
302

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Parallel SPARQL Query Processing Using Bobox

Zbyněk Falt, Miroslav Čermák, Jiřı́ Dokulil, and Filip Zavoral
Charles University in Prague, Czech Republic
{falt,cermak,dokulil,zavoral}@ksi.mff.cuni.cz

Abstract—Proliferation of RDF data on the Web creates
a need for systems that are not only capable of querying them,
but also capable of scaling efficiently with the growing size of
the data. Parallelization is one of the ways of achieving this
goal. There is also room for optimization in RDF processing to
reduce the gap between RDF and relational data processing.
SPARQL is a popular RDF query language; however current
engines do not fully benefit from parallelization potential. We
present a solution that makes use of the Bobox platform, which
was designed to support development of data-intensive parallel
computations as a powerful tool for querying RDF data stores.
A key part of the solution is a SPARQL compiler and execution
plan optimizer, which were tailored specifically to work with
the Bobox parallel framework. The experiments described in
this paper show that such a parallel approach to RDF data
processing has a potential to provide better performance than
current serial engines.

Keywords-SPARQL; Bobox; query optimization; parallel.

I. INTRODUCTION

SPARQL [2] is a query language for RDF [3] (Re-
source Definition Framework) widely used in semantic web
databases. It contains capabilities for querying graph patterns
along with their conjunctions and disjunctions. SPARQL
algebra is similar to relational algebra; however, there are
several important differences, such as the absence of NULL
values. As a result of these differences, the application of
relational algebra into semantic processing is not straightfor-
ward and the algorithms have to be adapted so it is possible
to use them.

As the prevalence of semantic data on the web is getting
bigger, the Semantic Web databases are growing in size.
There are two main approaches to storing and accessing
these data efficiently: using traditional relational means or
using semantic tools, such as different RDF triplestores [3]
accessed using SPARQL. Semantic tools are still in develop-
ment and a lot of effort is given to the research of effective
storing of RDF data and their querying [4]. One way of
improving performance is the use of modern, multicore
CPUs in parallel processing.

Nowadays, there are several database engines which
are capable of evaluating SPARQL queries, such as
SESAME [5], JENA [6], Virtuoso [7], OWLIM [8] or RDF-
3X [9], that is currently considered to be one of the fastest
single node RDF-store [10]. These stores support parallel
computation of multiple queries; however, they mostly do

not use the potential of parallel computation of particular
queries.

The Bobox framework [11], [12], [13] was designed to
support the development of data-intensive parallel computa-
tions. The main idea behind Bobox is to divide a large task
into many simple tasks that can be arranged into a non-
linear pipeline. The tasks are executed in parallel and the
execution is driven by the availability of data on their inputs.
The developer does not have to be concerned about problems
such as synchronization, scheduling and race conditions. All
this is done by the framework. The system can be easily
used as a database execution engine; however, each query
language requires its own front-end that translates a request
(query) into a definition of the structure of the pipeline that
corresponds to the query.

In the paper, we present a tool for efficient parallel
querying of RDF data [14] using SPARQL build on top of
the Bobox framework [1], [15]. The data are stored using an
in-memory triple store. We provide a description of query
processing using SPARQL-specific parts of the Bobox and
provide results of benchmarks. Benchmarks were performed
using the SP2Bench [16] query set and data generator.

The rest of the paper is structured as follows: Section II
describes the Bobox framework. Models used to represent
queries and a description of query processing is contained
in Section III. Data representation and the implementation
of operators using Bobox framework is described in Section
IV. Section V presents our experiments and a discussion of
their results. Section VI compares our solution to other con-
temporary parallelization frameworks. Section VII describes
future research directions and concludes the paper.

II. BOBOX FRAMEWORK

A. Bobox Architecture

Bobox is a parallelization framework which simplifies
writing parallel, data intensive programs and serves as a
testbed for the development of generic and especially data-
oriented parallel algorithms.

Bobox provides a run-time environment which is used
to execute a non-linear pipeline (we denote it as the ex-
ecution plan) in parallel. The execution plan consists of
computational units (we denote them as the boxes) which
are connected together by directed edges. The task of each
box is to receive data from its incoming edges (i.e. from its
inputs) and to send the resulting data to its outgoing edges



303

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(i.e. to its outputs). The user provides the execution plan (i.e.
the implementation of boxes and their mutual connections)
and passes it to the framework which is responsible for the
evaluation of the plan.

