenarios this can 
lead to more than one possible solution, which are to be 
considered as of the same quality. In these cases the end user 
can be involved to decide, which way the application should 
be configured. 



599

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Numerous publications discuss these architectural 
concepts with regard to a specific demonstrator or industry 
application. Table I shows a matrix with the different 
concepts in the top row and the demonstrators in the first 
column. The bibliography entries in the intersections 
indicate, which publication explains which concepts with the 
help of which demonstrators. In cases where a concept was 
used for a particular demonstrator but no results have been 
published, a ―yes‖ is written in the matrix to state the fact. 

 
TABLE I.  MATRIX MAPPING ARCHITECTURAL CONCEPTS AND 

DEMONSTRATORS TO PUBLICATIONS 
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B. Domain Model 

The three elements of the DAiSI framework – the 
domain model, an adaptive component model, and a 
decentralized dynamic configuration mechanism will be 
introduced in this section. The three elements and their 
relationship to each other are depicted in Figure 1 using a 

UML class diagram. Note, a complete description of the 
DAiSI framework can be found in [39]. 
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{ordered}
0..*

0..*
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0..*

runRequestedBy
0..*

resolved
0..*

0..*

resolveRequestedBy
0..*

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

# serviceRunnable()
# serviceNotRunnable()
# install()
# uninstall()
# notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

RequiredServiceReferenceSet

- state : StateRSRS
- minNoOfRequiredRefs : int
- maxNoOfRequiredRefs : int

# mustResolve(ComponentConfiguration c)
# mustNotResolve(ComponentConfiguration c)
# install()
# uninstall()
# notifyStateChanged(StateRSRS newState)
+ newService(ProvidedService ps)
+ serviceRemoved(ProvidedService ps)
+ serviceAssigned(ProvidedService ps)
+ serviceNotAssigned(ProvidedService ps)

ComponentConfiguration

- state : StateCC

# mustRun(ProvidedService ps)
# mustNotRun(ProvidedService ps)
# rsrsResolved(RequiredServiceReferenceSet r)
# rsrsNotResolved(RequiredServiceReferenceSet r)
# install()
# uninstall()
# notifyStateChanged(StateCC newState)

DynamicAdaptiveComponent

- state : StateDAC

# configurationResolved(ComponentConfiguration c)
# configurationNotResolved(ComponentConfiguration c)
# notifyStateChanged(StateDAC newState)
+ install()
+ uninstall()

 
Figure 1. Core elements of the DAiSI framework. 

As in other domains, such as the network domain, 
physical connectors (like the RJ 45 connector) and their pin 
configurations are standard and well known by all 
component vendors. A similar situation can be found in the 
operating system domain: The interface for printer drivers is 
standardized and published by the operating system vendor. 
Third-party printer vendors adhere to this interface 
specification to create printer drivers that are plugged into 
the operating system during run time. 

The same principle is used in the DAiSI framework: The 
domain model contains standardized and broadly accepted 
interfaces in the domain. The domain model defines the 
basic notions and concepts of the domain shared by all 
components. This means the domain model provides the 
foundation for the dynamic configuration of the adaptive 
system and the available components. 

The domain model, as shown in Figure 1, consists of the 
DomainInterface and DomainArchitecture classes. The 
domain model itself is represented by an instance of the 
DomainArchitecture class. A domain model contains a set of 
domain interfaces, represented by an instance of the class 
DomainInterface. 

Domain interfaces contain syntactical information like 
method signatures or datatypes occuring in the interfaces. In 
addition they may also contain a behavioral specification of 
the interface following the design by contract approach, for 
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instance using pre- and postconditions and invariants to 
describe the functional behavior of a domain interface [25]. 

Usually, components need services from other 
components to provide their own service within the dynamic 
adaptive system. To indicate, which services a component 
provides and requires it refers to the corresponding 
DomainInterface. As components providing services and 
components requiring services refer to the same domain 
interface description DAiSI is able to identify those and bind 
these components together during run time. 

Using simple domain interface descriptions the 
correctness of the binding can only be guaranteed on a 
syntactical level. Once the domain interface descriptions 
contain additional information about the functional behavior, 
the correctness of the binding can also be guaranteed on the 
behavioral level. Therefore, we have developed a 
sophisticated approach based on run-time testing. Further 
information of DAiSI‘s solution to guarantee functional 
correctness of dynamic adaptive systems during run time can 
be found in [25], [26]. 

