
112

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Provenance Framework for the Cloud Infrastructure:
Why and How?

Muhammad Imran and Helmut Hlavacs
Research Group Entertainment Computing, University of Vienna, Austria

email: {muhammad.imran,helmut.hlavacs}@univie.ac.at

Abstract—Provenance is an important aspect in the verification,
audit trails, reproducibility, privacy and security, trust, and relia-
bility in distributed computing, in-silico experiment and generally
in e-science. On the other hand, Cloud computing is the business
model of distributed computing and is considered the next gener-
ation of computing and storage platforms. Cloud computing re-
quires an extension of the architecture of distributed and parallel
systems by using virtualization techniques. Key to this extensible
architecture is to support properties such as compute on-demand
and pay-as-you-go model. Many research domains have already
adopted Cloud paradigm into their existing computational and
storage platforms and, thus, a shift of technology is in progress.
In this paper, we give an overview of Cloud architecture and
the importance of provenance in Cloud computing. We provide
the mechanism for the collection of the provenance data while
addressing the challenges offered by this new paradigm. These
challenges include mainly the abstraction, high scalability and the
inability to modify or extend the Cloud services. We provide a
framework that requires minimal knowledge and understanding
of underlying services and architecture of a Cloud. We assure
trust by augmenting a Cloud infrastructure with provenance
collection in a structured way. Then, we present the architectural
overview of the provenance framework and the performance
results of the extended architecture. The experimental results
show that our provenance framework has a very low computation
overhead (less than milliseconds), which makes it a good fit for
the Cloud infrastructure.

Keywords—provenance, middleware, cloud.

I. INTRODUCTION

This paper is the extension of our previous article [1], where
we proposed a framework that addressed the challenges posed
by Cloud paradigm. Here we extend that work and present the
more detailed framework and results by adding some contents
from our article [2].

Oxford dictionary [3] defines provenance as the place of
origin or earliest known history of something. In distributed
computing, provenance is defined by a set of different proper-
ties about the process, time, and input and manipulated data.
Provenance is considered an important ingredient for tracing an
object to its origin. Provenance is used to answer a few basic
questions such as when the object was created, the purpose of
creation, and where the object originated from (e.g., the creator
of the object). In computing science, a provenance system is
used to collect, parse, and store related metadata. Such data is
used for verification and tracking, assurance of reproducibility,
trust, and security, fault detection, and audit trials. These
metadata include functional data required to trace back the

creation process of objects and results, but also nonfunctional
data such as the performance of each step including, e.g.,
energy consumption.

Cloud is an evolving paradigm which is based on virtual-
ization and offers on-demand computing and pay-as-you-go
model. Furthermore the architecture of a Cloud enforces high
scalability and abstraction. The vision of this new paradigm
is to address large scale computation and distributed storage
management, e.g., a complex engineering, medical or social
problem. Cloud enables the end user to run complex applica-
tions and satisfy his needs for mass computational power via
resource virtualization. Many experiments are performed on
Cloud on a large scale and shift towards Cloud is already in
progress [4], [5]. Infrastructure as a Service (IaaS) is one of
the service models of Cloud that is utilized by researchers to
deploy complex applications [6]. This is different than grid [7]
and distributed environments, where a user had to adopt their
application to the grid infrastructure and policies. IaaS scheme
provides a raw resource which is hired and updated according
to the requirement of the application by a user without knowing
the complexity and details of the underlying architecture.

The execution of complex applications in Cloud means,
to request various resources and updating them accordingly.
In this case, provenance can be broadly categorized into
categories of: user data (applications installed on a virtual
machine), instance type (memory, disk size), number of in-
stances, resource type (image ID, location) and information
about the users and Cloud provider. Such information is of
high importance to utilize the Cloud resources, e.g., a resource
already built and updated by one user can be used by others
with minimum or no change of the installed applications and
components. Furthermore, mining provenance data can be used
to forecast a future request, e.g., Eddy Caron [8] used string
matching algorithm on recent history data to forecast a next
request. Similarly, networks in general and Clouds in particular
are prone to errors, and the history data can be utilized in
Clouds to resolve the errors with minimum effort [9].

Cloud infrastructure (IaaS) is composed of various services
and components that cannot be modify and therefore, existing
techniques are not suitable for Cloud environment and to
address Cloud specific challenges. A possible approach is to
follow an independent and modular provenance scheme as
described in [10]. Such a scheme is possible by extending the
middleware of Cloud infrastructure where various components
and services are deployed (extension of third party tools
and libraries). This scheme is loosely coupled (domain and



113

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application independent) and hence works independently of
Cloud infrastructure, client tools and is of high importance to
support future e-science. There is a strong need to propose a
provenance scheme for this dynamic, abstract and distributed
environment. In addition to challenges for distributed com-
puting, the abstraction and highly flexible usage pose new
demands, i.e., a provenance framework for Clouds has to
support these issues.

In this paper, we provide a discussion of provenance with
a particular focus on open or research Clouds infrastructure.
We present underlying architecture of open Cloud, discuss
the possible schemes to incorporate provenance, and propose
a framework for provenance data collection in the Cloud.
Hereby, we address the most important properties of the
proposed framework, that is, independence of the Cloud archi-
tecture, low storage and computational overhead of provenance
data, and usability. Following are the major contribution of this
article:
• giving reasons of the importance of provenance data and

highlighting the challenges for provenance collection in
Clouds;

• a brief overview of research Clouds IaaS and a detailed
discussion of possible schemes to incorporate prove-
nance into Cloud environment.

• a framework that can be deployed to the Cloud envi-
ronment while addressing different vendors and archi-
tectures;

• a use case of provenance usage and example metadata
from IaaS Cloud.

• the detailed architecture of our provenance framework
for Cloud IaaS and the evaluation of collecting and
storing provenance data.

The rest of the paper is organized as follows. Section II
provides the related work in field of distributed computing
and gives an overview of the Cloud architecture. Section III
highlights the importance and the implication of a provenance
enabled Cloud. Section IV discusses the possible schemes to
incorporate provenance in Cloud, an overview of the related
provenance data while addressing the challenges offered by
Cloud infrastructure. Section V gives the details of the prove-
nance framework by extending the underlying architecture
(middleware) used by the research Clouds in a seamless
and modular fashion. Section VI presents the results for the
collection and storage of provenance data in Eucalyptus Cloud.
Section VII gives a brief overview to use the provenance data
and utilize Cloud resources, where Section VIII concludes our
work and presents the directions for the future work.