Box3

Box1

Term boxInit box

Box2

Box4

Figure 1. Example of an execution plan

Figure 1 shows an example of an execution plan. Each
plan must contain two special boxes:

• init box – this is the first box (in a topological order)
of the plan which is executed.

• term box – this is the last box and denotes that the
execution plan was completely evaluated.

The implementation of boxes is quite straightforward and
simple, since Bobox provides a very powerful and easy to
use interface for their development. Additionally, the source
code is expected to be strictly single-threaded. Therefore,
the developer does not have to be familiar with parallel
programming. Although this requirement on the source code
may seam limiting, the framework is especially targeted to
a development of highly scalable applications [17].

The only communication between boxes is done by send-
ing envelopes (communication units containing data) along
their outgoing edges. Each envelope consists of several
columns and each column contains a certain number of
data items. The data type of items in one column must be
the same in all envelopes transferred along one particular
edge; however, different columns in one envelope may have
different data types. The data types of these columns are
defined by the execution plan.

The number of data items in all columns in one envelope
must be always the same. Therefore, we may define the list
of i-th items of all columns in one envelope as its i-th data
line. The Figure 2 shows an example of an envelope.

1

2

3

4

5

N-1

N

„abc“

„defg“

„h“

„ijkl“

„mn“

„xy“

„z“

<int> <bool>
…

<char *>

false

true

false

false

true

true

false

Figure 2. The structure of an envelope

The total number of data lines in an envelope is chosen
according to the size of cache memories in the system.

Therefore, the communication may take place completely in
cache memory. This increases the efficiency of processing
of incoming envelopes by a box.

Currently, only shared-memory architectures are sup-
ported; therefore, the only shared pointers to the envelopes
are transferred. This speeds up operations such as broadcast
box (i.e., the box which resends its input to its outputs)
significantly since they do not have to access data stored in
envelopes.

There is one special envelope (so called poisoned pill)
which is sent after the last regular envelope to close the
output of a source box. For the receiver of the poisoned pill
it is a signal that all data were already received on that input.

In fact, the only work which is done by the init box
is sending the poisoned pill to its output and the only
responsibility of the term box is to terminate the evaluation
of the execution plan when it receives the poisoned pill on
its input.

The interface of Bobox for box development is very
flexible; therefore, the developer of a box may choose
between multiple views on the data communication:

• The communication is a stream of envelopes. This is
useful for efficient implementation of boxes which do
not have to access data in envelopes such as broadcast
box or stream splitter (see Section IV-D) or implemen-
tation of boxes which process their inputs by envelopes.

• The communication is a stream of data lines. This
is useful for easier implementation of boxes which
manipulate with data lines one by one such as filter
box (see Section IV-C2).

• The combination of both views. For example, the sort
box (see IV-C3) processes input by envelopes, but
produces the output as a stream of data lines.

Although the body of boxes must be strictly single-
threaded, Bobox may introduce three types of parallelism:

1) Task parallelism, when independent streams are pro-
cessed in parallel.

2) Pipeline parallelism, when the producer of a stream
runs in parallel with its consumer.

3) Data parallelism, when independent parts of one
streams are processed in parallel.

The first two types of parallelism are exploited implic-
itly during the evaluation of a plan. Therefore, even an
application which does not contain any explicit parallelism
may benefit from multiple processors in the system (see
Section V-A). Data parallelism must be explicitly stated in
the execution plan by the user (see IV-D); however, it is
still much easier to modify the execution plan than writing
parallel code by hand.

B. Flow control

Each box has only limited buffer for incoming envelopes.
When this buffer becomes full, the producer of the envelopes



304

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is suspended until at least one envelope from the buffer is
processed. This strategy increases the performance of the
system since the operators which produce data faster than
their consumers are able to process are suspended to not to
consume the CPU time uselessly. This time may be used
to execute other boxes. Additionally, this method yields to
lower memory consumption, since there is only a limited
number of unprocessed slots which occupy the memory at
a time.

On the other hand, this flow control may sometimes yield
to a deadlock (see Section V-C) or may limit the level of
parallelism (see Section IV-C6 for an example).

