
367

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementation of a Map-Reduce based
Context-Aware Recommendation Engine for Social

Music Events
Wolfgang Beer

Software Competence Center Hagenberg GmbH
Softwarepark 21

4232 Hagenberg, Austria
Email:wolfgang.beer@scch.at

Christian Derwein, Sandor Herramhof
Evntogram Labs GmbH
Leonfeldner Strasse 328

Linz, Austria
Email: [chris, sandor]@evntogram.com

Abstract—In our modern ubiquitously connected world the
amount of ever available product and service information within
our daily lives is exploding. Powerful client devices, such as
smartphones and tablets allow the users to get access to an
unlimited amount of information on every product or service
available. As the amount of available information on products by
far exceeds the users time to examine and filter detailed pieces
of information in every situation, we expect that client-centric
and context-aware information filtering is one of the thriving
topics within the next years. A popular approach is to combine
context-awareness with traditional recommendation engines in
order to evaluate the relevance of a large amount of items for
a given user situation. The goal is to proactively evaluate the
situation of a user in order to automatically propose relevant
products. Within this work we describe a general approach
and the implementation of a software framework that combines
traditional recommendation methods with a variable number of
context dimensions, such as location or social context. The main
contribution of this work is to show how to use a MapReduce
programming model for aggregating the necessary information
for calculating fast context-aware recommendations as well as
how to overcome a typical cold start problem. The use-case
at the end of this work evaluates the practical benefit of our
general framework to introduce a client-centric, MapReduce-
based recommendation engine for real-time recommending music
events and festivals.

Keywords–context awareness, context aware recommendation,
decision support, recommendation system.

I. INTRODUCTION

Today, the world is annotated by petabytes of digital product
and service information distributed across many different ubiq-
uitously accessible global data repositories. Users of various
applications and services are constantly submitting additional
information or feeding the data repositories with their pref-
erences and experiences. Smartphones and tablets act as a
window for viewing and receiving this annotated information
as well as to give the users an input device in order to collect
additional information. E-business, marketing and e-commerce
is profiting a lot by this pervasive use of additional product
and customer information. Global marketplaces, such as eBay,
Amazon, Apple iTunes or Google Play, offer millions of dif-
ferent products and services in hundreds of categories. These

categories span a wide spectrum of product families from
traditional hardware to software and mobile apps, eBooks,
electronics, video and music streaming or even food. The
huge amount of permanent available information makes it
difficult or even impossible for users to manually select a
relevant subset. As a human user is not able to review all
available information, the selection of this subset is of crucial
importance for both, the human consumer as well as for the
information publishers. The most common real world scenario
is a human user searching for a product or service and a huge
number of companies offering information on their specific
offer. Recommendation engines are one available technique
to overcome this information overload and to automatically
select a subset of relevant information for a human user.
According to the huge number of products available in global
marketplaces and the consumers limited time and motivation
to check all similar products, recommendation engines provide
the necessary rating and pre-filtering for human consumers.
Recommendation systems, such as the product recommenda-
tion at Amazon or eBay, are already present for several years.
Without traditional recommendation systems, the consumer
soon gets lost within the huge amount of available products. In
a previous work we proposed a general method for combining
different context-dimensions along with our general context-
model to describe people along with their music interests
[1]. In order to solve that problem, global marketplaces soon
recognized the need for transparent product recommendation
within their systems. In 2006, the Netflix Prize competition
was initiated with a 1 million dollar prize for achieving a ten
percent or more improvement of Netflix’s video recommenda-
tion algorithm. The training set that Netflix published for the
price competition contained around 100 million ratings from
about 500.000 anonymous customers on 17.000 videos. The
contest attracted 48.000 competing teams from 182 different
countries. The winning team (BellKor) from AT&T Research
Labs (made up of Bob Bell and Chris Volinsky, from the Statis-
tics Research group in AT&T Labs, and Yehuda Koren) was
able to improve the performance of Netflix’s recommendation
algorithm by 8.43 percent. So it is obvious that traditional