C. Adaptive Component Model 

Each component in the system is represented by the 
DynamicAdaptiveComponent class. Each component may 
provide services to other components or use services, 
provided by other components. The services a component 
provides are represented by the ProvidedService class. The 
services a component requires are specified by the 
RequiredServiceReferenceSet class, where each instance 
represents a set of required services for exactly one domain 
interface. The ComponentConfiguration class of the 
component model represents a mapping between services 
required and provided. If all the required services of a 
component configuration are available, the provided services 
of that component configuration can in turn be provided to 
other components. In the following subsections the 
individual parts of the component model are introduced in 
more detail. Afterwards, the interplay of these parts during 
the configuration process will be explained. 

1) Dynamic Adaptive components 
Each component instance within the system is 

represented by an instance of the class 
DynamicAdaptiveComponent, see Figure 2.  

 

DynamicAdaptiveComponent

- state : StateDAC

# configurationResolved(ComponentConfiguration c)
# configurationNotResolved(ComponentConfiguration c)
# notifyStateChanged(StateDAC newState)
+ install()
+ uninstall()

 
Figure 2. DynamicAdaptiveComponent class. 

By calling the install or uninstall methods, a component 
is, respectively, published or removed from the system. If 
install is called, all other parts of that component are 
informed by calling the trigger install. The framework then 

starts trying to resolve dependencies on other components in 
order to run ProvidedServices and provide them to other 
components within the system. Each DynamicAdaptive-
Component realizes a state machine, as shown in Figure 3 
whose current state is stored in a variable called state. 

 
DynamicAdaptiveComponent

NOT_RESOLVED

configurationResolved(
           ComponentConfiguration c)/
activateConfiguration(c);

RESOLVED

configurationResolved(ComponentConfiguration c)/
self.activatable.add(config)
if(this.contains.indexOf(c) < this.contains.indexOf(this.current)) {
   switchCurrentTo(c);
}

configurationNotResolved(ComponentConfiguration c)
[self.activatable->size()>1]/
this.activatable.remove(c);
if(c==this.current) {
  switchCurrentTo(this.activatable.first());
}

configurationNotResolved(
                     ComponentConfiguration c)
[self.activatable->size()=1]/
deactivateConfiguration(c);

uninstall()

uninstall()

 
Figure 3. State machine - DynamicAdaptiveComponent class. 

Two states are distinguished for DynamicAdaptive-
Component, namely RESOLVED and NOT_RESOLVED. 
In the beginning a component is in the NOT_RESOLVED 
state. If, for a single ComponentConfiguration, all 
dependencies to services of other components are resolved, 
the trigger configurationResolved of DynamicAdaptive-
Component is called and the state machine switches to state 
RESOLVED. Every time a state transition takes place, the 
abstract method, notifyStateChanged, is called. A component 
developer can override this method in order to react to 
certain state transitions, e.g., by showing or fading out a 
graphical user interface. 

2) Component Configuration 
Each component defines at least one Component-

Configuration. 
 

 

ComponentConfiguration

- state : StateCC

# mustRun(ProvidedService ps)
# mustNotRun(ProvidedService ps)
# rsrsResolved(RequiredServiceReferenceSet r)
# rsrsNotResolved(RequiredServiceReferenceSet r)
# install()
# uninstall()
# notifyStateChanged(StateCC newState)

 
Figure 4. ComponentConfiguration class. 

Figure 4 shows the corresponding class diagram for 
ComponentConfiguration. The defined ComponentConfigu-
rations are connected to a component by the association 
contains. Each ComponentConfiguration represents a
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mapping between a set of required and provided services. If 
all services required by a ComponentConfiguration are 
available, the corresponding provided services can be 
provided to other components. That configuration is then 
marked as activatable. In case a component has more than 
one ComponentConfiguration, an order must be defined by 
the component developer. During run time, at most one 
ComponentConfiguration can be active. That one is then 
marked as current and only those provided services are 
executed that are connected to ComponentConfiguration, 
which is marked as current.  