C. Box scheduling

Scheduling of boxes is a very important factor which
significantly influences the performance of Bobox. The
scheduling strategies are described in a more detail in [12].

During the initialization of Bobox, a same number of
worker threads as the number of physical processors is
created. Only these worker threads may execute the code
of boxes. The scheduler has two main data structures:

• Each worker thread has its own double ended queue of
immediate tasks.

• Each execution plan which is being evaluated has its
own queue of deferred tasks.

There are three cases when a box is scheduled:
• When a new execution plan is about to evaluate, a new

queue of deferred tasks for that plan is created and its
init box is put to the front of that queue.

• When a box sends an envelope to another box, the
destination box is put to the front of the queue of
immediate tasks of the thread which is executing the
source box.

• When a box stops to be suspended because of flow
control, it is put to the queue of deferred tasks of the
corresponding plan.

When the working thread is ready to execute a box, it
choose the first existing box in this order:

1) The newest box in its queue of immediate tasks.
This box receives an envelope created by this thread
recently. Therefore, it is probable that this envelope
is completely hot in a cache so accessing its data is
probably much faster than accessing other envelopes.

2) The oldest box in the queue of deferred tasks of the
oldest execution plan. This ensures that scheduling of
deferred tasks of one execution plan are scheduled
fairly. However, the execution plans are prioritized
according to their age – the older the execution plan
is, the higher priority it has. Each evaluation of an
execution plan needs some resources (such as memory
for envelopes); therefore, the more plans are being
evaluated at a time, the more resources are needed
for them. This strategy ensures that if there is a

box to execute from plans which are currently being
executed, no new evaluation is started.

3) The oldest box in the queue of immediate tasks of
another worker thread. Worker threads with shared
cache memory are prioritized. This avoids suspending
of a worker thread despite the fact that there are boxes
to execute. Moreover, the oldest box has the lowest
probability to have its input hot in a cache memory of
the thread from which the box was stolen. Therefore,
stealing this box should introduce less performance
penalty than stealing the newest box in the same
queue.

If there is no box to execute, the worker thread is
suspended until some other box is scheduled.

Besides the SPARQL compiler described in this paper, the
Bobox framework is used in several related projects - model
visualization [18], semantic processing [19], [20], query
optimization [21], and scheduling in data stream processing
[12], [22].

III. QUERY REPRESENTATION AND PROCESSING

One of the first Bobox applications was SPARQL query
evaluator [19]. Since running queries in Bobox needs an
appropriate execution plans, SPARQL compiler for Bobox
was implemented to generate them from the SPARQL code.

During query processing, the SPARQL compiler uses
specialized representation of the query. In the following
sections, we mention models used during query rewriting
and generation of execution plan.

A. Query Models

Pirahesh et al. [23] proposed the Query Graph Model
(QGM) to represent SQL queries. Hartig and Reese [24]
modified this model to represent SPARQL queries (SQGM).
With appropriate definition of the operations, this model can
be easily transformed into a Bobox pipeline definition, so it
was an ideal candidate to use.

Figure 3. Example of SQGM model.



305

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SQGM model can be interpreted as a directed graph (a
directed tree in our case). Nodes represent operators and are
depicted as boxes containing headers, body and annotations.
Edges represent data flow and are depicted as arrows that
follow the direction of the data. Figure 3 shows an example
of a simple query represented in the SQGM model. This
model is created during an execution plan generation and is
used as a definition for the Bobox pipeline.

In [25], we proposed the SPARQL Query Graph Pattern
Model (SQGPM) as the model that represents query during
optimization steps. This model is focused on representation
of the SPARQL query graph patterns [2] rather than on
the operations themselves as in the SQGM. It is used
to describe relations between group graph patterns (graph
patterns consisting of other simple or group graph patterns).
The ordering among the graph patterns inside a group graph
pattern (or where it is not necessary in order to preserve
query equivalency) is undefined. An example of the SQGPM
model graphical representation is shown in Figure 4.

Figure 4. Example of SQGPM model.

Each node in the model represents one group graph
pattern that contains an unordered list of references to graph
patterns. If the referenced graph pattern is a group graph
pattern then it is represented as another SQGPM node.
Otherwise the graph pattern is represented by a leaf.

The SQGPM model is built during the syntactical analysis
and is modified during the query rewriting step. It is also
used as a source model during building the SQGM model.