368

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recommendation systems play an important role in modern
consumer markets. While recommendation methods for tradi-
tional item recommendation, such as Slope One recommen-
dation or Matrix Factorization, have been widely addressed
within the last decade, many interesting aspects of client-
centric recommendation systems have not been within the
focus by the recommendation research community so far. Bell
et al. identified several such research aspects during their work
on the Netflix prize competition [2]. One of these aspects is to
address the client-centric view on recommendation systems,
in terms of evaluating and including the consumer’s actual
context during the recommendation process. Client-centric
recommendation system approaches, such as implementations
on smartphones and mobile devices need to focus on the
user’s demands in a tight relation to the users actual situation.
For any mobile user the context-dimensions time, location,
weather, activity and companions play a major role in any
decision. Bell et al. also identified that a combination and
blending of several quite simple recommendation approaches
often result in excellent recommendations. In this work, we
will present the implementation of a software framework
that uses a MapReduce programming model approach for
distributed data aggregation for blending of multiple context-
dimensions. The framework is built on top of a MongoDB
noSQL distributed database and uses the Apache Mahout
recommendation framework for designing new context-aware
and customizable client-centric recommendation models.

The remainder of this work is structured as follows: Section
II gives a short overview on state-of-the-art in recommen-
dation systems, music and event recommendation engines,
map reduce data aggregation and related work on how to
introduce context-awareness in recommendations. Section III
focuses on the requirements a general framework for context-
aware recommendation systems has to fulfill. Section IV
gives an abstract overview on our approach for introducing
context-information in traditional recommendation methods
and Section V defines a practical software architecture and
implementation of our approach. Section VI explains some
evaluation results that were collected during the test phase.
Section VII concludes with an application case study that
introduces context-aware recommendation in the domain of
social music and festival events. The last Section VIII dis-
cusses general findings, conclusions as well as further research
activities.

II. STATE OF THE ART

The importance of context-awareness in human-centered
computing systems has been discussed by various different
research communities, including ubiquitous and pervasive
computing, mobile computing, e-commerce and e-business,
information retrieval and filtering, marketing and management
as well as within several engineering disciplines. Through
the massive increase of hardware capabilities in combination
with cheap broadband access in consumer electronics, such
as mobile phones and tablet PCs, the need for context-related
information filtering is dramatically increasing too. To discover

and evaluate the context and situation of a mobile user is a key
challenge within the smart filtering of relevant information out
of a huge information space. The term context-aware software
was first used in the Xerox PARC research project PARCTAB
in 1994 [3]. In this work, the term was specifically dedicated
to software that is able to adapt according to its actual location,
the collection of nearby people, hosts and accessible devices.
Also the possibility to track the changes of context information
over time, in other words to store historic situations, was
mentioned. Over the years, different research groups enriched
this basic definition of context and context-aware software.
Brown et al. [4] widened the scope of context information
to temperature, time, season and many other factors. Due to
the fact that theoretically the number of context information
factors is unlimited, the definition of context by Anhind K.
Dey is one of the most commonly used:

Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant
to the interaction between a user and an application,
including the user and application themselves. [5]

This definition of context specifies that context contains any
kind of information about an entity in order to understand
its situation. Often the term context is limited to location
information and location-awareness, but in recent years context
also is enriched with the social network of a user. Collecting
and evaluating the social dimension of context related to a
specific user goes hand in hand with a detailed discussion
about privacy and security. An interesting fact about the above
definition of context is that Dey identifies three base classes
that classify all objects: person, place and object. This kind
of classification has practical reasons but is also fixed to a
location-dependent view of context information. Over the last
ten years several architectures and implementations of soft-
ware middleware frameworks were published that emphasized
the aggregation and interpretation of context-information. In
our basic research work from 2003 we already proposed
the possibility to use Event-Condition Action (ECA) rules to
model the context of an entity [6]. The basic idea behind most
of the research activities within context-acquisition, processing
and interpretation is to use a user’s context information in
order to filter relevant information (e.g., on products, services,
locations) from the huge collection of available information.
An approach that tries to solve the same challenge is to use
recommendation methods and algorithms to select a subset
of information that seems to be relevant for a user. These
recommendation approaches have long tradition within global
marketplaces. Traditional recommendation systems take a set
U of users and a set of products (items) P , which should
be recommended to a user. A recommendation system then
provides a utility function f that measures the relevance of a
product out of set P to a given user. This utility function f
(f : U × P → R, where R is an ordered set of numbers)
assigns a rating to each item (or even to a compound set
of items) in a way that captures the relevance or preference

369

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for a specific user. The objective of recommendation systems
is to find or learn this utility function f . Function f is
used to predict the relevance of items out of P and of
new appearing items with similar attributes. In the literature
different approaches exist for finding a function f by using an
available dataset. Traditional recommendation approaches are
distinguished into two major strategies: content filtering and
collaborative filtering.