 
ComponentConfiguration

NOT_RESOLVED

RESOLVING

mustRun(ProvidedService ps)/
this.runRequestedBy.add(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()>1 or self.declares->isEmpty()]/
this.runRequestedBy.remove(ps);

rsrsResolved(RequiredServiceReferenceSet rsrs)
[self.resolved->size()+1<self.declares->size()]/
this.resolved.add(rsrs);

rsrsNotResolved(RequiredServiceReferenceSet rsrs)
this.resolved.remove(rsrs);

mustRun(ProvidedService ps)
[¬self.declares->isEmpty()]/
this.runRequestedBy.add(ps);
for(RequiredServiceReferenceSet r : this.declares) {
   r.mustResolve(this);
}

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()=1 and
 ¬self.requestRun]/
for(RequiredServiceReferenceSet r : this.declares) {
    r.mustNotResolve(this);
}

rsrsResolved(RequiredServiceReferenceSet r)
[self.resolved->size()+1=self.declares->size()]/
this.resolved.add(r);
this.containedBy.configurationResolved(this);

rsrsNotResolved(RequiredServiceReferenceSet r)/
this.containedBy.configurationNotResolved(this);
this.resolved.remove(r);

mustRun(ProvidedService ps)
[self.declares->isEmpty()]/
this.runRequestedBy.add(ps);
this.containedBy.configurationResolved(this)

uninstall()/
for(RequiredServiceReferenceSet r : this.declares) {
   r.mustNotResolve(this);
}

RESOLVED

mustRun(ProvidedService ps)/
this.runRequestedBy.add(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()>1 or 
this.declares.isEmpty()]/
this.runRequestedBy.remove(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()=1 and
 ¬self.requestRun]/
for(RequiredServiceReferenceSet r : this.declares) {
    rsrs.mustNotResolve(this);
}

 
Figure 5. State machine - ComponentConfiguration class. 

Each ComponentConfiguration realizes a state machine, 
as shown in Figure 5, with three states, namely 
NOT_RESOLVED, RESOLVING and RESOLVED. If a 
ProvidedService has to be executed (e.g., because another 
component needs it), the trigger mustRun of 
ComponentConfiguration is called. Afterwards the trigger 
mustResolve is called at each RequiredServiceReferenceSet 
in order to initiate the resolving of dependencies to other 
components. A RequiredServiceReferenceSet informs the 
ComponentConfiguration of the current status of the 
dependency resolution by calling the triggers rsrsResolved 
and rsrsNotResolved.  

A ComponentConfiguration is in RESOLVED state if the 
dependencies of all required services are resolved, i.e., all 
connected RequiredServiceReferenceSets have called the 
trigger rsrsResolved. The ComponentConfiguration in turn 
calls configurationResolved to inform the DynamicAdaptive-
Component. 

3) Provided Service 
A component‘s provided services are represented by the 

class ProvidedService shown in the class diagram in Figure 
6. Each one implements exactly one domain interface. For 
each ProvidedService the number of service users who are 
allowed to use the service in parallel can be specified. This is 
done by setting the variable maxNoOfUsers to the required 
value. In our component model, a service is executed for 
only two reasons. The first reason is that there exist one or 
more components that want to use that service. Requests for 
service usage can be placed by calling the method wantsUse, 
or wantsNotUse if the usage request has become invalid. If 
there is a usage request for a ProvidedService, the connected 
ComponentConfigurations are informed by calling the 
trigger mustRun. The second reason that a service might 
have to be executed is that it provides some kind of direct 
benefit for end users. A component developer can set the flag 
requestRun in this case (e.g., because the service realizes a 
graphical user interface). 

A ProvidedService realizes a state machine with three 
states namely NOT_RUNNING, RUNNABLE and 
RUNNING, as illustrated in Figure 7. A service is in 
RUNNABLE state if it is exclusively connected to 
ComponentConfigurations whose dependendies are resolved 
but none of them is marked as current. This is the case for a 
ComponentConfiguration that has higher priority and that is 
marked as activatable. However, a service is in RUNNING 
state if it is connected to a ComponentConfiguration, which 
is marked as current. If a ComponentConfiguration becomes 
current, all connected ProvidedServices are informed by 
calling the serviceRunnable trigger. 
 

