
595

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DAiSI—Dynamic Adaptive System Infrastructure:

Component Model and Decentralized Configuration Mechanism

Holger Klus

ROSEN Technology & Research Center GmbH

Lingen (Ems), Germany

hklus@rosen-group.com

Andreas Rausch, Dirk Herrling

Technische Universität Clausthal

Clausthal-Zellerfeld, Germany

{andreas.rausch, dirk.herrling}@tu-clausthal.de

Abstract— Dynamic adaptive systems are systems that change

their behavior according to the needs of the user at run time,

based on context information. Since it is not feasible to develop

these systems from scratch every time, a component model

enabling dynamic adaptive systems is called for. Moreover, an

infrastructure is required that is capable of wiring dynamic

adaptive systems from a set of components in order to provide

a dynamic and adaptive behavior to the user. In this paper we

present just such an infrastructure or framework—called

Dynamic Adaptive System Infrastructure (DAiSI). Because

DAiSI has been developed for a number of years, we will cover

as well the history of DAiSI as the newest advances. We will

present an example illustrating the adaptation capabilities of

the framework we introduce. The focus of the paper is on the

underlying component model of DAiSI and the decentralized

configuration mechanism.

Keywords— dynamic adaptive systems; component model;

component composition; adaptation; componentware;

component container; decentralized configuration.

I. INTRODUCTION

This paper is an extended version of a paper presented at
the Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications [1].

Software-based systems pervade our daily life—at work
as well as at home. Public administration or enterprise
organizations can scarcely be managed without software-
based systems. We come across devices executing software
in nearly every household. The continuous increase in size
and functionality of software systems has made some of
them among the most complex man-made systems ever
devised [2].

In the last two decades the trend towards ―everything,
every time, everywhere‖ has been dramatically increased
through a) smaller mobile devices with higher computation
and communication capabilities, b) ubiquitous availability of
the Internet (almost all devices are connected with the
Internet and thereby connected with each other), and c)
devices equipped with more and more connected, intelligent
and sophisticated sensors and actuators.

 Nowadays, these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT
environment. Users expect them not only to provide their
primary services but also to collaborate autonomously with

each other and thus to provide real added value. The
challenge is therefore to provide software systems that are
robust in the presence of increasing challenges such as
change and complexity [3].

The reasons for the steady increase in complexity are
twofold: On the one hand, the set of requirements imposed
on software systems is becoming larger and larger as the
extrinsic complexity increases, in the form of, for example,
additional functionality and variability. In addition, the
structures of software systems—in terms of size, scope,
distribution and networking of the system among other
things—are themselves becoming more complex, which
leads to an increase in the intrinsic complexity of the system.

Change is inherent, both in the changing needs of users
and in the changes, which take place in the operational
environment of the system. Hence, it is essential that our
systems are able to adapt to maintain the satisfaction of the
user expectations and environmental changes in terms of an
evolutionary change. Dynamic change, in contrast to
evolutionary change, occurs while the system is operational.
Dynamic change requires that the system adapts at run time.

Since the complexity and change may not permit human
intervention, we must plan for automated management of
adaptation. The systems themselves must be capable of
determining what system change is required, and in initiating
and managing the change process wherever possible. This is
the aim of self-managed systems.

Self-managed systems are those capable of adapting to
the current context as required though self-configuration,
self-healing, self-monitoring, self-tuning, and so on. These
are also referred to as self-x, autonomic systems.
Additionally, new components may enter or leave the system
at run time. We call those systems ‗dynamic adaptive‘.

Providing dynamic adaptive systems is a great challenge
in software engineering [3]. In order to provide dynamic
adaptive systems, the activities of classical development
approaches have to be partially or completely moved from
development time to run time. For instance, devices and
software components can be attached to a dynamic adaptive
system at any time. Consequently, devices and software
components can be removed from the dynamic adaptive
system or they can fail as the result of a defect. Hence, for
dynamic adaptive systems, system integration takes place
during run time.

596

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To support the development of dynamic adaptive systems
a couple of infrastructures and frameworks have been
developed, as discussed in a related work section, Section II.
In our research group we have also developed a framework
for dynamic adaptive (and distributed) systems, called
DAiSI.

We believe that service oriented, component based,
dynamic adaptive systems need to address at least three
kinds of adaptation:

1. Component service implementation adaptation: The
implementation of a service is changed within the
component that provides it. Thus, only the output of
the component is affected but not the overall
structure of the application. A simple example is the
sorting order of search results that can be modified
by the end user.

2. Component service usage adaptation: A component
that uses a service of another component switches
the service provider, i.e., another component that
provides the same service. This can happen, for
example, because the service quality of the now used
service is superior compared to the formerly used
one. Component service usage adaptation may yield
to a better service quality of the component
switching services. Only the directly involved
components are affected by the change in system
configuration.

3. System configuration adaptation: If the provided
services of a component change, these changes can
cascade through the complete system because
optional dependencies could be resolved or
mandatory dependencies can no longer be resolved.
We speak of system configuration adaptation in such
cases.

The development of the DAiSI was always motivated
through running application examples and demonstrators.
Based on the evaluation results a couple of drawbacks were
identified. I) DAiSI‘s component model was not able to
handle service cardinalities, such as exclusive and shared use
of a specific service or service reference sets. Most of the
applications realized needed service cardinalities. Due to the
absence of service cardinalities we had to create
workarounds. II) DAiSI‘s dynamic configuration mechanism
was realized as a centralized component. The centralized
configuration component was easy to implement but
obviously it turned out to be a bottleneck.

For those reasons we have developed and implemented
an improved version of the DAiSI framework. It contains a
sophisticated component model including service
cardinalities and a decentralized system configuration
mechanism. In this paper, the new version of the DAiSI
framework will be presented.

The rest of the paper is structured as follows: After a
short description of the related work we provide an overview
of the DAiSI framework in Section III. DAiSI‘s main
essential, a domain model, an adaptive component model,
and a decentralized dynamic configuration mechanism are
introduced in this section. Then we describe a small sample
application to illustrate the decentralized dynamic

configuration mechanism of the adaptive components in
Section IV. A short conclusion will round the paper up.

II. RELATED WORK

Component-based software development, component
models and component frameworks provide a solid approach
to support evolutionary changes to systems. It is a well
understood method that proved useful in numerous
applications. Components are the units of deployment and
integration. This allows high flexibility and easy
maintenance. During design time components may be added
or removed from a system [4].

However, the early component models did not provide
means of adding or removing components from a running
system. Also, the integration of new interaction links (e.g.,
component bindings) was not possible. Service-oriented
approaches stepped up to the challenge. These systems
usually maintain a service repository, in which every
component that enters the system is registered. A component
that wants to use such a component can query the service
register for a matching service and connect to it, if one is
found. For the domain of dynamic systems this means that a
component can register its provided and required services. If
a suitable service provider for one of the required services
registers itself, it can be bound to satisfy the required service
[5].

Service-oriented approaches have the inconvenient
characteristic of not dealing with the adaptability of
components. A component developer is solely responsible
for the implementation of the adaptive behavior. This starts
at the application logic and stretches to the discovery of
unresponsive services, the discovery of newly available
service, the discovery of services with a better quality of
service, and so on. A couple of frameworks have been
developed to support dynamic adaptive behavior, while, at
the same time, making it easier for the developer to focus on
implementing the behavioral changes in his component.