A. Content Filtering

The content filtering approach creates profiles for each item
and user, in order to characterize and compare its nature
[7]. Each profile contains a specific set of attributes, which
can be used to compare objects. For example, a restaurant
could have a cuisine attribute, describing the type of food
it offers, a location attribute, a vegetarian tag, and so on.
A recommendation function f chooses items that are similar
to items the user has already chosen or rated before. The
utility function compares the user’s profile and calculates the
similarity of a user profile with the available items. Therefore,
the user profile allows the recommendation engine to create
a list of items that could fit to a given user profile. Many
implementations of this approach additionally refer to Linked
Data information, such as RDF stores and Semantic Web
repositories, to classify and search systematically for related
information.

B. Collaborative Filtering

In collaborative filtering approaches, the recommendation
function chooses items that were preferred by other users
with similar attributes. Collaborative filtering approaches de-
pend on either explicit or implicit user ratings of items.
By rating different items a user can feed explicit ratings
into the recommendation engine, while implicit feedback is
collected by the system through the analysis of the users
behavior (previous purchases, navigation path, search terms,
etc.). Collaborative filtering is domain-free, which means that
it can be applied to any application area and to different data
aspects, which could be hard to formulate into an explicit
profile. Collaborative filtering is more accurate than content
filtering [7], but has the challenge of starting without any
initial data sets (cold start problem). It is not directly possible
to address new users or objects where the system has no initial
data set available. Popular collaborative filtering methods are
neighborhood methods and latent factor models. The Pearson’s
correlation coefficient sim(u, v) is often used to calculate the
popular neighborhood method kNearest Neighbor, in order
to measure the similarity between the target user u, and a
neighbor v. Within the Pearson’s correlation the symbol ru
corresponds to an average rating of user u and P denotes the
set of products or items.

sim(u, v) =

∑
i∈P (ru,i − ru)(rv,i − rv)√∑

i∈P (ru,i − ru)2
√
(rv,i − rv)2

(1)

Another method uses association rules to explicitly model
the dependency and similarity of items. A rule could for exam-
ple state that if a customer buys item A in combination with
item B, then the engine should also recommend to buy item
C. One of the most widespread methods for calculating latent
factors is matrix factorization, which is described in detail in
[7]. Most of the modern recommendation systems use a com-
bination, a so called hybrid approach, of content filtering and
collaborative filtering approaches to further improve the accu-
racy of recommendations. Beside these traditional approaches
for implementing recommendation algorithms, several groups
are working on the challenge of customizing recommendations
and to build flexible recommendation queries. REQUEST: a
query language for customizing recommendations was pub-
lished by Adomavicius et. al. in 2011 [8], which promotes
a custom query language to build flexible and customized
recommendation queries based on multidimensional OLAP-
cubes. Contributions have been made by research groups that
built various application scenarios for context-aware recom-
mendation systems, ranging from recommendation of sights
within the tourism domain [9], restaurants [10], or even people
(e.g., glancee.com).

Calculating recommendations out of a huge amount of
distributed data sets also means to handle these distributed
calculations within acceptable performance. Typical data sets
for traditional recommendation systems consist of millions
of ratings and products as well as of hundred thousands
of users. This amount of data require strong processing
power and a data aggregation method that can cope with
distributed and parallel processing of data sets. A popular
and stable framework for processing distributed data sets is
Apache Hadoop, which builds upon the HBase and imple-
ments a software framework that supports data-intensive dis-
tributed applications. The underlying HBase is an open source,
non-relational, distributed database modeled after Google’s
BigTable approach and is written in Java.

III. FRAMEWORK REQUIREMENTS

This section discusses general requirements for implement-
ing a framework that supports the design of context-aware
recommendation systems. To discuss all requirement in detail
would exceed the scope of this work, so we focus on several
requirements that had a high priority for our use-case in
Section VII.

A. Flexible and dynamic customization

A client-centric view on the recommendation process, de-
mands for a flexible user interface to enable the customization
and fine tuning of recommendation impact factors for non-
technical users. So the users should be able to control the
learning and recommendation process at a most fine grain
level, while the configuration and presentation should be on
an abstract and understandable level. The user should be able
to specify a variable number of impact factor dimensions and
even to add custom defined impact factors. The framework

370

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should normalize all the chosen impact factors and automat-
ically provide a list of recommended items that is sorted
according to the weighted sum of normalized impact factors.