B. Query Processing

Query processing is performed in a few steps by separate
modules of the application as shown in Figure 5. The first
steps are performed by the SPARQL front-end represented
by compiler. The main goal of these steps is to validate
the compiled query, pre-process it and prepare the optimal
execution plan according to several heuristics. Execution
itself is generated by the Bobox back-end where execution
pipeline is initialized according to the plan from the front-
end. Following sections describe steps done by the compiler
in a more detail way.

Figure 5. Query processing scheme.

C. Query Parsing and Rewriting

The query parsing step uses standard methods to perform
syntactic and lexical analysis according to the W3C recom-
mendation. The input stream is transformed into a SQGPM
model. The transformation also includes expanding short
forms in queries, replacing aliases and a transformation of
blank nodes into variables.

The second step is query rewriting. We cannot expect
that all queries are written optimally; they may contain
duplicities, constant expressions, inefficient conditions, re-
dundancies, etc. Therefore, the goal of this phase is to
normalize queries to achieve a better final performance. We
use the following operations:

• Merging of nested Group graph patterns
• Duplicities removal
• Filter, Distinct and Reduced propagation
• Projection of variables
During this step, it is necessary to check applicability of

each operation with regards to the SPARQL semantics before
it is used to preserve query equivalency [25].

D. Execution Plan Generation

In the previous steps, we described some query transfor-
mations that resulted in a SQGPM model. However, this
model does not specify a complete order of all operations.
The main goal of the execution plan generation step is to
transform the SQGPM model into an execution plan. This
includes selecting orderings of join operations, join types
and the best strategy to access the data stored in the physical
store.

The query execution plan (e.g., the execution plan of
query q5a is depicted in Figure 6) is built from the bottom
to the top using dynamic programming to search part of the
search space of all possible joins. This strategy is applied
to each group graph pattern separately because the order of



306

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the patterns is fixed in the SQGPM model. Also, the result
ordering is considered, because a partial plan that seems
to be worse locally, but produces a useful ordering of the
result, may provide a better overall plan. The list of available
atomic operations (e.g., the different types of joins) and their
properties are provided by the Methods Space module.

1: sink2

19

2: triple_feeder

1

3: triple_feeder

2

4: merge_join_MN

3

5: sort_box

4

6: distinct

5

7: triple_feeder

6

8: merge_join_MN

13

9: triple_feeder

7

10: triple_feeder

8

11: merge_join_MN

9

12: sort_box

10

13: distinct

11

14: triple_feeder

12

15: merge_join_MN

15

16: merge_join_MN

18

17: sort_box

14

18: sort_box

16

19: init_box

17

20: term_box

Figure 6. Query execution plan q5a.

In order to compare two execution plans, it is necessary
to estimate the cost of both plans – an abstract value that
represents the projected cost of execution of a plan using
the actual data. This is done with the help of the cost model
that holds information about atomic operation efficiency and
summary statistics gathered about the stored RDF data.

The search space of all execution plans could be extremely
large; we used heuristics to reduce the complexity of the
search. Only left-deep trees of join operations are consid-
ered. This means that right operand of a join operation
may not be another join operation. There is one exception
to this rule – avoiding cartesian products. If there is no
other way to add another join operation without creating

cartesian product, the rest of unused operations is used to
build separate tree recursively (using the same algorithm)
and the result is joined with the already built tree. This
modification greatly improves plans for some of the queries
we have tested and often significantly reduces the depth of
the tree.

The final execution plan is represented using SQGM
model which is serialized into a textual form and passed
to the Bobox framework for evaluation.

IV. EVALUATION OF SPAQRL QUERIES USING BOBOX

When the compiler finishes the compilation, a query
execution plan is generated. This plan must be transformed
into a Bobox execution plan and then passed to Bobox
for its evaluation. This basically means that operators must
be replaced by boxes and they should be connected to
form a pipe. Additionally, an efficient representation of data
exchanged by boxes must be chosen to process the query
efficiently.

A. Data representation

1) Representation of RDF terms: RDF data are typically
very redundant, since they contain many duplicities. Many
triples typically share the same subjects or predicates. To
reduce the number of memory needed for storing the RDF
data, we keep only one instance of every unique string
and only one instance of every unique term in a memory.
Besides the fact that this representation saves the memory,
we may represent each term unambiguously by its address.
Therefore, for example in case of a join operation, we can
test equality of two terms just by a comparison of their
addresses.