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

# serviceRunnable()
# serviceNotRunnable()
# install()
# uninstall()
# notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

 
Figure 6. ProvidedService class. 
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ProvidedService

NOT_RUNNING

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);

wantsNotUse(RequiredServiceReferenceSet rsrs)
interestedServiceUserRemoved(rsrs);

RUNNING

entry/assignServiceInitially();

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);
assignService(rsrs);

wantsNotUse(RequiredServiceReferenceSet rsrs)
[self.runRequestedBy->size()>1 or self.requestRun]/
interestedServiceUserRemoved(rsrs);
replaceServiceUser(rsrs);

serviceRunnable()
[¬ self.requestRun and 

self.runRequestedBy->isEmpty()]

serviceNotRunnable()

wantsNotUse(RequiredServiceReferenceSet rsrs)
[self.requestedBy->size()=1 and ¬self.requestRun]/
interestedServiceUserRemoved(rsrs);
this.assignedTo.remove(rsrs);

uninstall()

RUNNABLE

serviceRunnable()
[self.requestRun or 

¬self.runRequestedBy->isEmpty()]

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);

serviceNotRunnable()/
removeAllServiceUsers();

uninstall()

initPS()

 
Figure 7. State machine - ProvidedService class. 

4) Required Service Reference Set 
A component may need functionality provided by other 

components in the system. In our component model those 
dependencies are specified with the RequiredService-
ReferenceSet class, shown in Figure 8. Each instance of 
RequiredServiceReferenceSet represents dependencies on a 
set of services that implement the same domain interface. 
That domain interface is specified by the association 
refersTo. A component representing a trainer for example, 
may define a RequiredServiceReferenceSet that refers to a 
domain interface called IAthlete in order to get access to the 
training data of athletes. The minimum and maximum 
number of required references to services can be specified by 
setting the variables minNoOfRequiredRefs and maxNoOf-
RequiredRefs. 

 

RequiredServiceReferenceSet

- state : StateRSRS
- minNoOfRequiredRefs : int
- maxNoOfRequiredRefs : int

# mustResolve(ComponentConfiguration c)
# mustNotResolve(ComponentConfiguration c)
# install()
# uninstall()
# notifyStateChanged(StateRSRS newState)
+ newService(ProvidedService ps)
+ serviceRemoved(ProvidedService ps)
+ serviceAssigned(ProvidedService ps)
+ serviceNotAssigned(ProvidedService ps)

 
Figure 8. RequiredServiceReferenceSet class. 

A RequiredServiceReferenceSet realizes a state machine 
with three states, namely NOT_RESOLVED, RESOLVING 
and RESOLVED. Figure 9 visualizes this state machine. As 
soon as there is a request for resolving dependencies, the 
state switches to RESOLVED or RESOLVING, depending 
on the value of minNoOfRequiredRefs. If it is zero, then the 
requirements are fulfilled and it can switch directly to 
RESOLVED. A request for dependency resolution is placed 
by calling the mustResolve trigger. 

 
RequiredServiceReferenceSet

RESOLVING

entry/for(ProvidedSerivce ps : this.canUse) {requestService(ps);}

newService(ProvidedService ps) [self.refersTo=ps.implements]/
this.canUse.add(ps); requestService(ps);

serviceRemoved(ProvidedService ps)/
this.canUse.remove(ps); cancelRequestService(ps);

mustResolve(ComponentConfiguration config)/this.resolveRequestedBy.add(config);

mustNotResolve(ComponentConfiguration config)
[self.resolveRequestedBy->size()>1]/this.resolveRequestedBy.remove(config);

serviceAssigned(ProvidedService ps)
[self.uses->size()+1<self.minNoOfRequiredRefs]/
this.uses.add(ps);

serviceNotAssigned(ProvidedService ps)/this.uses.remove(ps);

NOT_RESOLVED

newService(ProvidedService ps) 
[self.refersTo=ps.implements]/
this.canUse.add(ps);

serviceRemoved(ProvidedService ps)/

this.canUse.remove(ps);

mustResolve(ComponentConfiguration c)
[self.minNoOfRequiredRefs>0]/
this.resolveRequestedBy.add(c);

RESOLVED

newService(ProvidedService ps) [self.refersTo=ps.implements]/
this.canUse.add(ps);
if(this.uses.size()<this.maxNoOfRequiredRefs) {
   requestService(ps);
}

serviceRemoved(ProvidedService ps)
this.canUse.remove(ps); cancelRequestService(ps);

mustResolve(ComponentConfiguration c)/
this.resolveRequestedBy.add(c);

mustNotResolve(ComponentConfiguration c)
[self.resolveRequestedBy->size()>1]/
this.resolveRequestedBy.remove(c);

serviceAssigned(ProvidedService ps)/newUsableService(ps);