B. Temporal aspect

Temporal aspects [11] deal with the change of the context
and with the change of the content profiles over a timeline. A
recommendation framework has to consider the fact that the
importance of specific datasets may change over time. It makes
a big difference, if a person has bought an item yesterday or 10
years ago. A general framework has to cope with this varying
impact.

C. Transparency

To raise the users’ confidence in recommendations, it is of
crucial importance to give immediate and transparent feedback
on recommendations. The recommendation framework has to
provide a human understandable explanation for a given rec-
ommendation set. Sundaresan, from eBay research, published
a great article about the 6 questions you have to address
during the design and implementation of recommendation
engines [12] (What, Where, When, Why, Who and How).
He also points out that recommendation engines that address
the transparency aspect (the Why question), offer a better
conversion rate in e-commerce applications. There are several
user studies that clearly show that addressing the transparency
aspect improves the performance of recommendation engines
[13].

D. Performance

The performance of the calculation and delivery of recom-
mendations for a user is one of the most critical non-functional
requirements. The acceptance of a user much depends on
whether the information is shown at the right time. This is
even more important for sensing the context and delivering
the recommendation results to a mobile user, as especially this
environment is changing a lot within a quite short period of
time. Recommendations that consider the location and activity
of a user have to react in time to provide recommendations
in the specific situation, when a user expects them. As ac-
tual recommendation approaches harvest and analyze a huge
amount of data, the requirement for performance during the
distributed data retrieval and processing is critical for every
implementation.

E. Quality

As users are implicitly benchmarking recommendation en-
gines according to the quality of recommendations they are
able to provide, it is necessary for a general framework
to provide a standard approach for evaluating the quality
of recommendation engines. A framework has to provide
implicit and explicit quality evaluations, which means that the
framework constantly evaluates the quality of results by using
test data sets, as well as to explicitly ask the users for quality
feedback.

IV. APPROACH

Within the scope of this work a general approach for
the implementation of context-aware recommendation systems
is presented. This approach mainly proposes to introduce a
map-reduce programming model for processing large context
information data sets with a parallel and distributed cluster of
noSQL databases. The combination of highly dynamic context
information with traditional recommendation algorithms puts
high demands in particular on the performance of calcula-
tions as well as on the performance of data aggregation.
Especially within the process of combining and aggregating
raw sensor information, to gain abstract context information,
the efficiency and performance of clustered data aggregation
is a critical aspect. A general approach for context-aware
recommendation systems has to define the impact of context
related, dynamic information on the recommendation pro-
cess. Compared to the traditional recommendation approaches,
which were already discussed in Section II, we combine
these traditional collaborative filtering approaches with user
related context-information. This also means that for each
individual application scenario there exists a quite specific
collection of context aspects that offer high relevance for the
recommendation of entities in a certain situation. While the
location information might not be relevant for recommending
books in an online bookshop, it is of crucial importance
for the recommendation of nearby restaurants. Within our
proposed approach, each dimension of a given context, such
as location, weather or companions is represented through an
impact function. An impact function defines the influence of
one dimension of a given context on the overall relevance
within the recommendation process. All impact functions are
of the given form fi : U × P × C → R, where U represents
the set of users, P the set of products and C a dimension
of a given context (e.g., location, number of nearby friends,
etc.). The weighted sum of all normalized impact functions
results in an overall relevance for a product p, a given user u
and context c, where wi represents a weight that the end user
defined for a specific dimension of the context:

f(u, p, c) =
∑
i<P

fi(u, p, c)wi(c) (2)

A general framework for context-aware recommendation
systems has to offer the basis for customizable recommenda-
tion engines that consist of a variable and dynamic set of im-
pact functions that can either be predefined by the framework
(e.g., aspects such as distance, user ratings, history, friends, ...),
or explicitly defined by users. Furthermore, the users are able
to dynamically define and adapt the weight of different impact
functions according to their preferences, which is shown in
Figure 1. As Figure 1 shows, the customized recommendation
system within this example contains six different impact func-
tions. Each of these impact functions calculates the relevance