Additionally, if we need to access the content of a term
(e.g. for evaluation of a filter condition) the address can be
easily dereferenced. This is faster than the representation of
terms by other unique identifiers which would have to be
translated to the term in a more complicated way.

2) Representation of RDF database: The database con-
sists of a set of triples. We represent this set as three
parallel arrays with the same size which contain addresses
of terms in the database. In fact, we keep six copies of these
arrays sorted in all possible orders – SPO, SOP, OPS, OSP,
PSO and POS. This representation makes implementation of
index scans extremely efficient (see IV-C1).

3) Format of envelopes: The format of envelopes is now
obvious. It contains columns which correspond to a subset of
variables in the query in a form of an address of a particular
RDF term. One data line of an envelope corresponds to one
possible mapping of variables to their values.

B. Transformation of query execution plan

The output of the compiler is produced completely in
a textual form. Therefore, the Bobox must deserialize the
query plan first. Despite the fact that this serialization and



307

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deserialization have some overhead, we chose it because of
these benefits:

• When distributed computation support is added, the
text representation is safer than a binary representation
where problems with different formats, encodings or
reference types may appear.

• The serialization language has a very simple and
effective syntax; serialization and deserialization are
much faster than (e.g.) the use of XML. Therefore, the
overhead is not so significant.

• The text representation is independent on the program-
ming language; new compilers can be implemented in
a different language.

• Compilers can generate plans that contain boxes that
have not yet been implemented, which allows earlier
testing of the compiler during the development process.

• The query plan may be easily visualized to check the
correctness of the compiler. Moreover, the plan might
be written by hand which makes the testing of boxes
easier. Altogether, this enables debugging of a compiler
and Bobox independently on each other.

When the plan is deserialized, the operators in the query
execution plan must be replaced by boxes and connected
together. The straightforward approach is that each operator
in the query execution plan is implemented by exactly one
box. Even this approach yields to a parallel evaluation of the
plan since pipeline parallelism and task parallelism might be
exploited (the query plan has typically a form of a rooted
tree with several independent branches). However, it is still
usually insufficient to utilize all physical threads available
and the most time consuming operations such as nested
loops join becomes a bottleneck of the plan. Therefore,
they have to be parallelized explicitly. We describe this
modification in IV-D.

C. Implementation of query plan operators

1) Index scan: The main objective of a scan operation is
to fetch all triples from the database that match the input
pattern. Since we keep all triples in all possible orders,
it is easy for any input pattern to find the range where
all triples which match the pattern are. To find this range,
we use binary search. To avoid copying triples from the
database to the envelopes, we use the fact that they are stored
in parallel arrays. Therefore, we may use the appropriate
subarrays directly as columns of output envelopes without
data copying.

2) Filter: A filter operation can be implemented in Bobox
very easily. The box reads the input as a stream of data lines,
evaluates the filter condition on each line and sends out the
stream of that data lines which meet the condition.

The evaluation of the filter condition is straightforward
since each data line contains addresses of respective RDF
terms and by dereferencing them it gets full info about the
term such as its type, string/numeric value etc.

3) Sort: Sort is a blocking operation, i.e. it must wait until
all input data are received before it starts to produce output
data. To increase the pipeline parallelism, we implemented
two phase sorting algorithm [17] inspired by external merge
sort.

In the first phase, every incoming envelope is sorted
independently on other envelopes. This phase is able to
run in parallel with the part of an execution plan which
precedes the sort box. The second phase uses a multiway
merge algorithm to merge all received (and sorted) envelopes
into the resulting stream of data lines. In contrary to the first
phase, this phase may run in parallel with the part of the
execution plan which succeeds the sort box.

4) Merge join: Merge join is a very efficient join algo-
rithm when both inputs are sorted by the common variables.
Moreover, the merge join is the algorithm which is suitable
for systems like Bobox since it reads both inputs sequentially
allowing both input branches to run in parallel (in contrary
to hash join, see Section IV-C6).