II. RELATED WORK AND BACKGROUND

Provenance has been addressed in distributed and workflow
computing, e.g., Rajendra Bose et al. [11] present a detailed
survey of computational models and provenance systems in
these environments. However, none of the approaches sup-
port provenance in the Cloud environment. These existing
schemes rely on the support of native services from distributed
or workflow computing, e.g., process schedulers. Generally,

provenance systems in grid, workflow, and distributed com-
puting are either strongly part of the enactment engine or
they use Application Programming Interfaces (APIs), which
are enactment engine specific [12].

Numerous techniques and projects have been proposed dur-
ing the last few years for provenance in computational sciences
for validation, reproduction, trust, audit trials and fault toler-
ance. These techniques range from tightly coupled provenance
system to loosely coupled systems [13]–[16]. Provenance
Aware Service Oriented Architecture (PASOA) [17], [18] uses
Service Oriented Architecture (SOA) [19] for provenance
collection and its usage in distributed computing for workflow
management systems. myGrid [20] and Kepler [21] are exam-
ples of projects for executing in-silico experiments developed
as workflows and they use Taverna [22] and Chimera [23]
schemes respectively for provenance data management in these
computational systems. However, none of these approaches
were designed specifically for Cloud computing architecture.

Recently, Muniswamy-Reddy et al. [24] discussed the im-
portance of provenance for Cloud computing services offered
by AMAZON EC2 [25] using Provenance-Aware Storage
Systems (PASS) [26]. PASS collects the provenance data
on file system level and records the various calls made to
different objects. These calls are recorded on kernel level
and therefore, virtual images with only PASS installed will
collect and produce provenance data. A similar approach to
PASS is proposed in [27] which gathers data provenance by
recording system calls but without modifying the kernel. This
scheme [27] uses a plug-in interface called dtrace for file
system and browser, etc., and requires the knowledge of all
valid entry points where provenance should be recorded in
the corresponding application or domain. Since Clouds are
categorized into different categories, e.g., application, infras-
tructure, platforms and storage, etc. Therefore, mostly research
work is focus on one or more particular component. For
example, there are research works that consider provenance at
the layers like a web browser [28] and virtual machine [29].
Similarly, a short survey about various techniques from grid
and distributed computing is provided that discuss the tracking
of data in Cloud by following the layered architecture of Cloud
and the provenance data for various layers [30]. In the e-
science domain, experiments are performed in dry labs (in-
silico), which requires hiring various resources from Cloud
infrastructure and updating them accordingly. In this case,
a provenance system has to address the data collection and
availability in the Cloud environment and, therefore, our focus
in this paper is to collect the provenance data for Cloud
infrastructure.

A. Cloud Architecture
Cloud computing is the ability to increase capacity or add

capability such as storage, computation and/or networking on
the fly. It relies on sharing computational and storage resources
over the network. Cloud computing is not a single entity and
the architecture is divided into various components. These
components depends on the deployment model of services,
the deployment model of infrastructure and the characteristics



114

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provided by a Cloud environment [31]. Clouds are generally
categorized as business Cloud, research or private Cloud and
hybrid Cloud. Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) are the terms
heavily used in a Cloud computing paradigm and is mostly
broken into these three segments.
• IaaS: a service provided for the infrastructure (hardware

and software) over the internet. Such an architecture
provides servers, virtualized operating systems and data
storage units. Elastic Cloud is a commonly used term
for IaaS and users pay for required resources as they
go. Amazon Elastic Compute Cloud (Amazon EC2),
Nimbus1, OpenNebula2 and Eucalyptus3 are the leading
examples of IaaS.

• PaaS: a platform which is build on top of IaaS. PaaS
provides an interface for software developers to build
new or extend existing applications, e.g., Google App
Engine and Microsoft Azure.

• SaaS: is an application service provided to the end
user by a vendor, e.g., google mail. This application
is executed on the Cloud infrastructure and the data is
stored in Cloud database but, this is not visible to the
end user.

Private Cloud IaaS schemes are mostly used in a research
environment and small businesses by using open source tech-
nologies. They are rapidly growing in the size and magnitude
and expanding in different domains. With the new technologies
and advancements, a private Cloud can be part of other public
or private Clouds thus, providing the functionality of a hybrid
Cloud.

B. Eucalyptus
Eucalyptus is an open source implementation of Cloud

computing IaaS scheme using JAVA and C/C++ for various
components. Users can control an entire Virtual Machine (VM)
instance deployed on a physical or virtual resource [32]. It
supports modularized approach and is compatible with industry
standard in Cloud, i.e., Amazon EC2 and its storage service
S3. It is one of the most used platforms to create scientific and
hybrid Clouds. Eucalyptus gives researchers the opportunity to
modify and instrument the software which is been lacking in
the business offerings, e.g., Amazon EC2. Figure 1 presents
the extended architecture of Eucalyptus Cloud. The main
components of IaaS Cloud are summarized below:
• Application tools: Application Programming Interface

(API) available to communicate with Cloud services,
e.g., resource hiring, starting, stopping, saving and/or
describing the state of a particular resource. This works
as a client side application to communicate with Cloud
infrastructure.

• Cloud, Cluster and Node Controller (CLC, CC and NC):
CLC (middleware), CC and NC communicates with
each other and outside applications using Mule [33]

1http://www.nimbusproject.org/
2http://opennebula.org/
3http://open.eucalyptus.com/

CLC(Cloud

Controller)

LAN/WAN

Computing resources

Eucalyptus Cloud

Storage Center

(Users, Images)

Communication resources

Euca2ools/

ApplicationController API

Walrus (Storage

Controller)

Storage API

Node Controller

VM VM

KVM/XEN

hypervisor

Cluster A

CC(Cluster

Controller)

Node

Controller

Node

Controller

Cluster B

CC(Cluster

Controller)

Node

Controller

Node

Controller

VM: virtual machine

REST web

service

Deployed

using mule

framework

Deployed

using Axis2C

Fig. 1: Extended architecture of Eucalyptus Cloud.

and Apache Axis2/C framework. CLC is the entry point
to the Cloud when requests are made by users via
application tools. CLC interacts and routes the incoming
request to a particular CC. CC is the part of Cloud used
to manage clusters in the network. CC interacts and
controls different NCs by associating and differentiating
them using unique addresses and also balancing load
in the cluster. NC assign a VM for the job execution
submitted by a user.