371

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. General approach for a weighted combination of context with collaborative filter dimensions

of a product for a given user and context dimension. As it was
already mentioned, a context dimension could be the distance,
friends (companions), product category, ratings, or prices. This
multidimensional approach is not limited to a fixed set of
impact functions, but can be enhanced by including additional
context dimensions. Therefore, a designer of a domain specific
recommendation system has to provide a domain-specific set
of additional functions, in order to improve the quality of rec-
ommendations for the users in different application domains.
The radar chart in the lower left corner of Figure 2 visualizes
the weight an individual user defined for a given set of impact
functions. Each user is able to specify his own, very personal
weight of each context or collaborative filter dimension. The
example setting shown in Figure 2 defines a typically high
weight for the distance between the user and a given event
(here given by 30% impact), 5% impact for the price of an
event and moderate weight for the artist (20%) performing an
event, companions and friends coming along(15%) and the
collaborative filtering result (20%). By giving the user the
possibility to define his own personal weights it is possible
to modify the recommendation result on a quite fine granular
level. An important aspect of this approach is also the ability
to calculate the impact of each context dimension by using
completely different strategies. While the impact of location
and distance could be calculated through a simple spatial
query, the rating impact function could be implemented as
traditional collaborative filtering approach. These individual
impact functions are then calculated by using a map-reduce
programming model approach. The huge amounts of raw
data sets are collected within several parallel map steps and
aggregated in subsequent reduce steps until the result is fully
available. The following section describes in detail the overall
system architecture as well as the implementation details of
this approach.

Fig. 2. User defined weight for available context and collaborative filter
dimensions

V. IMPLEMENTATION

The general software architecture for building a context-
aware recommendation system is derived into a typical client-
server architecture model. This client-server architecture uses a
MapReduce programming model, as it was already mentioned
in the general approach in Section IV along with several
critical subsystems. As it is shown in Figure 3, the server
defines all necessary subsystems for data access and third-
party information retrieval, user interfaces for manual con-
tent selection and correction, as well as the context-sensitive

372

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. General software architecture for the implementation of a context-aware recommendation system

Fig. 4. The MapReduce data aggregation process

373

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recommender. Main part of the server implementation is the
management of raw context information along with bound user
and item profiles. Semantic data that is used to calculate the
similarity and relation between given users or items is stored
by using linked data repositories. All additional semantic
data can be accessed by using semantic web standards and
query languages, such as RDF and SPARQL. The purpose of
accessing these sources of semantic information is to receive
additional item-based similarity measurements that are used
in combination with traditional collaborative filtering result.
External sources of semantic information, such as Facebook
or Last.FM, are either directly imported and duplicated, or
directly accessed through a defined service interface. The
decision if an external information source is either imported
or directly accessed depends on the third-parties’ service level
agreements. On top of the management of raw context and
profile information the map-reduce data aggregation layer is
responsible for collecting and aggregating these raw informa-
tion into abstract context-information. Within the map-reduce
layer several individual map-reduce processes are calculating
normalized context-dimensions that are combined to a com-
mon rating table between users and items. The MapReduce
programming model defines two fundamental steps: Map and
Reduce. During a parallel Map step all distributed databases
collect the available data sets. Following code shows a typical
structure implementing a Map-function within the noSQL
database MongoDB:

function()
{

emit(
{

user_id : this.user_id,
item_id : this.ref_id

},
{

score : this.score
}
);

}

Within this Map function all database sets are collected
that contain a score between users and items and emitted
as intermediate result. The Reduce step gathers all these
intermediate results and calculates an overall score for all user
item relations, as it is shown within the following example:

function(key, values)
{

var total = 0;
for (var i = 0;

i < values.length;
i++)

{
total += values[i].score;

}

return { score : total };
};

After the last Reduce step has been performed, the resulting
data set is organized as a sparse score matrix between indi-
vidual users and available items. The collaborative filtering
layer on top uses traditional recommendation engines to fill
the missing gaps within this sparse user-item score matrix.
Typical algorithms used within the collaborative filtering layer
are slope one recommendation or matrix factorization meth-
ods. Figure 4 visualizes the stepwise, distributed MapReduce
process for parallel data aggregation.