5) Nested loops join: The SPARQL compiler selects
nested loops join when the inputs have no common variable
and the result is determined only by the join condition.
The implementation is straightforward; however, in order
to increase the pipeline parallelism, the box tries to process
envelopes immediately as they arrive, i.e. it does not read
the whole input before processing the other.

6) Hash join: Hash join is used when the inputs have
some common variables which are not sorted in the same
order. In order to increase pipeline and task parallelism, we
decided not to implement this algorithm. The problem with
hash join is that it must read the whole one input first before
processing the second one. However, the branch of the plan
which produces data for the second input may be blocked
because of flow control (see Section II-B) until the first input
is completely processed.

Therefore, instead of hash join we implemented sort-
merge join. The sort operation is used to transform the inputs
to be usable by merge join.

7) Optional joins: Optional join works basically in the
same way as regular join. The only difference is that data
lines from the left input which do not meet the join condition
(i.e., they are not joined with any data line from the right
input), are also passed to the output and the variables which
come from the right input are set as unbound.

This modification can be easily done when exactly one
data line from the left is joined with exactly one data line
from the right. In other cases we must keep information
about data lines from the left which were already joined
and which were not. To do this, each incoming envelope
from the left input is extended by one column of boolean
values initially set to false. When a data line from the
left is joined with some data line from the right, we set
corresponding boolean value to true. When the algorithm
finishes, we know which left data lines were not joined and



308

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should be copied to the output.
8) Distinct: Operator distinct should output only unique

data lines. We implemented this operator by the modifica-
tion of a sort operator. The first phase is completely the
same; however, during the merging in the second phase, the
duplicated data lines are omitted from the output.

9) Other operators: The rest of operators is implemented
very straightforwardly. Therefore, we do not describe them
here.

D. Explicit parallelization of nested loops join

With the set of boxes described in Section IV-C, we can
evaluate the complete SP2Bench benchmark (see Section V).
Despite the fact that the implicit parallelization speeds up the
evaluation of several queries, this speed up does not scale
with the number of physical cores in the host system.

Therefore, we focused on the most time-consuming oper-
ation – nested loops join – and tried to explicitly parallelize
it using Bobox.

The task of nested loops join is to evaluate the join
condition on all pairs of data lines from the left input and
data lines form the right input.

This operation can be easily parallelized, since we can
create N boxes which perform nested loops join (N denotes
the number of worker threads used by Bobox). We pass one
N -th of one input and the whole second input to each of
these boxes and join their outputs together. It can be easily
seen that this modification is valid since all pairs of data lines
are still correctly processed. The whole schema of boxes is
depicted in Figure 7.

broadcast

nested-loops0

nested-loops3

joiner

splitter

nested-loops2

nested-loops1

Figure 7. Parallelized nested loops join

The box splitter splits its input envelopes to N parts
and sends these parts to its outputs. The implementation of
this box must be careful since rounding errors may cause
that splitted streams do not have the same length. The box
broadcast just resends its every incoming envelope to its
outputs and the box joiner resends any incoming envelope
to its output.

Since all these three boxes are already implemented in
Bobox as standard boxes, the parallelization of nested loops
join is very simple.

V. EXPERIMENTS

We performed a number of experiments to test function-
ality, performance and scalability of the SPARQL query en-
gine. The experiments were performed using the SP2Bench
[16] query set since this benchmark is considered to be a
standard in the area of semantic processing.

Experiments were performed on a server running Redhat
6.0 Linux; server configuration is 2x Intel Xeon E5310,
1.60Ghz (L1: 32kB+32kB L2: 4MB shared) and 8GB RAM.
It was dedicated specially to the testing; therefore, no other
application were running on the server during measurements.
SPARQL front-end and Bobox are implemented in C++.
Data were stored in-memory.

A. Implicit parallelization

In the first experiment, we measured the speed up caused
by the implicit parallelization exploited by Bobox. To mea-
sure it, we chose some queries and evaluted them with
an increasing number of worker threads. We did not use
parallelized version of nested loops join in this experiment
and we measured only runtime of evaluation of execution
plan, i.e. we did not include the time spent by compilation
of the query. The results are shown in Figure 8.