• Storage: Cloud offers a distributed storage unit (object
based storage) to save user data and raw disk images.
These raw images (virtual machines) are later run as re-
sources. Communication with a storage unit is controlled
by a service, e.g., Walrus in Eucalyptus. Walrus can be
used directly by users with REST protocol to stream
data in/out of Cloud, e.g., files. Walrus can also be used
indirectly by using SOAP protocol while communicating
with CLC services to upload, modify and delete virtual
images.

All the communications between different components of
Eucalyptus Cloud are achieved by using SOAP, XML, WSDL,
and HTTP communication protocols via Axis2/C and Mule
framework.

III. PROVENANCE IN CLOUD: Why

There are various alternative terms of Cloud computing,
e.g., utility computing, autonomic computing and virtualization
along with various definitions [34] because it is used as per
the understanding, knowledge and requirements by different
organizations, research communities and users. Indeed, there



115

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are some differences from previous computing paradigms,
for instance virtualization, on-demand computing and storage,
pay-as-you-go model, extremely flexible and more abstract
architecture. Ian Foster et al. [35] present an overview of the
major differences between Cloud and grid and mentions the
most important feature of Cloud technology is the total depen-
dence on services (SOA architecture). There is underlying ar-
chitecture for networking of software and hardware but, to the
end user it is completely abstract and hidden. The abstraction
allows the end user to send data to Cloud and get data back,
without bothering about the underlying details. This behavior
is fine for a normal user but, in research environment, scientists
are more interested in the overall process of execution and a
step by step information to keep a log of sub-data and sub-
processes to make their experiments believable, trust able, re-
producible and to get inside knowledge. With improvements of
in-silico experiments, most of the computation and processing
is done by using computing resources and not in a real lab.

The execution and deployment of application on Cloud
requires various resources from the Cloud infrastructure and
updating them accordingly as per application requirements.
This process involves the communication between the client
and Cloud infrastructure. Cloud infrastructure is divided into
various components as described in previous section that han-
dles the incoming request and routes them accordingly. Each
component in the process contributes some specific metadata
(provenance) from Cloud, Cluster, Node, Storage, Provider and
User perspective. This provenance data is not only important
for the verification of the application execution but it plays an
important role in the behavior analysis of Cloud. This behavior
is further utilized for the efficient allocation of the resources
and predicting future request.

Users of Cloud environment may not be interested in the
physical resources, e.g., brand of computer but, surely they are
interested in the invoked service, input and output parameters,
time stamps of invocation and completion, overall time used
by a process, methods invoked inside a service and the overall
process from start to finish. For the Cloud infrastructure this
also includes the details about the provider, users, provided
resources and the details of each particular resource hired
by a user. This metadata that provides the user an ability to
see a process from start to finish or simply track back to
find the origin of a final result and the details information
about the processes and resources taking part in the final
output is called provenance. Generally, provenance is used in
different domains by scientists and researchers to trust, track
back, verify individual input and output parameters to services,
sub process information, reproducibility, compare results and
change preferences (parameters) for another simulation run.
Provenance is still missing in Cloud environment and needs to
be explored in detail as mentioned in [24], [36].

A. Implication of a Provenance Enabled Cloud
Introducing the provenance data into Cloud infrastructure

would result in following advantages:
• Patterns: The use of provenance data to find patterns in

the Cloud resources usage. These patterns can be further
utilized to forecast a future request.

• Trust, reliability, and data quality: The final data output
can be verified based on the source data and transfor-
mation applied.

• Resources utilization: In Cloud, provenance data can
be used to utilize the existing running resources by
allocating a copy of a running resource. This will be
achieved by comparing a new request to the already
running resources and this information is available in
provenance data.

• Reduced cost and energy consumption: Provenance data
results in a cost and energy efficiency by using patterns
to forecast a future request and by utilizing existing
running resources.

• Fault detection: Provenance data can pinpoint the exact
time, service, method and related data in case of a fault.

IV. PROVENANCE SCHEME AND DISCUSSION

In this section, we focus on the challenges offered by Cloud
technology for the collection of provenance data. Thereby, we
present the important provenance data and how the Cloud
architecture can be extended to incorporate provenance col-
lection.

A. Provenance Challenges in Cloud
Usual provenance challenges include: collecting provenance

data in a seamless way with a modularized design and
approach, with minimal overhead to object identification,
provenance confidentiality and reliability, storing provenance
data in a way so it can be used more efficiently (energy
consumption) and presenting such information to the end user
(query, visualization). Cloud brings more challenging to these
existing challenges because we have to address the scalable,
abstract and on-demand model and architecture of a Cloud. A
provenance framework in Cloud should address the following
challenges:
• Domain, Platform, and Application independence: How

the provenance system works with different domain (sci-
entific, business, database), platforms (windows, linux)
and applications.

• Computation overhead: How much extra computation
overhead is required for a provenance system in a
particular domain.

• Storage overhead: How and where is the provenance data
stored. It depends on the type, i.e., copy of original data
or a link reference to original data, granularity (coarse-
grained or fine-grained) and storage unit (SQLServer,
MySQL, file system) of provenance data.

• Usability: It determines the ease of use of a provenance
framework from a user and Cloud resources provider
perspective. How to activate, deactivate and embed a
provenance framework into existing Cloud infrastructure
and services, e.g., is it completely independent or mod-
ification is required on Cloud services layer.

• Object identification: Identify an object in the Cloud and
link the provenance data to source by keeping a reference
or by making a copy of the source object.



116

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Automaticity: With the huge amount of data and pro-
cess computation within Cloud, collecting and storing
provenance data should be automatic and consistent.

• Cloud architecture: Addressing the on-demand, abstract
and scalable structure of Cloud environment with avail-
ability and extensibility of different components.

• Interaction with Cloud services: Cloud services cannot
be modified or extended. Business Clouds are propriety
of organizations and open source Clouds needs under-
standing of every service if change is required. The
better approach is to provide an independent provenance
scheme, which requires no change in the existing ser-
vices architecture.

B. Provenance Data
A provenance framework should address two different per-

spectives in collecting metadata for Cloud architecture. Appli-
cations running on Cloud as SaaS or PaaS and provenance of
Cloud infrastructure (IaaS). Users of Cloud are more interested
in their application provenance where, providers are interested
in IaaS services provenance to observe resource usage and find
patterns in applications submitted by users to provide with a
more sophisticated model for resources usage. Following is the
list of mandatory metadata in a Cloud environment:

1) Cloud process data: Cloud code execution and control
flow between different processes (web services), e.g., in
EUCALYPTUS are CLC, CC, Walrus and NC services.
Web service and method name in particular.

2) Cloud data provenance: Data flow, input and output
datasets which are consumed and produced and param-
eters passing between different services.