A. Cold Start Problem

Another important implementation detail is how to handle
and avoid the initial cold-start problem that is typical for
collaborative filtering solutions. Within our approach a combi-
nation of content based filtering with aggregated substitute rat-
ings is used to fill the gap of missing explicit user ratings. As
the relevance of social events for a person is very much related
to the actual distance, the recommendation engine first uses a
sorted list of distances in combination with selected indirect
factors that are extracted from the users contexts. As the initial
system not only lacks of a large number of explicit user ratings
but also of a large number of users, additional user information
is gathered from connected Facebook profiles. These passive
user profiles are not considered as active participants of the
system but act as a critical mass for calculating hidden factors
within given user/item ratings. According to the given software
architecture and sensor availability, we selected the following
indirect factors for calculating an aggregated substitute rating:

Library
The smartphone of the user contains a given music
artist. Some mobile platforms also provide some
simple statistics about the last time the user listened
to that artist or how often.

Forecast
A forecast is given if the user expects to visit an
event and shares that information with his friends.

Checkin
Similar to other widespread location-aware social
platforms, like Foursquare, a Checkin is explicit
information that the user arrived at a given event.

View
Several different view statistics record the users
history of reading artist, event or venue information.

An aggregated combination of these indirect rating factors
is then used to fill the sparse rating matrix. The metamorphosis
between indirect ratings and explicit user ratings is a contin-
uous process in which explicit user ratings iteratively replace
the substitute values whenever available.

As a result of the collaborative filtering process, the server
database contains a matrix of given ratings, user and product
profiles as well as additional semantic information. The recom-
mendation module is responsible for combining the different

374

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Evaluation score by a varying number of features

dimensions of the recommendation approach in Section IV
and to communicate the resulting ratings to the clients. The
client-server communication is implemented as a lightweight
REST (REpresentational State Transfer) service approach. On
the client-side, a local application is visualizing the resulting
list of recommendations and is collecting the necessary context
information in combination with the user’s feedback on the
given recommendations.

VI. EVALUATION

Within this evaluation section some detailed results in terms
of recommendation quality and performance are visualized.
The quality of recommendation results within this work is
evaluated by calculating a quality score by using an average
absolute difference evaluation method (mean average error
score) that divides the available ratings into 70% training
data and 30% evaluation data. The collaborative filtering
method used within this evaluation is based on a matrix
factorization projection of given users and event items onto
a feature space. Figure 5 shows the evaluation score with
varying number of features (starting with one feature to nine
features). Our evaluation showed that increasing the number
of features above an amount of five does not significantly
improve the overall recommendation score. At this stage of
our evaluation data, the evaluation score itself does not provide
any useful information as most of the ratings are binary ratings
automatically extracted from passive user profiles. So the range
of the ratings are between zero and one.

Beside the evaluation of how the number of features
improves the recommendation score we also evaluated the
performance of the overall calculation. The performance tests
were done on a standard Windows 7 Laptop device with
4GB RAM and a Intel Core i5 64bit CPU with 1.70GHz.
Figure 6 shows that the overall calculation of the weighted
recommendation ratings by using the discussed MapReduce
programming model is performed within around 190 seconds.
The database contains 408,634 passive and active user profiles
and 22,901 different events (items). After the MapReduce
programming model aggregated the scores, as it was shown in
Section V the resulting number of ratings is 399,905.

Fig. 6. Evaluation of performance by a varying number of features

The evaluation of this framework shows that it is a valid
concept and approach for implementing a context-sensitive
recommendation engine that uses a MapReduce programming
model in combination with collaborative filtering. The eval-
uation of the quality of recommendations does not provide
any significant results as the data set does not contain enough
explicit user ratings so far.

VII. USE-CASE: EVNTOGRAM

The following use-case was selected out of a running project
in cooperation with EVNTOGRAM, which is a platform op-
erator for personalized and context-sensitive recommendation
of music events. The philosophy of EVNTOGRAM is to
analyze the users’ music favorites and activities, as well as
their social interaction, in order to offer personalized and
context-aware recommendations for events, specifically in the
domain of music events, such as concerts and music festivals.
A recommendation approach, explained in Section IV and
Section V, helps to include various context-dimensions into
the calculation of the relevance of an event for a given user.
EVENTOGRAM records these context-dimensions, such as
the users’ activities, social interaction, music listening habits
and individual ratings, in order to sort a list of music events
according to the calculated relevance, as it is shown in Figure
7. In a first prototype EVENTOGRAM is trying to find
out, which subset of context-dimensions is providing good
recommendations for the users. In that sense ’good’ means the
feedback the user is providing for a given ordering of items.
After the initial release of the EVNTOGRAM client app for
the platforms Android and iOS recommendation calculations
were performed for around 500 active and more than 400,000
passive user profiles. Passive user profiles represent profiles
that come from external sources, such as Facebook and help
to overcome the so called cold start problem. The operation
of the EVNTOGRAM platform within the last month returned
one critical user review concerning the degree of transparency
for event recommendations. The criticism is related to the quite
unclear process of proposing events by our recommendation
engine to the users. A detailed explanation of the recommen-
dation process would help the user to understand why a rating