1 2 4 8

0

1

2

3

4

5

6

7

0.63 0.56
0.35 0.39

5.13

3.26

2.87 2.90

1.43
1.25

1.11 1.13

6.47

3.52
3.25 3.25

0.83
0.67 0.60 0.61

Number of worker threads

T
im
e
[s
]

Q2 (5M)

Q4 (1M)

Q5b (5M)

Q8 (5M)

Q9 (5M)

Figure 8. The speed up obtained by implicit parallelization

The results show that for some queries the speed up
is quite significant; however, it does not scale with the
increasing number of worker threads. This is caused by the
fact that the level of parallelism is implicitly built in the
execution plan which does not depend on the number of
worker threads.

The query Q4 and Q8 benefits from the parallel evaluation
most, since the last sort box (or distinct box respectively)
runs in parallel with the rest of the execution plan. That
is not the case of Q9 which contains distinct box as well;
however, the amount of data processed by this box is too
small to fully exploit the pipeline parallelism.



309

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Q1 Q2 Q3a Q3b Q3c Q4 Q5a/b Q6 Q7 Q8 Q9 Q10 Q11
10k 1 147 846 9 0 23.2k 155 229 0 184 4 166 10
50k 1 965 3.6k 25 0 104.7k 1.1k 1.8k 2 264 4 307 10
250k 1 6.2k 15.9k 127 0 542.8k 6.9k 12.1k 62 332 4 452 10
1M 1 32.8k 52.7k 379 0 2.6M 35.2k 62.8k 292 400 4 572 10
5M 1 248.7k 192.4k 1.3k 0 18.4M 210.7k 417.6k 1.2k 493 4 656 10

Table I
QUERY RESULT SIZES ON DOCUMENTS UP TO 5M TRIPLES.

1 2 4 8

1

10

100

1000

80.4

44.2

20.7

10.6

156.1

78.9

39.8

20.6
57.1

28.8

14.6

7.8

Q5a (1M)

Q6 (1M)

Q7 (5M)

Number of worker threads

T
im
e
[s
]

Figure 9. The speed up obtained by explicit parallelization of nested loops
join

B. Explicit parallelization

In the second experiment, we focused on the speed up
caused by the explicit parallelization of nested loops join.
We selected the most time consuming queries with the nested
loops joins. As in the first experiment, we performed mul-
tiple measurements with the increasing number of worker
threads. In this experiment we also did not include the time
needed by the query compilation since we focused on the
runtime.

The results are shown in Figure 9. According to our
expectations, data parallelism increases the scalability and
causes a significant almost linear speed up on multiprocessor
systems.

C. Comparison with other engines

The last set of experiments compares the Bobox SPARQL
engine to other mainstream SPARQL engines, such as
Sesame v2.0 [5], Jena v2.7.4 with TDB v0.9.4 [6] and
Virtuoso v6.1.6.3127 (multithreaded) [7]. They follow client-
server architecture and we provide sum of the times of
client and server processes. The Bobox engine was compiled
as a single application; we applied timers in the way that
document loading times were excluded to be comparable
with a server that has data already prepared.

For all scenarios, we carried out multiple runs over
documents containing 10k, 50k, 250k, 1M, and 5M triples
and we provide the average times. Each test run was also
limited to 30 minutes (the same timeout as in the original
SP2Bench paper). All data were stored in-memory, as our
primary interest is to compare the basic performance of the
approaches rather than caching etc. The expected number of
the results for each scenario can be found in Table I.

The query execution times are shown in Figure 10. The
y-axes are shown in a logarithmic scale and individual plots
scale differently. In the following paragraphs, we discuss
some of the queries and their results. In contrary to previous
experiments, we did include the time spent by the compiler
in order to be comparable with other engines.

Q2 implements a bushy graph pattern and the size of
the result grows with the size of the queried data. We can
see that Bobox Engine scales well, even though it creates
execution plans shaped as a left-deep tree. This is due to the
parallel stream processing of merge joins. The reason why
our solution is slower on 10k and 50k of triples is that the
compiler takes more than 1s to compile and to optimize the
query.

The variants of Q3 (labelled a to c) test FILTER expres-
sion with varying selectivity. We present only the results
of Q3c as the results for Q3a and Q3b are similar. The
performance of Bobox is negatively affected by a simple
implementation of statistics used to estimate the selectivity
of the filter.