One of the first frameworks to support dynamic adaptive
components was CONIC. It defines a description language
that can be used to change the structure of modules of a
running system. It allows the termination of running and the
instantiation of new modules and the creation or deletion of
links between them. CONIC was controlled through a
centralized management console where the procedures for
the reconfiguration could be entered [6].

REX is another framework for the support of dynamic-
adaptive systems. It used the experience gained in the
research for CONIC and aimed at dynamic adaptive, parallel,
distributed systems. The concept was that such systems
consist of components that are linked by interfaces. A new
interface description language was invented, to be able to
describe the interfaces. Components were seen as types,
allowing multiple instances of every component to be
present at run-time. Just like CONIC, REX allowed the
creation and termination of component instances and the
links between them. Both, CONIC and REX share the
disadvantage that they support dynamic reconfiguration only
through explicit reconfiguration programs. These need to be
different for every situation that is detected and intended.

597

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The approach moves the adaptation logic out of the
component, but nevertheless, the developer has to deal with
the adaptation strategy for every possible occurring change
[7], [8].

Current frameworks such as ProAdapt [9] and
Config.NETServices [10] have a more generic adaption and
configuration mechanism. Components that were not known
during the design-time of the system can be added or
removed from the dynamic adaptive system during run-time.
Therefore, a generic component configuration mechanism is
provided by the framework. As with our first version of the
DAiSI framework, these frameworks are based on a
centralized configuration mechanism. Moreover, the
underlying component model is restricted—for instance the
exclusive usage of services cannot be described.

These are the two main issues we address with this paper.
On the one hand, a self-organizing infrastructure is needed to
remove the centralized configuration service as a single point
of failure. On the other hand, service cardinalities are called
for. Many service should only be used exclusively (e.g.,
security relevant services) or might only be used by a certain
number of service consumers (e.g., a component that is
running on a node with limited computing power). In the
following section we will therefore present the DAiSI
approach that addresses these issues.

III. DAISI – DYNAMIC ADAPTIVE SYSTEM

INFRASTRUCTURE

Our approach for self-organizing systems is based on a
specific framework called DAiSI [11], [12], [13], [14].
DAiSI consists of three main parts or elements: a domain
model, an adaptive component model, and a decentralized
dynamic configuration mechanism. In the following section,
we will cover the history of the DAiSI approach, which gives
an overview of the underlying concepts and realized industry
projects and prototypes.

A. History of the DAiSI Approach

The research towards DAiSI started in 2004 [15] and the
first version was implemented and published in 2006/07
[11], [12], [13], [14]. Based on the DAiSI framework, a
couple of dynamic adaptive systems (research and industrial
demonstrators) were developed and evaluated. Some of them
were developed into successful business applications, for
example [16] and [17]. The demonstrators that have been
built were summarized in [18] and are briefly sketched in the
following paragraphs:

Assisted Bicycle Training: In 2005, we proposed an
ambient intelligence system for the training of a cycling
group [19]. The individual training of one cyclist in the
group is optimized based on the readings of numerous
sensors, which evaluate his physical condition. Based on this
information and the physical condition of the other cyclists
in the group an optimal position for every cyclist is
calculated, which has an influence on the training mainly
because of the slipstream. We published the results of the
research regarding the simulation of a cycling group in [20].
DAiSI was used in this scenario to connect the cyclist among
each other, as well as the cyclists with a team cycling trainer,

if he belongs to the same team. The resulting demonstrator
has been exhibited at the CeBIT fair in 2005.

Assisted Living: In the assisted living scenario the focus
lay on the monitoring of elderly people – more specific on
their food and beverage consumption and their overall health
status. The research started in 2005 under the assumption
that our society is aging continuously and the expenses for
health care are steadily increasing. On the other hand, more
and more people prefer to stay in their known environment
when they are aging. To address this issue, we proposed an
apartment equipped with a multitude of sensors and
intelligent devices (e.g., a fridge that monitors its contents).
All these devices monitor and evaluate the state of the
elderly person (e.g., vital data, did the person fall, did he/she
drink enough, etc.) and the apartment (e.g., if the food in the
refrigerator is still edible or already spoilt). DAiSI was used
in this scenario to connect all sensors and devices so that
new components can be installed and removed at run time
[21], [12], [22].

Assisted Cross Country Skiing: In 2008, at the CeBIT
fair, the Sport Information System (SiS) was exhibited. It
was targeted at the cross country skiing domain. The system
allowed a skiing trainer to analyze the skiing technique of
one or more cross country skiers. If no radio connection
between the trainer and the trainee could be established, the
DAiSI configured the system in a way that the trainee got
feedback regarding his technique based on an automated
analysis of the movement of his skiing sticks. The analysis
was possible because the skiing sticks were equipped with
sensor nodes and the trainee carried a personal digital
assistant (PDA) with himself.

Emergency Management System: In 2009, the
Emergency Management System was exhibited at the CeBIT
fair. Its goal was to support rescue workers in a mass
casualty incident, also known as major incident. In these
incidents, the rescue workers are usually outnumbered by the
amount of casualties. To be able to deal best with such
incidents, a good overview of the incident site and the
casualties is mandatory. The casualties‘ treatment needs to
be prioritized to save as many lives as possible. The
emergency management system includes sensor nodes for
every casualty and tablet-like computers for medics. These
devices allow the computation of an interactive map that
displays all rescue workers and casualties. Additional special
hardware allows the monitoring of vital data of casualties
and therefore the automatic suggestion of treatment priorities
[23], [24], [25], [26]. The system is highly dynamic, because
casualties and medic are continuously entering or leaving the
system.

SmartSchank: In 2008, the project launched under the
name ―HomeS‖. It was designed to reduce the loss of
beverage in the gastronomy through drawn, but not sold
drinks. As hardware components, the system featured
intelligent beer taps and registers with a credit/debit system.
One requirement was the installation of the system without
the need to manually configure it. Additionally, it was
supposed to work in small pubs as well as in large arenas.
DAiSI was used as a conceptual platform that could fulfill

598

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

these requirements. In 2010, the prototype was exhibited at
the CeBIT fair [16]. It was later evolved to a commercial
product by the project partner [17].

Smart City and Smart Airport: In the context of the NTH
Focused Research School for IT Ecosystems a demonstrator
for a smart airport as an example for an IT ecosystem was
built. All users within the smart airport were supposedly
represented by devices called SmartFolks. These devices
also served as an interface to the ecosystem in the airport.
Two sub projects in this project were the Smart CheckIn and
the RuleIT methodology. While the first scenario enables
travelers to choose if they would rather pay less, but wait
longer in a line for a standard check in, or if they would
prefer to pay a little bit extra and get a guaranteed time slot
to check in without needing to wait at all, the latter scenario
focused on rule based application configuration and
introduced user decisions into the application configuration
process [14], [27], [28], [29].

Pac-Man: In the OPEN project (in 2010), the migration
of an application at run time was researched. The focus lay
on preserving the internal state of the application so that the
end user can migrate his application from one device to the
other. Additionally, the graphical user interface was
supposed to adjust to the device the application was migrated
to. The classic game Pac-Man was chosen as an application
example, while DAiSI served as the underlying system
infrastructure [30], [31].

Biathlon Training: This is the sample application that is
used in this publication. The details will be introduced in
Section IV.