3) System provenance: System information or physical re-
sources details, e.g., compiler version, operating system
and the location of virtualized resources.

4) Timestamps: Invocation and completion time of Cloud
services and methods.

5) Provider and user: Details about Cloud users and ser-
vices provider, e.g., location of clusters and nodes.
Different providers have different trust level and there
could be laws against usage of resources for a particular
geographical area.

6) Instance data: Instance is a running resource and the
provenance data includes information about disk size,
memory, resource type, number of instances for a
particular operation, and number of cores (CPU), etc.

7) Cloud user data: This data is part of the Cloud in-
frastructure. When users hires various resources, they
populate them according to the application requirement
before the resource is in running state. This usually
includes the initial script and the basic architecture
required to deploy the application such as Java Devel-
opment Kit (JDK), Java Runtime Environment (JRE),
database system and web services engine for example.

C. Provenance as a Part of Cloud Services
In this scheme, the Cloud provider needs to provide a service

which will communicate with other Cloud services including

User

Cloud

Cloud

Services

Storage

Service

Provenance

service Provenance store

Cloud applicatoin

Application services

Service 1

Service 2

Service 3

Fig. 2: Provenance service as part of Cloud services.

cluster, node and storage to collect provenance data. This
scheme proposes the application of provenance as a part of
overall Cloud Infrastructure as presented in Figure 2. The
following list the advantages of provenance inside the Cloud
IaaS.
• Easy to use as provenance is already a part of Cloud

infrastructure and a user can decide to turn it on/off just
like other Cloud services.

• Users will prefer this scheme as they do not need to
understand the structure of provenance framework and
is the responsibility of the Cloud provider to embed such
a framework.

The following list the disadvantages of such a provenance
scheme.
• Cloud providers cannot charge users for such a scheme

unless it has some benefits of resource utilization and
initialization for users.

• In case of Cloud services failure, provenance system will
also fail and there is no way to trace the reason for the
failure.

• There will be extra burden on the Cloud provider be-
cause the usage of Cloud resources must increase due
to incorporating the provenance framework as a part of
Cloud infrastructure.

• Such a scheme can only work with a particular version
of Cloud IaaS. Any change in Cloud model or services
signature needs an appropriate change in the provenance
framework.

In distributed, grid and workflow computing, there are many
examples of provenance data management and schemes [12]–
[15]. Each of these schemes is designed for a particular
environment and they rely on the underlying services model.
Therefore, these existing techniques cannot be applied to Cloud
environment as Cloud services are not extensible to third party
applications.

D. Provenance is Independent of Cloud Services
A provenance scheme that adopts a modular and an agent

like approach to address cross platform, applications and
different Cloud providers is independent of Cloud infrastruc-
ture. Such a scheme must address on-demand, pay-as-you-go
and extremely flexible Cloud architecture. Advantages of an
independent provenance scheme are:



117

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User

Provenance

service

Cloud applicatoin Application services

Service 1

Service 2

Service 3

Cloud

Cloud

Services

Storage

Service

cloud store

Provenance

store

Prov
enan

ce

colle
ction

Fig. 3: Provenance as an independent module.

• Independent of Cloud services and various applications
domain.

• Failure of Cloud will not affect provenance scheme as
it is not a part of a Cloud.

• The users and Cloud providers will be able to track
faults and errors if some Cloud services failed to work
properly.

• Usability and simplicity of such a scheme is very high
because a user has a complete control of the provenance
system.

Disadvantages of such a scheme are as follows:
• Complete understanding of Cloud services is required

to make any changes and communicate with the Cloud
infrastructure.

• Trust is required on behalf of the Cloud provider because
of request, permission and response from the Cloud
services to the provenance module.

• Any change in Cloud services, their signature, or com-
munication mechanism will need an appropriate change
in provenance scheme.

In workflow computing, Karma [37] is using a notification
broker where all the activities are published to and stored in
a provenance store. The technique proposed by the Karma
service is not part of a workflow enactment engine and it works
as a bridge between the provenance store and the enactment
engine. Figure 3 gives a brief overview of an independent
provenance scheme in Cloud.

E. Discussion
Both of these approaches have their pros and cons. While

considering provenance for Cloud IaaS, the major challenge is
to address the Cloud extensibility. Clouds are not extensible
by nature and in case of open Clouds, a developer needs a
deep understanding of the source code in order to make any
changes. Keeping this point in view, we propose a provenance
framework that is independent of Cloud IaaS and requires
minimal or no changes in the Cloud architecture and services
model.

V. PROVENANCE FRAMEWORK: How
A Cloud infrastructure is deployed and it relies on the open

source third party tools, libraries and applications. Eucalyptus

Cloud in particular depends on the Apache Axis, Axis2/C,
and Mule framework. These third party libraries are used for
the communication mechanism between various components
of Cloud infrastructure. Cloud infrastructure is the orchestra-
tion of different services and the third party libraries works
as a middleware to connect these services. The purpose of
Cloud computing is to bring more abstraction than previous
technologies like grid and workflow computing and therefore,
Cloud services cannot be modified.

One method to implement provenance into the Cloud infras-
tructure is by changing the source code. This could be very
cumbersome as deep understanding of the code is required.
This will also restrict the change to the particular version of the
Cloud. This method is not feasible to address the provenance
challenge for various Cloud providers, domains and applica-
tions. The second method is to capture the provenance data
on the middleware of a Cloud. This is possible by extending
the third party libraries used by a Cloud infrastructure and add
custom methods to collect provenance data at various different
levels. Such a scheme will lead to the minimum efforts and can
be deployed across any Cloud scheme. Further, there will be no
change required in Cloud services architecture or signature. To
understand this techniques and hence the proposed provenance
framework, we give a brief overview of the most important
Mule and Axis2/C architecture.

A. Mule Enterprise Service Bus

Mule is a lightweight Enterprise Service Bus (ESB) written
in JAVA and is based on Service Oriented Architecture (SOA).
Mule enables the integration of different application regardless
of the communication protocol used by those applications.
Eucalyptus CLC services are deployed using Mule framework.
CLC services are divided into different components including
core, cloud, cluster manager, msgs, etc. These different com-
ponents are built and deployed as .jar files and they use Mule
framework messaging protocols (HTTP, SOAP, XML, etc.)
to communicate with each other and with other Eucalyptus
services (NC and CC).