serviceNotAssigned(ProvidedService ps)
[self.uses>self.minNoOfRequiredRefs]/
serviceNotUsableAnymore(ps);

mustNotResolve(ComponentConfiguration c)
[self.resolveRequestedBy->size()=1]/
this.resolveRequestedBy.remove(c);
for(ProvidedService ps : this.wantsUse) {
   cancelRequestService(ps);
}
this.uses.clear();

uninstall()

mustNotResolve(
     ComponentConfiguration c)
[self.resolveRequestedBy->size()=1]/
for(ProvidedService ps : this.wantsUse) {
   cancelRequestService(ps);
}

serviceNotAssigned(ProvidedService ps)
[self.uses=self.minNoOfRequiredRefs]/
this.uses.remove(ps);
for(ComponentConfiguration c : this.declaredBy) {
   c.rsrsNotResolved(this);
}

serviceAssigned(ProvidedService ps)
[self.uses->size()+1=self.minNoOfRequiredRefs]/
this.uses.add(ps);
for(ComponentConfiguration c : this.declaredBy) {
   c.rsrsResolved(this);
}

mustResolve(ComponentConfiguration c)
[self.minNoOfRequiredRefs=0]/
self.resolveRequestedBy.add(c);
for(ComponentConfiguration c : this.declaredBy) {
   c.rsrsResolved(this);
}

uninstall()

uninstall()

  
Figure 9. State machine - RequiredServiceReferenceSet class. 

5) Notation for DAiSI Components 
To describe DAiSI components we use a compact 

notation, illustrated in Figure 10. Provided services are 
notated as circles, required services as semicircles, 
component configurations are depicted as crossbars, and the 
component itself is represented by a rectangle. Provided 
services that are intended to be activated (flag requestRun is 
true) are shown as a black circle. 
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Figure 10. Notation for DAiSI components. 

The component depicted in Figure 10 thus specifies two 
component configurations. The first requires exactly one 
service, which implements the DomainInterface IPulse. If 
such a service is available, the service variable p1 of type 
IAthlete can in turn be provided to other components in the 
system. If no pulse service is available, the second 
configuration can still be activated because that one defines 
no dependencies to other services. In that case, the athlete 
component provides the service variable p2 to other 
components. 

D. Decentralized Dynamic Configuration Mechanism 

There exist three types of relations between 
RequiredServiceReferenceSets and ProvidedServices, 
represented by the associations canUse, wantsUse and uses. 
The set of services that implement the domain interface 
referred by the RequiredServiceReferenceSet is represented 
by canUse. Note, this only guarantees a syntactically correct 
binding. In [25] and [26], we have shown how this approach 
can be extended to guarantee functional-behaviorally correct 
binding as well during run time using a run-time testing 
approach.  

The wantsUse set holds references to those services for 
which a usage request has been placed by calling wantsUse. 
And the uses set contains references to those services, which 
are currently in use by the component or by 
RequiredServiceReferenceSet.  

Each time a new service becomes available in the system, 
the newService method is called with a reference to the 
service as parameter. The new service is added to all canUse 
sets, if the corresponding RequiredServiceReferenceSet 
refers to the same DomainInterface as the ProvidedServices. 
If there is a request for dependency resolution (by a call of 
the mustResolve trigger), usage requests are placed at the 
services in canUse by calling wantsUse and those service 
references are copied to the wantsUse set. ProvidedServices 

The management of these three associations—canUse, 
wantsUse and uses—between RequiredServiceReferenceSets 
and ProvidedServices is handled by DAiSI‘s decentralized 
dynamic configuration mechanism. This configuration 
mechanism relays on the state machines, presented in the 
previous sections, of the corresponding classes in the DAiSI 
framework and their interaction. In the following section, we 
will first describe the local configuration mechanism 
component and then the interaction between two components 
for inter-component configuration. 

 

 
Figure 11. CTrainer component. 

1) Local Configuration Mechanism 
Assume a given component as shown in Figure 11. The 

component t of type CTrainer has a single configuration. It 
provides a service of type ITrainer to the environment, 
which can be used by an arbitrary number of other 
components. The component requires zero to any number of 
references to services of type IAthlete. 

The boolean flag requestRun is true for the service 
provided. Hence, DAiSI has to run the component and 
provide the service within the dynamic adaptive system to 
other components and to users. As the component requires 
zero reference to services of type IAthlete, DAiSI can run the 
component directly and thereby provides the component 
service to other components and users as shown in the 
sequence diagram in Figure 12. 