We found that the three basic adaptation requirements
that have been mentioned above, as well as some additional
features can best be realized by a number of different
architectural concepts:

Component Model: DAiSI was invented to support the
development of service oriented, component based systems.
Components communicate with each other through provided
and required services. A subset of the required services can
enable the component to provide a subset of the provided
services. This relation is expressed by the so-called
component configuration. The component model features all
these elements since early development stages and will be
further explained throughout the rest of this paper.

Configuration Service: The configuration service
composes the application at run time of the present DAiSI
components, by binding required and provided services to
each other and configuring every component.

Registry Service: The configuration service requires
knowledge of the present component in order to configure
the system. The registry service maintains a database of all
installed DAiSI components and the nodes they are deployed
on. It monitors their responsiveness to discover and remove
unresponsive components from the system.

Device Bay: Small scale devices do not always have the
necessary computing power or memory to be able to
participate directly in a DAiSI application. The device bay
concept enables nodes with a higher computing power to
represent those devices using an adapter pattern.

Dependability: In early DAiSI implementations provided
services could satisfy required services if the interfaces
describing the services were syntactically compatible.
Further research enabled the requirement of semantic
compatibility that can be ensured based on run time
equivalence class testing.

Migrateability: Moving a running DAiSI component
from one node to another was a requirement the DAiSI
needed to satisfy for a particular research project. Through
an extension of the component model, which allows the
extraction and insertion of a consistent internal state, this
requirement can be met. The migration is realized in three
steps. At first the internal state of the component is extracted.
In the second step, the component is stopped on the old node
and started on the new node. Before it is activated, the
internal state is inserted into the freshly started component in
a third step.

Self-Organization: In early versions of the DAiSI, the
system was configured by the configuration service, which
followed an optimization algorithm and configured one
component after the other. With large scale applications the
configuration through one central configuration service
becomes a bottleneck. Therefore, the configuration logic was
moved into the individual components and they became self-
organizing components. Details to the self-organization
capabilities of the DAiSI can be found in Sections III and IV.

Architecture Awareness: Although syntactic and
semantic compatibility already limit, which components can
use which services of other components, this is often not
enough. Dependent on the application domain, additional
architectural rules may need to be enforced. For example,
should a cross country skier only be linked to two skiing
sticks; both need to belong to him. Just ensuring that he is
connected to two skiing sticks does not fulfill the
requirements of the end user. How the self-organizing
components ensure that the application architecture
requirements are met can be found in Sections III and IV.

Component Market: In conflicting cases where two or
more components would like to use a particular service that
cannot be used by all of them, a decision needs to be made.
A component market solves this issue by introducing a
currency into the system. Components that want to use
service of a different component can use their currency to bid
for a service. If they are chosen, they transfer their currency,
and the component providing the service has both, the newly
earned and its default currency. It can use that to bid for
other services to improve its service quality. The underlying
idea is that overall system quality improves if a component
that has its provided services used by many other
components improves its service quality.

User Decisions: The composition of an application out of
the available components follows either an optimization goal
(e.g., build the application that integrates the most
components), or a set of rules. In different scenarios this can
lead to more than one possible solution, which are to be
considered as of the same quality. In these cases the end user
can be involved to decide, which way the application should
be configured.

599

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Numerous publications discuss these architectural
concepts with regard to a specific demonstrator or industry
application. Table I shows a matrix with the different
concepts in the top row and the demonstrators in the first
column. The bibliography entries in the intersections
indicate, which publication explains which concepts with the
help of which demonstrators. In cases where a concept was
used for a particular demonstrator but no results have been
published, a ―yes‖ is written in the matrix to state the fact.

TABLE I. MATRIX MAPPING ARCHITECTURAL CONCEPTS AND

DEMONSTRATORS TO PUBLICATIONS

C
o
m

p
o

n
e
n

t
M

o
d

el

C
o
n

fi
g

u
ra

ti
o
n

 S
e
rv

ic
e

R
eg

is
tr

y
 S

e
rv

ic
e

D
ev

ic
e
 B

a
y

D
e
p

en
d

a
b

il
it

y

M
ig

ra
te

a
b

il
it

y

S
el

f-
O

rg
a

n
iz

a
ti

o
n

A
rc

h
it

ec
tu

re
 A

w
a

re
n

es
s

C
o
m

p
o

n
e
n

t
M

a
r
k

e
t

U
se

r
D

ec
is

io
n

s

Assisted
Bicycle
Training

[19] [19] [19]

Assisted
Living

[32]
[12]
[13]
[33]

[32]
[12]
[13]

[13]
[22]

[32]
[12]
[13]

Assisted Cross
Country
Skiing

yes yes yes yes

Emergency
Management
System

[25]
[35]
[36]
[26]

[25]
[35]
[36]
[26]
[34]

 [25]
[35]
[36]
[26]

 [34]

SmartSchank yes yes yes

Smart City /
Smart Airport

 [28]
[29]

 [29]
[37]

Pac-Man [38] [38]
[31]

Biathlon
Training

[39]
[1]

[39]
[1]

 [39]
[1]

[39]
[1]

None of the
above

[11] [11] [11]

B. Domain Model

The three elements of the DAiSI framework – the
domain model, an adaptive component model, and a
decentralized dynamic configuration mechanism will be
introduced in this section. The three elements and their
relationship to each other are depicted in Figure 1 using a

UML class diagram. Note, a complete description of the
DAiSI framework can be found in [39].

contains
{ordered}
1..*

1

declares
0..*

provides
0..*

DomainInterface
implements
1

DomainArchitecture

1

canUse
0..*

0..*

providedBy
1..*

declaredBy
1..*

current
0..1

defines
0..*

0..1

activatable
0..*

Í
containedBy

refersTo
1

Ê

Í

wantsUse
0..*

uses
0..*

Ê
runRequestedBy
{ordered}
0..*

0..*

assignedTo
0..*

runRequestedBy
0..*

resolved
0..*

0..*

resolveRequestedBy
0..*

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

serviceRunnable()
serviceNotRunnable()
install()
uninstall()
notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

RequiredServiceReferenceSet

- state : StateRSRS
- minNoOfRequiredRefs : int
- maxNoOfRequiredRefs : int

mustResolve(ComponentConfiguration c)
mustNotResolve(ComponentConfiguration c)
install()
uninstall()
notifyStateChanged(StateRSRS newState)
+ newService(ProvidedService ps)
+ serviceRemoved(ProvidedService ps)
+ serviceAssigned(ProvidedService ps)
+ serviceNotAssigned(ProvidedService ps)

ComponentConfiguration

- state : StateCC

mustRun(ProvidedService ps)
mustNotRun(ProvidedService ps)
rsrsResolved(RequiredServiceReferenceSet r)
rsrsNotResolved(RequiredServiceReferenceSet r)
install()
uninstall()
notifyStateChanged(StateCC newState)

DynamicAdaptiveComponent

- state : StateDAC

configurationResolved(ComponentConfiguration c)
configurationNotResolved(ComponentConfiguration c)
notifyStateChanged(StateDAC newState)
+ install()
+ uninstall()

Figure 1. Core elements of the DAiSI framework.

As in other domains, such as the network domain,
physical connectors (like the RJ 45 connector) and their pin
configurations are standard and well known by all
component vendors. A similar situation can be found in the
operating system domain: The interface for printer drivers is
standardized and published by the operating system vendor.
Third-party printer vendors adhere to this interface
specification to create printer drivers that are plugged into
the operating system during run time.