Extending Mule: Mule framework is based on layered ar-
chitecture and modular design. Mule offers different kind of in-
terceptors (EnvelopeInterceptor, TimeInterceptor and Intercep-
tor) to intercept and edit the message flow. Since, provenance
is metadata information flowing between different components
(services) and we do not need to edit the message structure;
therefore, we use EnvelopeInterceptor. Envelop interceptors
carry the message and are executed before and after a service
is invoked.

Configuring Mule Interceptor: There are two steps in-
volved for configuring a Mule interceptors to Cloud services.
First step is to built a provenance package (JAVA class files)
and copying to the Cloud services directory. Second step
requires editing Mule configuration files used by different
CLC components. Interceptors can be configured globally to
a particular service or locally to a particular method of a
service. Listing 1 is a sample “eucalyptus-userdata.xml” Mule
configuration file used to verify user credentials and groups.



118

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 1: Configuration of provenance into Mule.
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<mule xmlns =” h t t p : / / www. m u l e s o u r c e . o rg

/ . . . ” >
< i n t e r c e p t o r −s t a c k name=” CLCProvenance”>

<custom− i n t e r c e p t o r c l a s s =” e u c a l y p t u s .
CLCprovenance ”/>

! . . i n d i c a t i n g p a t h o f t h e package and
c l a s s name f o r CLC s e r v i c e s p r o v e n a n c e

d a t a
</ i n t e r c e p t o r −s t a c k>
<model name=” e u c a l y p t u s−u s e r d a t a ”>

<s e r v i c e name=” KeyPai r”>
<inbound>

<inbound−e n d p o i n t r e f =” KeyPairWS
”/>

</ inbound>
<component>

< i n t e r c e p t o r −s t a c k r e f =”
CLCProvenance ”/>

! . . c o n f i g u r i n g ” k e y p a i r s e r v i c e ” t o
p r o v e n a n c e module

<c l a s s =”com . e u c a l y p t u s . keys .
KeyPairManager ”/>

</ component>
<outbound>

<outbound−pass−t h rough−r o u t e r >
<outbound−e n d p o i n t r e f =”

ReplyQueueEndpoin t ”/>
</ outbound−pass−t h rough−r o u t e r >

</ outbound>
</ s e r v i c e >

</model>
</mule>

B. Axis2/C Architecture
Eucalyptus NC and CC services are exposed to other

components by using Apache Axis2/C framework. Axis2/C
is extensible by using handlers and modules [38]. Handlers
are the smallest execution unit in Apache engine and are used
for different purposes, e.g., web services addressing [39] and
security [40]. A message flow between different components
of CC and NC go through Axis2/C engine and we deploy
custom handlers for provenance data collection inside Axis2/C.
Similar concept is used in [41] for workflow services deployed
in a tomcat container. This framework is not extensible to
Cloud services and architecture. We differ from that work in
many factors including interceptors for Mule, Apache Axis
and Apache Axis2/C. There is no tomcat container available
for Cloud services to deploy the provenance framework and
Cloud services use HTTP, XML, SOAP and REST based
protocols. Further, the proposed framework is developed for
Cloud services provenance data collection and therefore, pars-
ing, storing, and accessing provenance data is different than
their architecture.

Configuration: Axis2/C modules and handlers can be con-
figured globally to all services by editing axis2.xml file, or to a

particular service and method by modifying services.xml file.
Listing 2 describes the configuration of provenance module to
Eucalyptus NC service.

Listing 2: Configuration of provenance into Axis2/C.
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<s e r v i c e name = ” EucalyptusNC”>

<module r e f =” NCprovenance ”/>
! . . t h i s w i l l c o n f i g u r e p r o v e n a n c e t o a l l

methods i n NC
<O p e r a t i o n name=” n c R u n I n s t a n c e ”>

<P a r a m e t e r name = ” wsmapping”>
Euca lyp tu sNCncRunIns t ance

</ Pa rame te r>
</ O p e r a t i o n>
<O p e r a t i o n name=” ncAttachVolume”>

<module r e f =” NCprovenance ”/>
! . . t h i s w i l l c o n f i g u r e p r o v e n a n c e t o t h i s

p a r t i c u l a r method
<P a r a m e t e r name = ” wsmapping”>

EucalyptusNCncAttachVolume
</ Pa rame te r>

</ O p e r a t i o n>
</ S e r v i c e>

C. Framework Components
Proposed framework is divided into the following compo-

nents to address the modularity and layered architecture of
Cloud:

1) Provenance Collection: When a message enters Apache
engine, it goes through InFlow and invokes all the handlers
inside. InFaultFlow is similar and handles a faulty incoming
request, e.g., sending wrong arguments to the web service
method or any other unexpected condition that prevents the
request to succeed. OutFlow is invoked when a message is
moving out of Apache engine (invoking all handlers in Out-
Flow) and the OutFaultFlow is invoked when something goes
wrong in the out path, e.g., a host is shut down unexpectedly.
Various Flows within Apache engine and the execution of a
service with input and output messages is described in Figure
4. The left side of Figure 4 details the different flows and the
right side gives an overview of one single flow with phases
and handlers concepts (both built in and user defined). Custom
handlers, using C/C++ for provenance collection are deployed
in four different Flows of the Apache execution chain. When a
component inside Cloud IaaS is invoked, provenance collection
module intercepts the flow, collects and parses the message for
provenance data in the corresponding execution flow.

2) Provenance Parsing and Storing into XML File: SOAP
message inside Apache engine is intercepted by the collector
module which passes this message to the parser. The parser
reads the SOAP message, parse it accordingly and store the
data in a well defined XML file. We used XML schema
for the collected provenance data because it is widely used
model for data representation. The XML can be used to
maximize the advantages of custom algorithms and third party
applications. To query the provenance data, it is better to



119

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Web Service Execution Flow

InFlow

InFaultFlow

OutFlow

OutFaultFlow

Message

In
Message

Out

Message

In
Message

Out

Message

In

Message

In

Message

Out

Message

Out

Axis2C engine

P1 P2 P3 P4

H1 Hu Hn

Pi=phase

Hi=handler

Hu=custom handler

F
lo
w
w
ith
c
u
s
to
m
h
a
n
d
le
r

Fig. 4: Apache Axis2/C architecture.

provide a standard schema and hence the usage according to
individual preferences.

Table I presents a sample of collected, parsed and stored
provenance data by our provenance framework. This data
represents a user activity for methods of Eucalyptus cluster
service and detail the timestamps, resource type and instance
specific information. <UserData> is the list of applications
specified by user to populate the resource and <TimeStamp>
are corresponding start and finish time of a web service
method.