 

 
Figure 12. Local configuration mechanism component. 

 

2) Inter-Component Configuration Mechanism 

 

 
Figure 13. CAthlete and CPulse components. 

Now assume two components: The CAthlete component, 
shown on the right hand side of Figure 13, requires zero or 
one reference to a service of type IPulse. The second 
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component, CPulse, shown on the left hand side of Figure 
13, provides a service of type IPulse. Note, this service can 
only be exclusively used by a single component. 

 

 
Figure 14. Inter-component configuration mechanism. 

Once the CPulse component is installed or activated 
within the dynamic adaptive system, DAiSI integrates the 
new service in the canUse relationship of the 
RequiredServiceReferenceSet r1 of the component CAthlete. 
Then DAiSI informs (calling the method newService) the 
CAthlete component that a new service that can be used is 
available as shown in Figure 14. DAiSI indicates that 
CAthlete wants to use this new service by adding this service 
in the set of services that CAthlete wants to use (set 
wantsUse of CAthlete). Once the service runs it is assigned 
to the CAthlete component, which can use the service from 
now on (added to the set uses of CAthlete). 

IV. SAMPLE APPLICATION – SMART BIATHLON TRAINING 

SYSTEM 

As already mentioned, we have realized and used a 
couple of dynamic adaptive systems based on DAiSI. One of 
the first domains for which we developed dynamic adaptive 
systems was training systems for athletes. For that reason we 
have chosen this domain to implement the first dynamic 
adaptive system on top of the new DAiSI version. 

A. Domain Model 

In the desired dynamic adaptive system, athletes 
(IAthlete) and trainers (ITrainer) can supervise the pulse 
(IPulse) of the athlete (see Figure 15). Moreover, athletes 
might use ski sticks (IStick), which have gyro sensors. Once 
connected with the sticks the athlete as well as the trainer can 
monitor the technically appropriate use of the sticks during 
skiing for the required skiing style. Once the biathlete has 
reached a shooting line (IShootingLine) he is allowed to use 
the shooting line only if a supervisor is available 
(ISupervisor). 

 
Figure 15. Domain model - "Smart Biathlon Training System". 

B. Available Components 

For a simple version of the system only three component 
types have been realized (see Figure 16): CPulse, CAthlete, 
and CTrainer. Note that additional components have been 
realized and evaluated for more sophisticated systems. For 
the purposes of this paper we only use these three 
components to show the decentralized configuration 
mechanism. 

 

 
Figure 16. Adaptive components: CPulse, CAthlete, CTrainer. 

The CPulse component provides an exclusive usable 
service IPulse and requires no other services from the 
dynamic adaptive system. The CAthlete component provides 
two services: IPerson and IAthlete. In conf2 it provides the 
service, IPerson, which has the flag, requestRun, and 
requires no service from the environment. In conf1 it 
provides the service, IAthlete, but therefore requires a 
service, IPulse. And finally the CTrainer component may 
supervise an arbitrary number of athletes and thus provides a 
corresponding number of ITrainer interfaces to the real 
trainer, supporting him with the online training information 
of the supervised athletes. 

C. Decentralized Dynamic Configuration Mechanism 

Assume the following situation in the dynamic adaptive 
system. The component, CPulse, is activated and the 
component, CAthlete, is activated (see Figure 17). As the 
requestRun flag of the provided service of conf2 is set and no 
additional service references are needed, this configuration is 
activated and the service is provided within the dynamic 
adaptive system. 
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Figure 17. Initial situation in the Dynamic Adaptive System. 

For the better configuration, conf1, CAthlete requires a 
reference to a service of type IPulse. The CPulse component 
is able to provide this service. As the provided service, 
IAthlete, of configuration conf1 of component CAthlete is not 
requested by any other component and has not set the 
requestRun flag, this higher configuration is not activated. 

Figures 18 to 29 show the following situation: A 
component, CTrainer, has been activated and integrated into 
our dynamic adaptive system. 
 

 
Figure 18. The CTrainer component ―jupp‖ is deployed. 

In the following the decentralized dynamic configuration 
mechanism is shown. Based on the interaction between the 
state machines of the adaptive components the dynamic 
adaptive system is reconfigured and the component is 
dynamically integrated into the system. 
 

 
Figure 19. The component configuration conf1 of Jupp‘s CTrainer 

component switches its state to RESOLVING. 