The same principle is used in the DAiSI framework: The
domain model contains standardized and broadly accepted
interfaces in the domain. The domain model defines the
basic notions and concepts of the domain shared by all
components. This means the domain model provides the
foundation for the dynamic configuration of the adaptive
system and the available components.

The domain model, as shown in Figure 1, consists of the
DomainInterface and DomainArchitecture classes. The
domain model itself is represented by an instance of the
DomainArchitecture class. A domain model contains a set of
domain interfaces, represented by an instance of the class
DomainInterface.

Domain interfaces contain syntactical information like
method signatures or datatypes occuring in the interfaces. In
addition they may also contain a behavioral specification of
the interface following the design by contract approach, for

600

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instance using pre- and postconditions and invariants to
describe the functional behavior of a domain interface [25].

Usually, components need services from other
components to provide their own service within the dynamic
adaptive system. To indicate, which services a component
provides and requires it refers to the corresponding
DomainInterface. As components providing services and
components requiring services refer to the same domain
interface description DAiSI is able to identify those and bind
these components together during run time.

Using simple domain interface descriptions the
correctness of the binding can only be guaranteed on a
syntactical level. Once the domain interface descriptions
contain additional information about the functional behavior,
the correctness of the binding can also be guaranteed on the
behavioral level. Therefore, we have developed a
sophisticated approach based on run-time testing. Further
information of DAiSI‘s solution to guarantee functional
correctness of dynamic adaptive systems during run time can
be found in [25], [26].

C. Adaptive Component Model

Each component in the system is represented by the
DynamicAdaptiveComponent class. Each component may
provide services to other components or use services,
provided by other components. The services a component
provides are represented by the ProvidedService class. The
services a component requires are specified by the
RequiredServiceReferenceSet class, where each instance
represents a set of required services for exactly one domain
interface. The ComponentConfiguration class of the
component model represents a mapping between services
required and provided. If all the required services of a
component configuration are available, the provided services
of that component configuration can in turn be provided to
other components. In the following subsections the
individual parts of the component model are introduced in
more detail. Afterwards, the interplay of these parts during
the configuration process will be explained.

1) Dynamic Adaptive components
Each component instance within the system is

represented by an instance of the class
DynamicAdaptiveComponent, see Figure 2.

DynamicAdaptiveComponent

- state : StateDAC

configurationResolved(ComponentConfiguration c)
configurationNotResolved(ComponentConfiguration c)
notifyStateChanged(StateDAC newState)
+ install()
+ uninstall()

Figure 2. DynamicAdaptiveComponent class.

By calling the install or uninstall methods, a component
is, respectively, published or removed from the system. If
install is called, all other parts of that component are
informed by calling the trigger install. The framework then

starts trying to resolve dependencies on other components in
order to run ProvidedServices and provide them to other
components within the system. Each DynamicAdaptive-
Component realizes a state machine, as shown in Figure 3
whose current state is stored in a variable called state.

DynamicAdaptiveComponent

NOT_RESOLVED

configurationResolved(
 ComponentConfiguration c)/
activateConfiguration(c);

RESOLVED

configurationResolved(ComponentConfiguration c)/
self.activatable.add(config)
if(this.contains.indexOf(c) < this.contains.indexOf(this.current)) {
 switchCurrentTo(c);
}

configurationNotResolved(ComponentConfiguration c)
[self.activatable->size()>1]/
this.activatable.remove(c);
if(c==this.current) {
 switchCurrentTo(this.activatable.first());
}

configurationNotResolved(
 ComponentConfiguration c)
[self.activatable->size()=1]/
deactivateConfiguration(c);

uninstall()

uninstall()

Figure 3. State machine - DynamicAdaptiveComponent class.

Two states are distinguished for DynamicAdaptive-
Component, namely RESOLVED and NOT_RESOLVED.
In the beginning a component is in the NOT_RESOLVED
state. If, for a single ComponentConfiguration, all
dependencies to services of other components are resolved,
the trigger configurationResolved of DynamicAdaptive-
Component is called and the state machine switches to state
RESOLVED. Every time a state transition takes place, the
abstract method, notifyStateChanged, is called. A component
developer can override this method in order to react to
certain state transitions, e.g., by showing or fading out a
graphical user interface.

2) Component Configuration
Each component defines at least one Component-

Configuration.

ComponentConfiguration

- state : StateCC

mustRun(ProvidedService ps)
mustNotRun(ProvidedService ps)
rsrsResolved(RequiredServiceReferenceSet r)
rsrsNotResolved(RequiredServiceReferenceSet r)
install()
uninstall()
notifyStateChanged(StateCC newState)

Figure 4. ComponentConfiguration class.

Figure 4 shows the corresponding class diagram for
ComponentConfiguration. The defined ComponentConfigu-
rations are connected to a component by the association
contains. Each ComponentConfiguration represents a

601

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mapping between a set of required and provided services. If
all services required by a ComponentConfiguration are
available, the corresponding provided services can be
provided to other components. That configuration is then
marked as activatable. In case a component has more than
one ComponentConfiguration, an order must be defined by
the component developer. During run time, at most one
ComponentConfiguration can be active. That one is then
marked as current and only those provided services are
executed that are connected to ComponentConfiguration,
which is marked as current.

ComponentConfiguration

NOT_RESOLVED

RESOLVING

mustRun(ProvidedService ps)/
this.runRequestedBy.add(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()>1 or self.declares->isEmpty()]/
this.runRequestedBy.remove(ps);

rsrsResolved(RequiredServiceReferenceSet rsrs)
[self.resolved->size()+1<self.declares->size()]/
this.resolved.add(rsrs);

rsrsNotResolved(RequiredServiceReferenceSet rsrs)
this.resolved.remove(rsrs);

mustRun(ProvidedService ps)
[¬self.declares->isEmpty()]/
this.runRequestedBy.add(ps);
for(RequiredServiceReferenceSet r : this.declares) {
 r.mustResolve(this);
}

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()=1 and
 ¬self.requestRun]/
for(RequiredServiceReferenceSet r : this.declares) {
 r.mustNotResolve(this);
}

rsrsResolved(RequiredServiceReferenceSet r)
[self.resolved->size()+1=self.declares->size()]/
this.resolved.add(r);
this.containedBy.configurationResolved(this);

rsrsNotResolved(RequiredServiceReferenceSet r)/
this.containedBy.configurationNotResolved(this);
this.resolved.remove(r);

mustRun(ProvidedService ps)
[self.declares->isEmpty()]/
this.runRequestedBy.add(ps);
this.containedBy.configurationResolved(this)

uninstall()/
for(RequiredServiceReferenceSet r : this.declares) {
 r.mustNotResolve(this);
}

RESOLVED

mustRun(ProvidedService ps)/
this.runRequestedBy.add(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()>1 or
this.declares.isEmpty()]/
this.runRequestedBy.remove(ps);

mustNotRun(ProvidedService ps)
[self.runRequestedBy->size()=1 and
 ¬self.requestRun]/
for(RequiredServiceReferenceSet r : this.declares) {
 rsrs.mustNotResolve(this);
}

Figure 5. State machine - ComponentConfiguration class.