3) Provenance Query: Custom applications can query
provenance data based on the user requirements. We find
the activity pattern in Cloud IaaS based on a resource type,
instance type, time used or user ID in our example query.
This information can be used to monitor Cloud IaaS and the
frequently used resources can be moved to a faster CPU/disk
unit for better performance. Algorithm 1 is used to find activity
patterns based on the the resource-ID.

Algorithm 1 Solve Query Q: Q = Return Resource Types
(emi-IDs) in XML Store.
Require: XMLStore, ClusterName
Ensure: XMLStore is not Empty

Begin
Array ResouceType[] T
OpenXMLFile(XMLStoreLocation)
FindCluster(ClusterName)
while ParentNode<MethodName> == RunInstance) do
T ← ChildNode(<ImageID>)

end while
End

4) Provenance Visualization: The visualization component
takes the query as input parameter. This query is further
analyzed to find the various components and their relationship.
For example, a sample query:
Visualize the instances types for user1 from last 48 hours.
This query is analyzed to find the relationship between the

SOAP

Provenance

framework

collection

visualization

storage

query

T
ra
n
s
p
o
rt

lis
te
n
e
r

T
ra
n
s
p
o
rt

s
e
n
d
e
r

In
flo
w
/In
fa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

O
u
tflo
w
/O
u
tfa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

Message

receiver

Axis2/C

engine

CC and NC

services

Eucalyptus

Cloud

CLC

services

Service

Component

Inbound router

Outbound

router

M
u
le

M
e
s
s
a
g
e

M
u
le

M
e
s
s
a
g
e

Provenance Interceptor

surrounding service

component

Mule

framework

HTTP, SOAP, XML etc.

Fig. 5: Framework components.

user1, various instances requested by user1 over the last 48
hours. The result is visualized in chart form that can be
changed on run time with different types of chart, e.g., line,
graphs and pie, etc.

Figure 5 presents the framework components and the inter-
action between Cloud services using various communication
protocols.

VI. EVALUATION

Different approaches are proposed in literature for collecting
and storing provenance data to reduce the computation and
storage overhead [42]. Mainly, there are two methods. The
first method proposes to collect provenance data and store a
copy of the parent object. The disadvantage of this method is a



120

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<EucalyptusServiceName> ClusterController</EucalyptusServiceName>

<MethodName>StartNetwork</MethodName>
<TimeStamp> Start and End Time of Method</TimeStamp>
<ClusterAddress> 131.130.32.12</ClusterAddress>
<UserID>admin</UserID>

<MethodName>RunInstance</MethodName>

<ImageID>emi-392B15F8</ImageID> Instance Type
<KernelID>eki-AE1D17D7</KernelID> <Name>m1.small</Name>
<RamdiskID>eri-16981920</RamdiskID> <Memory>512</Memory>
<ImageURL>emi-URL</ImageURL> <Cores>1</Cores>
<RamDiskURL>eri-URL</RamDiskURL> <Disk>6</Disk>
<KernelURL>eki-URL</KernelURL> <UserData>DataFile</UserData>

<MethodName>StopNetwork</MethodName> <TimeStamp> Start and End Time of Method</TimeStamp>
<UserID>admin</UserID>

TABLE I: Sample metadata of Cloud IaaS.

huge storage overheard. This method is not feasible for Cloud
infrastructure because the size of objects (virtual machines and
raw resources) is in gigabytes. Similarly, persistent data stored
in Walrus can vary in size but storing a copy of this huge
amount of data is not practical. The second method proposes
to store links of the parent object. This method is faster and
storage overhead is very low. The disadvantage of this method
is to handle the consistency problem in case a parent object is
deleted or moved.

To store provenance data we followed the second approach
and the proposed framework stores only the link informa-
tion about the activity of users and Cloud components. The
provenance data consists of information like: Cloud images,
snapshots, volumes, instance types, provider and user data, etc.
Real data is already stored in the Cloud storage unit and we
do not make a copy of this data. Since links are lightweight,
therefore computation and storage overhead for the provenance
data is very low. To get the evidence, we performed two kind
of test cases.

A. Independent Testing of Middleware

First, we evaluate the Mule and Axis2/C framework inde-
pendently. In this case, we calculated the increase in time
for provenance collection, parsing and logging to text file.
Echo service that takes an input parameter (string) and log the
message to the output container was invoked 100 times in row.
Five multiple runs are performed for the calculation of best
time, worst time and average time of execution. The process
is executed by considering overall (Inflow and Outflow), only
Inflow and only Outflow provenance. The underlying architec-
ture and system details for this test case are following:

Operating system: Ubuntu 10.04, Processor: Intel Core 2 (2
GHz), RAM: 2 GB, Axis2/C version: 1.6.0, Web service: Echo

Figure 6 presents the performance of these different ex-
ecution runs on Axis2/C engine. Left side of the Figure 6
details multiple runs of Echo service without provenance,
with provenance (Inflow and Outflow), only Inflow and only
Outflow provenance. Y-axis represents the time required for
execution. Right side of the Figure 6 shows the increase in time
by comparison to without provenance. This increase in time
is calculated for overall provenance, only Inflow provenance
and only outflow provenance. The comparison is done for

average values by using formula 1, where T2 is time including
provenance and T1 is time excluding provenance.

Time increase = T2 − T1 (1)

The average increase in time for 100 simulation runs of
Echo service for collecting and logging overall provenance
data is only 0.017 ms when compared to the execution without
provenance. The average increase in time for only Inflow
provenance is 0.009 ms and for only Outflow provenance
is 0.013 ms when compared to without provenance. The
individual Inflow and Outflow provenance were collected for
experimental purposes to observe the respective overhead.
In a real lab experiment, the overall provenance of process
is essential. The increase in time for provenance collection
and logging is too less and negligible when considering the
advantages like fault tracking, resource utilization, patterns
finding and energy consumption of a provenance enabled
Cloud. Furthermore, the successful deployment of provenance
collection to Axis2/C and Mule frameworks support our theory
of a generalized and independent provenance framework.

B. Testing of Cloud Services

In this test case, we evaluated the cluster and node controller
services of the Eucalyptus Cloud. The results were surprising
for collection and storage module of the provenance frame-
work. To get physical evidence, timestamps were calculated
at the beginning of provenance module invocation and later
on when the data is parsed and saved into XML file. Time
overhead including the provenance module for Inflow and
Outflow phases of Apache were very low (milliseconds). To
find the storage overhead we calculated file size of provenance
data for individual methods. We chose a worst case scenario
where all the incoming and outgoing data was stored. This
process was performed for every method in Eucalyptus cluster
and node service and, the average file size of stored provenance
data is about 5 KB for each method. Evaluation was performed
by using the underlying architecture detailed in Table II.
Physical machine details for running IaaS Cloud are following:
Number of PCs: 2 (PC1 with Cloud, Cluster and Storage
Service, PC2 with Node service), Processor: Intel Core (TM)
2: CPU 2.13 GHz, Memory: 2GB, Disk Space: 250 GB.