The configuration strategy is then as follows. Each 
service with requestRun flag set—in Figure 18 the new 
service ITrainer of the CTrainer component—resolves the 
required services transitively from the root to the leaf.

 Figures 18 to 23 show how the involved components are 
switched to the state RESOLVING.  
 

 
Figure 20. The interface IAthlete of Jupp‘s CTrainer component switches 

its state to RESOLVING. 

Figure 21. The component configuration conf1 of Tim‘s CAthlete 
component switches its state to RESOLVING. 

 Figure 22. The interface IPulse of Tim‘s CAthlete component switches its 

state to RESOLVING. 

Figure 23. The component configuration conf1 of the pulse component is 

marked as RESOLVED, because it has no required services. 

Once all required services are resolved these services are 
activated (RUNNING) from the leaf to the root. This can be 
seen in Figures 24 to 29 of the application example. If not all 
required services were resolvable, the resolved services are 
set back to NOT_RESOLVED. This allows other services to 
resolve these services and frees the reserved resources. 
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Figure 24. The pulse component is marked as RESOLVED. 

 
Figure 25. The IPulse interface is now RUNNING, because its 

requirements are resolved and a consumer (Tim‘s athlete component)  
is present. 

 
Figure 26. The required IPulse service of Tim‘s CAthlete component 

switches its state to RESOLVED. 

 Figure 27. The component configuration conf1 of Tim‘s CAthlete 

component is marked as RESOLVED. 

 Figure 28. The provided IAthlete interface is marked as RUNNING, 

IPerson is now NOT_RUNNING, as the active component configuration 
changed from conf2 to conf1. 

 
Figure 29. The configuration process is finished. Jupp‘s CTrainer 

component is now in the state RESOLVED, together with its component 

configurations and required services. Jupp‘s ITrainer interface is 

RUNNING. 

V. CONCLUSION AND FUTURE WORK 

The DAiSI approach is that a developer does not have to 
implement a whole dynamic adaptive system on his own. 
Instead the developer can develop one or more components 
for a specific domain. This is only possible if a domain 
model is available as described. This domain model has to 
define the interfaces between the adaptive components of the 
dynamic adaptive system in the specific domain.  

Based on this, the developer can develop even a single 
component and define which interfaces from the domain 
architecture are required or provided in the different 
configurations of this component. Moreover, one can 
develop mock-up components providing the required 
interfaces in order to test the new component during 
development. 

To support the component development DAiSI comes 
with two implementation frameworks. These frameworks 
provide several helper classes enabling a quick 
implementation of dynamic adaptive systems in Java as well 
as in C++, concentrating on the functional features of the 
component to be developed. DAiSI-based dynamic adaptive 
systems can be distributed across various machines. DAiSI is 
also able to establish dynamic adaptive systems across 
language barriers—Java- and C++-based DAiSI components 
can be linked together through DAiSI to form a dynamic 
adaptive system. 

Figure 20. DAiSI Dynamic Adaptive System Monitor. 

In order to monitor and debug a DAiSI-based dynamic 
adaptive system during development, the developer may use 
the so called ―Dynamic Adaptive System Configuration 
Browser.‖ This allows viewing the internal structure of the 
dynamic adaptive system in a graphical tree view. 

As discussed in the introduction, DAiSI was used to 
realize and evaluate a couple of different applications. This 
allowed two main drawbacks of DAiSI to be identified: lack 
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of service cardinalities and the centralized configuration 
mechanism. 

In this paper, we have shown DAiSI‘s new component 
model supporting service cardinalities and the new 
decentralized dynamic configuration mechanism. The 
decentralized configuration mechanism is needed, in order to 
improve performance and fault-tolerance, because of the 
omitted centralized configuration service. Service 
cardinalities are called for to increase applicability, because 
real-life systems often have limitations regarding the amount 
of service users of their provided services, and may require 
more than exactly one service of a given type. A first 
dynamic adaptive system has been successfully implemented 
in the assisted sports training domain. 

Consequently, further systems will be realized based on 
the new DAiSI version. Additional research is required to 
establish concepts to provide a proper balance between 
controllability of the system‘s applications and the autonomy 
of the system components participating in these applications. 
To further increase applicability, more research will be put 
into the introduction of interface roles, to be able to make 
additional constraints on available provided services, used to 
satisfy required services. 
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