Each ComponentConfiguration realizes a state machine,
as shown in Figure 5, with three states, namely
NOT_RESOLVED, RESOLVING and RESOLVED. If a
ProvidedService has to be executed (e.g., because another
component needs it), the trigger mustRun of
ComponentConfiguration is called. Afterwards the trigger
mustResolve is called at each RequiredServiceReferenceSet
in order to initiate the resolving of dependencies to other
components. A RequiredServiceReferenceSet informs the
ComponentConfiguration of the current status of the
dependency resolution by calling the triggers rsrsResolved
and rsrsNotResolved.

A ComponentConfiguration is in RESOLVED state if the
dependencies of all required services are resolved, i.e., all
connected RequiredServiceReferenceSets have called the
trigger rsrsResolved. The ComponentConfiguration in turn
calls configurationResolved to inform the DynamicAdaptive-
Component.

3) Provided Service
A component‘s provided services are represented by the

class ProvidedService shown in the class diagram in Figure
6. Each one implements exactly one domain interface. For
each ProvidedService the number of service users who are
allowed to use the service in parallel can be specified. This is
done by setting the variable maxNoOfUsers to the required
value. In our component model, a service is executed for
only two reasons. The first reason is that there exist one or
more components that want to use that service. Requests for
service usage can be placed by calling the method wantsUse,
or wantsNotUse if the usage request has become invalid. If
there is a usage request for a ProvidedService, the connected
ComponentConfigurations are informed by calling the
trigger mustRun. The second reason that a service might
have to be executed is that it provides some kind of direct
benefit for end users. A component developer can set the flag
requestRun in this case (e.g., because the service realizes a
graphical user interface).

A ProvidedService realizes a state machine with three
states namely NOT_RUNNING, RUNNABLE and
RUNNING, as illustrated in Figure 7. A service is in
RUNNABLE state if it is exclusively connected to
ComponentConfigurations whose dependendies are resolved
but none of them is marked as current. This is the case for a
ComponentConfiguration that has higher priority and that is
marked as activatable. However, a service is in RUNNING
state if it is connected to a ComponentConfiguration, which
is marked as current. If a ComponentConfiguration becomes
current, all connected ProvidedServices are informed by
calling the serviceRunnable trigger.

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

serviceRunnable()
serviceNotRunnable()
install()
uninstall()
notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

Figure 6. ProvidedService class.

602

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ProvidedService

NOT_RUNNING

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);

wantsNotUse(RequiredServiceReferenceSet rsrs)
interestedServiceUserRemoved(rsrs);

RUNNING

entry/assignServiceInitially();

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);
assignService(rsrs);

wantsNotUse(RequiredServiceReferenceSet rsrs)
[self.runRequestedBy->size()>1 or self.requestRun]/
interestedServiceUserRemoved(rsrs);
replaceServiceUser(rsrs);

serviceRunnable()
[¬ self.requestRun and

self.runRequestedBy->isEmpty()]

serviceNotRunnable()

wantsNotUse(RequiredServiceReferenceSet rsrs)
[self.requestedBy->size()=1 and ¬self.requestRun]/
interestedServiceUserRemoved(rsrs);
this.assignedTo.remove(rsrs);

uninstall()

RUNNABLE

serviceRunnable()
[self.requestRun or

¬self.runRequestedBy->isEmpty()]

wantsUse(RequiredServiceReferenceSet rsrs)/
newInterestedServiceUser(rsrs);

serviceNotRunnable()/
removeAllServiceUsers();

uninstall()

initPS()

Figure 7. State machine - ProvidedService class.

4) Required Service Reference Set
A component may need functionality provided by other

components in the system. In our component model those
dependencies are specified with the RequiredService-
ReferenceSet class, shown in Figure 8. Each instance of
RequiredServiceReferenceSet represents dependencies on a
set of services that implement the same domain interface.
That domain interface is specified by the association
refersTo. A component representing a trainer for example,
may define a RequiredServiceReferenceSet that refers to a
domain interface called IAthlete in order to get access to the
training data of athletes. The minimum and maximum
number of required references to services can be specified by
setting the variables minNoOfRequiredRefs and maxNoOf-
RequiredRefs.

RequiredServiceReferenceSet

- state : StateRSRS
- minNoOfRequiredRefs : int
- maxNoOfRequiredRefs : int

mustResolve(ComponentConfiguration c)
mustNotResolve(ComponentConfiguration c)
install()
uninstall()
notifyStateChanged(StateRSRS newState)
+ newService(ProvidedService ps)
+ serviceRemoved(ProvidedService ps)
+ serviceAssigned(ProvidedService ps)
+ serviceNotAssigned(ProvidedService ps)

Figure 8. RequiredServiceReferenceSet class.

A RequiredServiceReferenceSet realizes a state machine
with three states, namely NOT_RESOLVED, RESOLVING
and RESOLVED. Figure 9 visualizes this state machine. As
soon as there is a request for resolving dependencies, the
state switches to RESOLVED or RESOLVING, depending
on the value of minNoOfRequiredRefs. If it is zero, then the
requirements are fulfilled and it can switch directly to
RESOLVED. A request for dependency resolution is placed
by calling the mustResolve trigger.

RequiredServiceReferenceSet

RESOLVING

entry/for(ProvidedSerivce ps : this.canUse) {requestService(ps);}

newService(ProvidedService ps) [self.refersTo=ps.implements]/
this.canUse.add(ps); requestService(ps);

serviceRemoved(ProvidedService ps)/
this.canUse.remove(ps); cancelRequestService(ps);

mustResolve(ComponentConfiguration config)/this.resolveRequestedBy.add(config);

mustNotResolve(ComponentConfiguration config)
[self.resolveRequestedBy->size()>1]/this.resolveRequestedBy.remove(config);

serviceAssigned(ProvidedService ps)
[self.uses->size()+1<self.minNoOfRequiredRefs]/
this.uses.add(ps);

serviceNotAssigned(ProvidedService ps)/this.uses.remove(ps);

NOT_RESOLVED

newService(ProvidedService ps)
[self.refersTo=ps.implements]/
this.canUse.add(ps);

serviceRemoved(ProvidedService ps)/

this.canUse.remove(ps);

mustResolve(ComponentConfiguration c)
[self.minNoOfRequiredRefs>0]/
this.resolveRequestedBy.add(c);

RESOLVED

newService(ProvidedService ps) [self.refersTo=ps.implements]/
this.canUse.add(ps);
if(this.uses.size()<this.maxNoOfRequiredRefs) {
 requestService(ps);
}

serviceRemoved(ProvidedService ps)
this.canUse.remove(ps); cancelRequestService(ps);

mustResolve(ComponentConfiguration c)/
this.resolveRequestedBy.add(c);

mustNotResolve(ComponentConfiguration c)
[self.resolveRequestedBy->size()>1]/
this.resolveRequestedBy.remove(c);

serviceAssigned(ProvidedService ps)/newUsableService(ps);

serviceNotAssigned(ProvidedService ps)
[self.uses>self.minNoOfRequiredRefs]/
serviceNotUsableAnymore(ps);

mustNotResolve(ComponentConfiguration c)
[self.resolveRequestedBy->size()=1]/
this.resolveRequestedBy.remove(c);
for(ProvidedService ps : this.wantsUse) {
 cancelRequestService(ps);
}
this.uses.clear();

uninstall()

mustNotResolve(
 ComponentConfiguration c)
[self.resolveRequestedBy->size()=1]/
for(ProvidedService ps : this.wantsUse) {
 cancelRequestService(ps);
}

serviceNotAssigned(ProvidedService ps)
[self.uses=self.minNoOfRequiredRefs]/
this.uses.remove(ps);
for(ComponentConfiguration c : this.declaredBy) {
 c.rsrsNotResolved(this);
}

serviceAssigned(ProvidedService ps)
[self.uses->size()+1=self.minNoOfRequiredRefs]/
this.uses.add(ps);
for(ComponentConfiguration c : this.declaredBy) {
 c.rsrsResolved(this);
}

mustResolve(ComponentConfiguration c)
[self.minNoOfRequiredRefs=0]/
self.resolveRequestedBy.add(c);
for(ComponentConfiguration c : this.declaredBy) {
 c.rsrsResolved(this);
}

uninstall()

uninstall()

Figure 9. State machine - RequiredServiceReferenceSet class.