121

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: Test results of Echo service.

TABLE II: Underlying architectural components.

Cloud provider Operating system Cloud services engine Languages Storage unit Virtualization Service tested
Eucalyptus 1.6.2 Linux Ubuntu 10.04 Server Axis2/C 1.6.0 C,C++ File system (XML) KVM/XEN Cluster and Node controller

Table III presents the performance overhead of provenance
for CC and NC components. The maximum times are the
exceptional cases and, therefore, we calculated the average
time from multiple runs (50). The average time presents the
overhead for collection, parsing and storing of the provenance
data into properly defined XML files. Formula 2 is used to
calculate the overall overhead by summation of individual
overhead of Cloud, Cluster, Storage and Node components for
the Cloud infrastructure.

Total Overhead =
n∑

i=0

(CLC)i+

n∑
i=0

(SC)i+
n∑

i=0

(NC)i+
n∑

i=0

(CC)i (2)

It is essential to note that the low computation and storage
overhead of the provenance frameworks is because of two
reasons. First, we used an approach where the extension of the
middleware is achieved by built in features. This approach does
not add any extra burden except the collection of provenance
data. Second, we collect and store the provenance data by using
a link based approach. This approach saves the space and time
required to make a copy of the original object. Furthermore,
these objects already exists in Cloud database and therefore we
do not need to make a copy of the existing items and objects.

C. Framework Experience
The extension of middleware (Apache, Axis2/C, Mule)

by exploiting the handler and module features facilitated in
the provenance collection that is independent of any Cloud

TABLE III: Calculation overhead (in time) for provenance.

Cloud Component Max time(ms) Min time(ms) Avg time(ms)

Infrastructure (NC) 15 2 4
Infrastructure (CC) 20 7 12
Combined 16 ms

provider and various IaaS schemes. We followed a modular
approach and divided our framework into different compo-
nents. We believe that the future of provenance in Cloud lies in
a lightweight and independent provenance scheme to address
cross platform, different Clouds IaaS and application domains.
The proposed framework can be deployed without making any
changes to the Cloud services or architecture. Following are
the advantages of such a scheme:
• It is independent of Cloud services and platform and it

works with any Cloud IaaS which use the Apache, Mule
or similar frameworks.

• The proposed framework follows a soft deployment
approach and therefore, no installation is required.

• Some of the challenges offered by Cloud infrastructure
are virtualization, “on-demand” computing, “pay-as-
you-go” model, encapsulation and abstraction, extremely
flexible and the inability to modify Cloud services and
architecture by nature. The proposed framework address
these challenges in automatic fashion as being part of
the Cloud middleware.

Major disadvantage of the proposed framework is to rely
completely on the extension of the middleware and cannot
work on any other Cloud IaaS where middleware is not
extensible.



122

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Resource broker

Provenance

data

Initialize existing

resource

Request for resource

Query provenance for pattern

Cloud

Match found

Start resource

Start new

resource
Match not found

Start resource

R
e
s
o
u
rc
e
a
s
s
ig
n
e
d

Fig. 7: Resource initialization by using provenance.

VII. APPLICATION SCENARIO

Description: Resource utilization is critically important
both from the resource provider and Cloud performance per-
spective. In the Cloud resource allocation process, a user may
request a resource with the input file of required applications
that is the same as a previously initialized resource. If the
information regarding the previously populated resources is not
available, that would require to build the new resource from
scratch. The utilization of Cloud resources can be maximized
if one is able to provide automatic discovery of already
running instances, saved volumes and snapshots. The volume
and snapshot contains information of the user activity such
as installing a particular software. The automatic discovery
will not only help in resource utilization but will also provide
means to reduce the time and energy consumed. Our pro-
posed framework collects the metadata information regarding
time, user, cluster and location of newly created volumes or
snapshots and stores it in a provenance database. To make
the process of resource allocation efficient and automatic, the
broker (which takes input from user) compares the user input
file with existing provenance data. If the comparison of input
file results in an exact match then instead of starting a new
resource from scratch, the existing resource, volume, and/or
snapshot is deployed.
Actors: End-user and Cloud provider. A user benefits from
this scheme by saving his time and effort to build a resource
from scratch. On the other hand, the Cloud provider utilizes
existing deployed resources and saves energy.
Advantages:
• the faster initialization of a resource in case a match is

found
• the utilization of existing deployed resource (volumes,

snapshots) to save energy, cost and time
• the increase in performance for the overall Cloud archi-

tecture
Figure 7 describes the process of using provenance data and

making Clouds more efficient and proactive.

VIII. CONCLUSION

In this paper, we explored the Cloud architecture (IaaS),
its dependencies and reasoned about the importance of prove-
nance for this evolving paradigm. With the technology shift
and changes, open Clouds such as Eucalyptus, Nimbus and
OpenNebula are becoming the target domain for large scale
computation and storage, e.g., deploying complex applications.
We proposed a framework which collects and stores the impor-
tant provenance data for these environments. This framework
can be deployed with minimum knowledge of the underlying
architecture and without modifying the basic architecture or
source code of the services. Further, we present the major
challenges for the collection of provenance data in a Cloud
and the proposed framework address those challenges in a
structured way. While addressing the challenges, proposed
framework has the properties, e.g., independent of basic ar-
chitecture, simple to use, easy to deploy and works with open
Cloud providers. The framework is modular and divided into
different components which address various parts of Cloud
infrastructure. The calculated overhead for the collection and
storage of the provenance data is very low and hence does
not affect the performance of the Cloud architecture and its
services.

REFERENCES

[1] M. Imran and H. Hlavacs, “Provenance in the cloud: Why and how?”
in Third International Conference on Cloud Computing, GRIDs, and
Virtualization (CLOUD COMPUTING 2012), USA, July 2012.

[2] M. Imran and H. Hlavacs, “Provenance framework for the cloud
environment (iaas),” in Cloud Computing 2012. IARIA, 2012, pp.
152–158.

[3] “Oxford dictionary,” Website http://oxforddictionaries.com/ defini-
tion/english/provenance, [retrieved: May, 2013].