375

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. List of recommended Music Events delivered by the EVNTOGRAM
Android Client

for an event was calculated.

VIII. CONCLUSION

In this work, we propose a general MapReduce-based ap-
proach, as well as software architecture for the implementation
of context-aware recommendation systems. The approach as
well as the framework offers high flexibility according to
the definition and configuration of new context dimensions in
form of impact functions, which influence the recommendation
of items for given users. The framework is domain-free,
which means that this approach can be implemented and
adapted for different application domains. The context-aware
recommendation of items of all kind, ranging from products
in e-commerce to activities and services in sport and fun
will get much attention in future software development. A
customization of a domain-specific recommendation engine
on top of our proposed approach could be implemented

with reduced development effort, as it is mainly reduced
to a simple selection of context dimensions. We think that
a general framework for designing and implementing such
recommendation systems for different application domains is
of great importance. The next steps within our work will be
to gather empirical feedback from the community within the
given use-case of recommending music related events and to
improve the degree of transparency for the recommendation
process.

REFERENCES

[1] W. Beer, W. Hargassner, S. Herramhof, and C. Derwein, “General
framework for context-aware recommendation of social events,” in Pro-
ceedings of the Second International Conference on Intelligent Systems
and Applications (INTELLI). IARIA, 2013, pp. 141–146.

[2] R. M. Bell, Y. Koren, and C. Volinsky, “The
bellkor solution to the netflix prize,” accessed:
31/01/2013. [Online]. Available: http://www2.research.att.com/ volin-
sky/netflix/ProgressPrize2007BellKorSolution.pdf

[3] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Mobile Computing Systems and Applications, 1994. WMCSA
1994. First Workshop on Mobile Computing Systems and Applications.
IEEE, 1994, pp. 85–90.

[4] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware applications:
From the laboratory to the marketplace,” IEEE Personal Communication,
vol. 4, no. 5, pp. 58–64, Oct. 1997.

[5] A. Dey and G. Abowd, “Towards a better understanding of context and
context-awareness,” in CHI 2000 Workshop on The What, Who, Where,
When, and How of Context-Awareness, 2000.

[6] W. Beer, V. Christian, A. Ferscha, and L. Mehrmann, “Modeling
context-aware behavior by interpreted eca rules,” Euro-Par 2003 Parallel
Processing, pp. 1064–1073, 2003.

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37, Aug.
2009.

[8] G. Adomavicius, A. Tuzhilin, and R. Zheng, “Request: A query language
for customizing recommendations,” Info. Sys. Research, vol. 22, no. 1,
pp. 99–117, Mar. 2011.

[9] W. Beer and A. Wagner, “Smart books: adding context-awareness and
interaction to electronic books,” in Proceedings of the 9th Interna-
tional Conference on Advances in Mobile Computing and Multimedia
(MoMM). New York, NY, USA: ACM, 2011, pp. 218–222.

[10] V.-G. Blanca, G.-S. Gabriel, and P.-M. Rafael, “Effects of relevant
contextual features in the performance of a restaurant recommender
system,” in In RecSys11: Workshop on Context Aware Recommender
Systems (CARS-2011), 2011.

[11] Y. Koren, “Collaborative filtering with temporal dynamics,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD). New York, NY, USA: ACM, 2009,
pp. 447–456.

[12] N. Sundaresan, “Recommender systems at the long tail,” in Proceedings
of the fifth ACM conference on Recommender systems (RecSys). New
York, NY, USA: ACM, 2011, pp. 1–6.

[13] R. Sinha and K. Swearingen, “The role of transparency in recommender
systems,” in Extended Abstracts on Human factors in Computing Sys-
tems (CHI EA). New York, NY, USA: ACM, 2002, pp. 830–831.