5) Notation for DAiSI Components
To describe DAiSI components we use a compact

notation, illustrated in Figure 10. Provided services are
notated as circles, required services as semicircles,
component configurations are depicted as crossbars, and the
component itself is represented by a rectangle. Provided
services that are intended to be activated (flag requestRun is
true) are shown as a black circle.

603

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Notation for DAiSI components.

The component depicted in Figure 10 thus specifies two
component configurations. The first requires exactly one
service, which implements the DomainInterface IPulse. If
such a service is available, the service variable p1 of type
IAthlete can in turn be provided to other components in the
system. If no pulse service is available, the second
configuration can still be activated because that one defines
no dependencies to other services. In that case, the athlete
component provides the service variable p2 to other
components.

D. Decentralized Dynamic Configuration Mechanism

There exist three types of relations between
RequiredServiceReferenceSets and ProvidedServices,
represented by the associations canUse, wantsUse and uses.
The set of services that implement the domain interface
referred by the RequiredServiceReferenceSet is represented
by canUse. Note, this only guarantees a syntactically correct
binding. In [25] and [26], we have shown how this approach
can be extended to guarantee functional-behaviorally correct
binding as well during run time using a run-time testing
approach.

The wantsUse set holds references to those services for
which a usage request has been placed by calling wantsUse.
And the uses set contains references to those services, which
are currently in use by the component or by
RequiredServiceReferenceSet.

Each time a new service becomes available in the system,
the newService method is called with a reference to the
service as parameter. The new service is added to all canUse
sets, if the corresponding RequiredServiceReferenceSet
refers to the same DomainInterface as the ProvidedServices.
If there is a request for dependency resolution (by a call of
the mustResolve trigger), usage requests are placed at the
services in canUse by calling wantsUse and those service
references are copied to the wantsUse set. ProvidedServices

The management of these three associations—canUse,
wantsUse and uses—between RequiredServiceReferenceSets
and ProvidedServices is handled by DAiSI‘s decentralized
dynamic configuration mechanism. This configuration
mechanism relays on the state machines, presented in the
previous sections, of the corresponding classes in the DAiSI
framework and their interaction. In the following section, we
will first describe the local configuration mechanism
component and then the interaction between two components
for inter-component configuration.

Figure 11. CTrainer component.

1) Local Configuration Mechanism
Assume a given component as shown in Figure 11. The

component t of type CTrainer has a single configuration. It
provides a service of type ITrainer to the environment,
which can be used by an arbitrary number of other
components. The component requires zero to any number of
references to services of type IAthlete.

The boolean flag requestRun is true for the service
provided. Hence, DAiSI has to run the component and
provide the service within the dynamic adaptive system to
other components and to users. As the component requires
zero reference to services of type IAthlete, DAiSI can run the
component directly and thereby provides the component
service to other components and users as shown in the
sequence diagram in Figure 12.

Figure 12. Local configuration mechanism component.

2) Inter-Component Configuration Mechanism

Figure 13. CAthlete and CPulse components.

Now assume two components: The CAthlete component,
shown on the right hand side of Figure 13, requires zero or
one reference to a service of type IPulse. The second

604

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

component, CPulse, shown on the left hand side of Figure
13, provides a service of type IPulse. Note, this service can
only be exclusively used by a single component.

Figure 14. Inter-component configuration mechanism.

Once the CPulse component is installed or activated
within the dynamic adaptive system, DAiSI integrates the
new service in the canUse relationship of the
RequiredServiceReferenceSet r1 of the component CAthlete.
Then DAiSI informs (calling the method newService) the
CAthlete component that a new service that can be used is
available as shown in Figure 14. DAiSI indicates that
CAthlete wants to use this new service by adding this service
in the set of services that CAthlete wants to use (set
wantsUse of CAthlete). Once the service runs it is assigned
to the CAthlete component, which can use the service from
now on (added to the set uses of CAthlete).

IV. SAMPLE APPLICATION – SMART BIATHLON TRAINING

SYSTEM

As already mentioned, we have realized and used a
couple of dynamic adaptive systems based on DAiSI. One of
the first domains for which we developed dynamic adaptive
systems was training systems for athletes. For that reason we
have chosen this domain to implement the first dynamic
adaptive system on top of the new DAiSI version.

A. Domain Model

In the desired dynamic adaptive system, athletes
(IAthlete) and trainers (ITrainer) can supervise the pulse
(IPulse) of the athlete (see Figure 15). Moreover, athletes
might use ski sticks (IStick), which have gyro sensors. Once
connected with the sticks the athlete as well as the trainer can
monitor the technically appropriate use of the sticks during
skiing for the required skiing style. Once the biathlete has
reached a shooting line (IShootingLine) he is allowed to use
the shooting line only if a supervisor is available
(ISupervisor).

Figure 15. Domain model - "Smart Biathlon Training System".

B. Available Components

For a simple version of the system only three component
types have been realized (see Figure 16): CPulse, CAthlete,
and CTrainer. Note that additional components have been
realized and evaluated for more sophisticated systems. For
the purposes of this paper we only use these three
components to show the decentralized configuration
mechanism.

Figure 16. Adaptive components: CPulse, CAthlete, CTrainer.

The CPulse component provides an exclusive usable
service IPulse and requires no other services from the
dynamic adaptive system. The CAthlete component provides
two services: IPerson and IAthlete. In conf2 it provides the
service, IPerson, which has the flag, requestRun, and
requires no service from the environment. In conf1 it
provides the service, IAthlete, but therefore requires a
service, IPulse. And finally the CTrainer component may
supervise an arbitrary number of athletes and thus provides a
corresponding number of ITrainer interfaces to the real
trainer, supporting him with the online training information
of the supervised athletes.

C. Decentralized Dynamic Configuration Mechanism

Assume the following situation in the dynamic adaptive
system. The component, CPulse, is activated and the
component, CAthlete, is activated (see Figure 17). As the
requestRun flag of the provided service of conf2 is set and no
additional service references are needed, this configuration is
activated and the service is provided within the dynamic
adaptive system.

605

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Initial situation in the Dynamic Adaptive System.

For the better configuration, conf1, CAthlete requires a
reference to a service of type IPulse. The CPulse component
is able to provide this service. As the provided service,
IAthlete, of configuration conf1 of component CAthlete is not
requested by any other component and has not set the
requestRun flag, this higher configuration is not activated.