[4] C. N. Hoefer and G. Karagiannis, “Taxonomy of cloud computing
services.” USA: IEEE Communications Society, December 2010, pp.
1345–1350.

[5] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
in Proceedings of the 2008 Fourth IEEE International Conference on
eScience. IEEE Computer Society, 2008, pp. 640–645.

[6] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
inside the cloud? an architectural map of the cloud landscape,” in
Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, ser. CLOUD ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 23–31. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2009.5071529

[7] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” Int. J. High Perform. Comput.
Appl., vol. 15, no. 3, pp. 200–222, Aug. 2001.

[8] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and
cloud computing on-demand resources based on pattern matching,” ser.
CLOUDCOM ’10. IEEE Computer Society, pp. 456–463.

[9] M. Imran and H. Hlavacs, “Applications of provenance data for cloud
infrastructure,” in The 8th International Conference on Semantics,
Knowledge & Grids (SKG2012), Beijing, China, October 2012.
[Online]. Available: http://eprints.cs.univie.ac.at/3555/

[10] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. da Cruz, E. S.
Ogasawara, and M. Mattoso, “Provmanager: a provenance management
system for scientific workflows,” Concurrency and Computation: Prac-
tice and Experience, vol. 24, no. 13, pp. 1513–1530, 2012.



123

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] R. Bose and J. Frew, “Lineage retrieval for scientific data processing:
a survey,” ACM Comput. Surv., vol. 37, no. 1, pp. 1–28, Mar. 2005.

[12] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data Prove-
nance Techniques,” Computer Science Department, Indiana University,
Bloomington IN, Tech. Rep., 2005.

[13] M. Szomszor and L. Moreau, “Recording and reasoning over data
provenance in web and grid services.” ser. LNCS, R. Meersman, Z. Tari,
and D. C. Schmidt, Eds., vol. 2888. Springer, 2003, pp. 603–620.

[14] Y. Cui and J. Widom, “Lineage tracing for general data warehouse
transformations,” in Proceedings of the 27th International Conference
on Very Large Data Bases, San Francisco, USA, 2001, pp. 471–480.

[15] P. Buneman, S. Khanna, and W. chiew Tan, “Why and where: A
characterization of data provenance,” in ICDT ’01: Proceedings of the
8th International Conference on Database Theory, 2001, pp. 316–330.

[16] M. Imran and K. A. Hummel, “On using provenance data to increase
the reliability of ubiquitous computing environments,” in iiWAS, 2008.

[17] S. Miles, P. Groth, M. Branco, and L. Moreau, “The requirements of
recording and using provenance in e-Science experiments,” University
of Southampton, Tech. Rep., 2005.

[18] pasoa. [retrieved: May, 2013]. [Online]. Available:
http://www.pasoa.org/

[19] oasis. [retrieved: May, 2013]. [Online]. Available: http://www.oasis-
open.org/

[20] mygrid project. [retrieved: May, 2013]. [Online]. Available:
http://www.mygrid.org.uk/

[21] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludscher, and S. Mock,
“Kepler: An extensible system for design and execution of scientific
workflows,” in IN SSDBM, 2004, pp. 21–23.

[22] Taverna workflow management system. [retrieved: May, 2013].
[Online]. Available: http://www.taverna.org.uk/

[23] W. System, I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance
collection support in the kepler scientific workflow system,” in IPAW.
Springer-Verlag, 2006, pp. 118–132.

[24] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Making a cloud
provenance-aware,” in 1st Workshop on the Theory and Practice of
Provenance, February 2009 2009.

[25] Amazon elastic compute cloud. [retrieved: May, 2013]. [Online].
Available: http://aws.amazon.com/ec2/

[26] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in USENIX Annual Technical
Conference, General Track. USENIX, 2006, pp. 43–56.

[27] E. Gessiou, V. Pappas, E. Athanasopoulos, A. D. Keromytis, and
S. Ioannidis, “Towards a universal data provenance framework using
dynamic instrumentation.” in SEC, ser. IFIP Advances in Information

and Communication Technology, D. Gritzalis, S. Furnell, and M. Theo-
haridou, Eds., vol. 376. Springer, 2012, pp. 103–114.

[28] D. W. Margo and M. I. Seltzer, “The case for browser provenance,” in
Workshop on the Theory and Practice of Provenance, 2009.

[29] P. Macko, M. Chiarini, and M. Seltzer, “Collecting provenance via
the xen hypervisor,” in Workshop on the Theory and Practice of
Provenance, 2011.

[30] O. Q. Zhang, M. Kirchberg, R. K. L. Ko, and B.-S. Lee, “How to track
your data: The case for cloud computing provenance,” in CloudCom’11,
2011, pp. 446–453.

[31] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” Tech. Rep., Jul. 2009. [Online]. Available:
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

[32] S. Wardley, E. Goyer, and N. Barcet, “Ubuntu Enterprise Cloud Archi-
tecture,” Technical White Paper, Aug. 2009.

[33] Mule esb. [retrieved: May, 2013]. [Online]. Available:
http://www.mulesoft.org/what-mule-esb

[34] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” SIGCOMM Comput.

Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008. [Online].
Available: http://doi.acm.org/10.1145/1496091.1496100

[35] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared,” in 2008 Grid Computing Environ-
ments Workshop. IEEE, 2008, pp. 1–10.

[36] M. A. Sakka, B. Defude, and J. Tellez, “Document provenance in
the cloud: constraints and challenges,” in Proceedings of the 16th
EUNICE/IFIP. Springer-Verlag, 2010.

[37] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, “Performance eval-
uation of the karma provenance framework for scientific workflows,” in
IPAW. Springer, 2006, pp. 222–236.

[38] A. S. Foundation, “Apache axis2/java - next generation web services,”
Website http://ws.apache.org/axis2/, Jul. 2009.

[39] Axis2- ws-addressing implementation. [retrieved: May, 2013].
[Online]. Available: http://axis.apache.org/axis2/java/core /modules/ad-
dressing/index.html

[40] Apache axis2/c manual. [retrieved: May, 2013]. [Online]. Available:
http://axis.apache.org/axis2/c/rampart/docs/rampartc manual.html

[41] F. A. Khan, S. Hussain, I. Janciak, and P. Brezany, “Enactment engine
independent provenance recording for e-science infrastructures.” in
Proceedings of the Fourth IEEE International Conference on Research
Challenges in Information Science RCIS’10, 2010, pp. 619–630.

[42] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T. Silva,
“Bridging workflow and data provenance using strong links,” ser.
SSDBM’10. Berlin, Heidelberg: Springer-Verlag, pp. 397–415.