Figures 18 to 29 show the following situation: A
component, CTrainer, has been activated and integrated into
our dynamic adaptive system.

Figure 18. The CTrainer component ―jupp‖ is deployed.

In the following the decentralized dynamic configuration
mechanism is shown. Based on the interaction between the
state machines of the adaptive components the dynamic
adaptive system is reconfigured and the component is
dynamically integrated into the system.

Figure 19. The component configuration conf1 of Jupp‘s CTrainer

component switches its state to RESOLVING.

The configuration strategy is then as follows. Each
service with requestRun flag set—in Figure 18 the new
service ITrainer of the CTrainer component—resolves the
required services transitively from the root to the leaf.

 Figures 18 to 23 show how the involved components are
switched to the state RESOLVING.

Figure 20. The interface IAthlete of Jupp‘s CTrainer component switches

its state to RESOLVING.

Figure 21. The component configuration conf1 of Tim‘s CAthlete
component switches its state to RESOLVING.

 Figure 22. The interface IPulse of Tim‘s CAthlete component switches its

state to RESOLVING.

Figure 23. The component configuration conf1 of the pulse component is

marked as RESOLVED, because it has no required services.

Once all required services are resolved these services are
activated (RUNNING) from the leaf to the root. This can be
seen in Figures 24 to 29 of the application example. If not all
required services were resolvable, the resolved services are
set back to NOT_RESOLVED. This allows other services to
resolve these services and frees the reserved resources.

606

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 24. The pulse component is marked as RESOLVED.

Figure 25. The IPulse interface is now RUNNING, because its

requirements are resolved and a consumer (Tim‘s athlete component)
is present.

Figure 26. The required IPulse service of Tim‘s CAthlete component

switches its state to RESOLVED.

 Figure 27. The component configuration conf1 of Tim‘s CAthlete

component is marked as RESOLVED.

 Figure 28. The provided IAthlete interface is marked as RUNNING,

IPerson is now NOT_RUNNING, as the active component configuration
changed from conf2 to conf1.

Figure 29. The configuration process is finished. Jupp‘s CTrainer

component is now in the state RESOLVED, together with its component

configurations and required services. Jupp‘s ITrainer interface is

RUNNING.

V. CONCLUSION AND FUTURE WORK

The DAiSI approach is that a developer does not have to
implement a whole dynamic adaptive system on his own.
Instead the developer can develop one or more components
for a specific domain. This is only possible if a domain
model is available as described. This domain model has to
define the interfaces between the adaptive components of the
dynamic adaptive system in the specific domain.

Based on this, the developer can develop even a single
component and define which interfaces from the domain
architecture are required or provided in the different
configurations of this component. Moreover, one can
develop mock-up components providing the required
interfaces in order to test the new component during
development.

To support the component development DAiSI comes
with two implementation frameworks. These frameworks
provide several helper classes enabling a quick
implementation of dynamic adaptive systems in Java as well
as in C++, concentrating on the functional features of the
component to be developed. DAiSI-based dynamic adaptive
systems can be distributed across various machines. DAiSI is
also able to establish dynamic adaptive systems across
language barriers—Java- and C++-based DAiSI components
can be linked together through DAiSI to form a dynamic
adaptive system.

Figure 20. DAiSI Dynamic Adaptive System Monitor.

In order to monitor and debug a DAiSI-based dynamic
adaptive system during development, the developer may use
the so called ―Dynamic Adaptive System Configuration
Browser.‖ This allows viewing the internal structure of the
dynamic adaptive system in a graphical tree view.

As discussed in the introduction, DAiSI was used to
realize and evaluate a couple of different applications. This
allowed two main drawbacks of DAiSI to be identified: lack

607

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of service cardinalities and the centralized configuration
mechanism.

In this paper, we have shown DAiSI‘s new component
model supporting service cardinalities and the new
decentralized dynamic configuration mechanism. The
decentralized configuration mechanism is needed, in order to
improve performance and fault-tolerance, because of the
omitted centralized configuration service. Service
cardinalities are called for to increase applicability, because
real-life systems often have limitations regarding the amount
of service users of their provided services, and may require
more than exactly one service of a given type. A first
dynamic adaptive system has been successfully implemented
in the assisted sports training domain.

Consequently, further systems will be realized based on
the new DAiSI version. Additional research is required to
establish concepts to provide a proper balance between
controllability of the system‘s applications and the autonomy
of the system components participating in these applications.
To further increase applicability, more research will be put
into the introduction of interface roles, to be able to make
additional constraints on available provided services, used to
satisfy required services.

REFERENCES

[1] H. Klus and A. Rausch, ―DAiSI-a component model and
decentralized configuration mechanism for dynamic adaptive
systems,‖ in Proceedings of ADAPTIVE 2014, The Sixth
International Conference on Adaptive and Self-Adaptive
Systems and Applications, 2014.

[2] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R.
Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K.
Sullivan, and K. Wallnau, ―Ultra-large-scale systems—the
software challenge of the future,‖ Software Engineering
Institute, Carnegie Mellon, Tech. Rep., June 2006.

[3] J. Kramer and J. Magee, ―A rigorous architectural approach to
adaptive software engineering,‖ Journal of Computer Science
and Technology, vol. 24, no. 2, pp. 183–188, 2009.

[4] C. Szyperski, ―Component Software,‖ Addison Wesley
Publishing Company, 2002.

[5] M. P. Papazoglou, ―Service-oriented computing: concepts,
characteristics and directions,‖ in Proceedings of the 4th
International Conference on Web Information Systems
Engineering (WISE 2003). 10-12 December, Rome, Italy:
IEEE Computer Society Press, 2003, pp. 3–12.

[6] J. Magee, J. Kramer, and M. Sloman, ―Constructing
distributed systems in conic,‖ in IEEE Transactions on
Software Engineering vol. 15, no. 6, pp. 663–675, 1989.

[7] J. Kramer, ―Configuration programming: a framework for the
development of distributable systems,‖ in Proceedings of
IEEE International Conference on Computer Systems and
Software Engineering (COMPEURO 90). 8-10 May 1990,
Tel-Aviv, Israel: IEEE Computer Society Press, 1990. ISBN
0818620412, pp. 374–384.

[8] J. Kramer, J. Magee, M. Sloman, and N. Dulay, ―Configuring
objectbased distributed programs in rex,‖ Software
Engineering Journal, vol. 7, no. 2, pp. 139–149, 1992.

[9] R. R. Aschoff and A. Zisman, ―Proactive adaptation of
service composition,‖ in: H. A. Müller, L. Baresi (Eds.):
Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS'12): Zürich, Switzerland, June 4-5, 2012. Los
Alamitos, California: IEEE Computer Society Press, 2012,
pp. 1–10.

[10] A. Rasche and A. Polze, ―Configuration and dynamic
reconfiguration of component-based applications with
microsoft .NET,‖ in Proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2003). 14-16 May 2003, Hakodate,
Hokkaido, Japan: IEEE Computer Society Press, 2003. ISBN
0-7695-1928-8, pp. 164–171.

[11] M. Anastasopoulos, H. Klus, J. Koch, D. Niebuhr, and E.
Werkman, ―DoAmI—a middleware platform facilitating (re-)
configuration in ubiquitous systems,‖ in Proceedings of the
Workshop on System Support for Ubiquitous Computing
(UbiSys), 2006.

[12] H. Klus, D. Niebuhr, and A. Rausch, ―A component model for
dynamic adaptive systems,‖ in Proceedings of the
International Workshop on Engineering of software services
for pervasive environments (ESSPE 2007), 2007.

[13] D. Niebuhr, H. Klus, M. Anastasopoulos, J. Koch, O. Weiß,
and A. Rausch, ―DAiSI—dynamic adaptive system
infrastructure,‖ Technical Report Fraunhofer IESE, 2007.

[14] H. Klus, D. Niebuhr, and A. Rausch, ―Dependable and usage-
aware service binding,‖ in Proceedings of the third
International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2011), 2011.

[15] D. Niebuhr, C. Peper, and A. Rausch, ―Towards a
development approach for dynamic-integrative systems,‖ in
Proceedings of the Workshop for Building Software for
Pervasive Computing. 19th Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), 2004.

[16] ―Intelligent beer dispensing system,‖ Webpage of the cebit
exhibit 2010. [Online]. Available from: http://www2.in.tu-
clausthal.de/~smartschank/systembeschreibung.php, accessed
2014.12.01.

[17] „DIRMEIER SmartSchank, intelligent beer dispensing
system,― DIRMEIER GmbH. [Online]. Available from:
http://www.dirmeier.de/DIRMEIER-0-0-0-1-1-1.htm,
accessed 2014.12.01.

[18] D. Herrling, ―Deriving a framework from a number of
dynamic adaptive system infrastructures,‖ Master Thesis, TU
Clausthal, Clausthal-Zellerfeld, 2014.

[19] C. Bartelt, T. Fischer, D. Niebuhr, A. Rausch, F. Seidl, and
M. Trapp, ―Dynamic integration of heterogeneous mobile
devices,‖ in Proceedings of the Workshop in Design an
Evolution of Autonomic Application Software (DEAS 2005),
ICSE 2005, St. Louis, Missouri, USA, 2005.

[20] T. Jaitner, M. Trapp, D. Niebuhr, and J. Koch, ―Indoor
simulation of team training in cycling,‖ in ISEA 2006, E.
Moritz and S. Haake, Eds. Munich, Germany: Springer, Jul.
2006, pp. 103–108.

[21] ―Bilateral German-Hungarian collaboration project on
ambient intelligent systems.‖ [Online]. Available from:
http://www.belami-project.hu/~micaz/belamiproject/history
/part1, accessed 2014.12.01.

[22] M. Anastasopoulos, C. Bartelt, J. Koch, D. Niebuhr, and A.
Rausch, ―Towards a reference middleware architecture for
ambient intelligent systems,‖ in Proceedings of the Workshop
for Building Software for Pervasive Computing, 20th
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), 2005.

[23] M. Schindler and D. Herrling, ―Emergency assistance
system,‖ Webpage of the cebit exhibit 2009. [Online],
available from: http://www2.in.tu-clausthal.de
/~Rettungsassistenzsystem/en/, accessed 2014.12.01.

[24] A. Rausch, D. Niebuhr, M. Schindler, and D. Herrling,
„Emergency management system,‖ In Proceedings of the
International Conference on Pervasive Services 2009 (ICSP
2009), 2009.

608

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] D. Niebuhr and A. Rausch, ―Guaranteeing correctness of
component bindings in dynamic adaptive systems based on
run-time testing,‖ in Proceedings of the 4th Workshop on
Services Integration in Pervasive Environments (SIPE 09) at
the International Conference on Pervasive Services 2009
(ICSP 2009), 2009.

[26] D. Niebuhr, ―Dependable dynamic adaptive systems:
approach, model, and infrastructure,‖ Clausthal-Zellerfeld,
Technische Universität Clausthal, Department of Informatics,
Dissertation, 2010.

[27] A. Rausch and D. Niebuhr, ―DemSy—a scenario for an
integrated demonstrator in a smart city,‖ ECas News Journal,
2010.

[28] C. Deiters, M. Köster, S. Lange, S. Lützel, B. Mokbel, C.
Mumme, and D. Niebuhr, ―DemSy—a scenario for an
integrated demonstrator in a smart city,‖ NTH computer
science report, 2010.

[29] S. Lange, ―Projektarbeit: regelüberwachung und regelbasierte
konfiguration auf basis der ruleIT-methodik: modellierung
einer Fallstudie,― Unpublished Work, TU Clausthal,
Clausthal-Zellerfeld, 2011.

[30] F. Paternò (Ed.), ―Open pervasive environments for migratory
iNteractive Services – Project Final Report,‖ 2010.

[31] D. Herrling, ―Projektarbeit: realisierung von zustandserhal-
tung bei der migration von OSGi bundles,‖ Unpublished
Work, TU Clausthal, Clausthal-Zellerfeld, 2011, available
from: URL: http://sse-world.de/index.php/download_file/
view_inline/24/, accessed 2014.12.01.

[32] H. Klus, D. Niebuhr, and O. Weiss, ―Integrating sensor nodes
into a middleware for ambient intelligence,‖ in S. Schäfer, T.
Elrad, and J. Weber-Jahnke (Eds.): Proceedings of the
Workshop on Building Software for Sensor Networks.
Portland, Oregon, USA: ACM 2006. ISBN 1–59593–491–X.

[33] H. Klus, D. Niebuhr, and A. Rausch, ―Towards a component
model supporting proactive configuration of service-oriented
systems,‖ in ICEBE '07: Proceedings of the IEEE

International Conference on e-Business Engineering. Hong
Kong, China: IEEE Computer Society, 2007.

[34] C. Bartelt, B. Fischer, and A. Rausch, ―Towards a
decentralized middleware for composition of resource-limited
components to realize distributed applications,― in
Proceedings of PECCS 2013, 3rd International Conference on
Pervasive and Embedded Computing and Communication
Systems, 2013, ISBN 978–989–8565–43–3.

[35] D. Niebuhr and A. Rausch, ―Guaranteeing correctness of
component bindings in dynamic adaptive systems,‖ in
Proceedings of the 35th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA),
Track on Service and Component Based Software
Engineering (SCBSE). 2009.

[36] D. Niebuhr, A. Rausch, C. Klein, J. Reichmann, and R.
Schmid, ―Achieving dependable component bindings in
dynamic adaptive systems – a runtime testing approach,‖ in
Porceedings of the 3rd IEEE International Conference on
Self-Adaptive and Self-Oranizing Systems (SASO 2009),
2009.

[37] A. Rausch, J. P. Müller, D. Niebuhr, S. Herold, and U. Goltz,
―IT ecosystems: a new paradigm for engineering complex
adaptive software systems,‖ in 6th IEEE International
Conference on Digital Ecosystems Technologies (DEST
2012), 2012, ISSN 2150-4938.

[38] H. Klus, B. Schindler, and A. Rausch, ―Dynamic
reconfiguration of application logic during application
migration,‖ Version: 2011, in F. Paternò (Ed.): Migratory
Interactive Applications for Ubiquitous Environments,
Springer-Verlag London Limited, 2011, DOI 10.1007/978–0–
85729–250–6_7, ISBN 978–0–85729–249–0.

[39] H. Klus, ―Anwendungsarchitektur-konforme konfiguration
selbstorganisierender softwaresysteme,‖ Clausthal-Zellerfeld,
Technische Universität Clausthal, Department of Informatics,
Dissertation, 2013.