Q4 (Figure 11) contains a comparably long graph chain,
i.e., variables ?name1 and ?name2 are linked through
articles that (different) authors have published in the same
journal. Bobox embeds the FILTER expression into this
computation instead of evaluating the outer pattern block
and applying the FILTER afterwards and propagates the
DISTINCT modifier closer to the leaves of the plan in order
to reduce the size of the intermediate results.

Queries Q5 (Figure 11) test implicit (Q5a) join encoded in
a FILTER condition and explicit (Q5b) variant of joins. On
explicit join both engines used fast join algorithm and are
able to produce result in a reasonable time. On implicit join
both engines used nested loops join which scales very badly.
However, Bobox outperforms both Sesame and Jena since
it is able to use multiple processors to get the results and is
able to compute also documents with 250k, 1M and 5MB



310

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.001

0.010

0.100

1.000

10k 50k 250k 1M 5M

q1 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10k 50k 250k 1M 5M

q2 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q3c bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q4 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q5a bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q5b bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10000

10k 50k 250k 1M 5M

q6 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

1000

10k 50k 250k 1M 5M

q7 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q8 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

100

10k 50k 250k 1M 5M

q9 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q10 bobox sesame

jena virtuoso

0.001

0.01

0.1

1

10

10k 50k 250k 1M 5M

q11 bobox sesame

jena virtuoso

Figure 10. Results (time in seconds) for 10k, 50k, 250k, 1M, and 5M triples.

triples before the 30 minute limit is reached. On the other
hand, Virtuoso outpeforms Bobox mainly due to particular
query optimizations [16].

Queries Q6, Q7 and Q8 produce bushy trees; their com-
putation is well handled in parallel, mainly because of
nested loops join parallelization. As a result of this, Bobox
outperforms Sesame and Jena in Q6 and Q7 and outperforms

Virtuoso in Q7, being able to compute larger documents
until the query times out. The authors of the SP2Bench
suggest [16] reusing graph patterns in a description of the
queries Q6, Q7 and Q8. However, this is problematical in
Bobox. Bobox processing is driven by the availability of the
data on inputs but it also incorporates methods to prevent
the input buffers from being overfilled (see Section II-B).



311

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SELECT DISTINCT ?name1 ?name2 Q4
WHERE { ?article1 rdf:type bench:Article.

?article2 rdf:type bench:Article.
?article1 dc:creator ?author1.
?author1 foaf:name ?name1.
?article2 dc:creator ?author2.
?author2 foaf:name ?name2.
?article1 swrc:journal ?journal.
?article2 swrc:journal ?journal
FILTER (?name1<?name2) }

SELECT DISTINCT ?person ?name Q5a
WHERE { ?article rdf:type bench:Article.

?article dc:creator ?person.
?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person2.
?person foaf:name ?name.
?person2 foaf:name ?name2
FILTER(?name=?name2) }

Figure 11. Examples of the benchmark queries.

Pattern reusing can result in the same data being sent along
two different paths in the pipeline running at a different
speed. Such paths may then converge in a join operation.
When the faster path overfills the input buffer of the join
box, the computation of all boxes on paths leading to the
box is suspended. As a result, data for the slower path will
never be produced and will not reach the join box, which
results in a deadlock. We intend to examine the possibility
of introducing a buffer box, which will be able to store
and provide data on request. This way, the Bobox SPARQL
implementation will be able to reuse graph patterns.

Q10 can be processed very fast because of our database
representation. Therefore, only resulting triples are fetched
directly from the database.

In contrary to Sesame, time of Q11 depends on the size of
database. This is caused by the fact that we do not have any
optimization for queries with LIMIT or OFFSET modifiers.
In that case, the whole results set is produced which naturally
slows down the evaluation.

Overall, the results of the benchmarks indicate very
good potential of Bobox when used for implementation
of RDF query engine. Our solution outperforms in all
measurements Sesame, in most cases significantly and in
most measurements Jena. The performance of Bobox and
Virtuoso is comparable; Bobox outperforms Virtuoso namely
in computing and data intensive queries.

VI. RELATED WORK

A. Parallel Frameworks and Libraries

The most similar to the Bobox run-time is the TBB library
[26]. It was one of the first libraries that focused on task
level parallelism. Compared to the Bobox, it is a low-level
solution – it provides basic algorithms like parallel for cycle
or linear pipeline and a very efficient task scheduler. The

developers are able to directly create tasks for the scheduler
and create their own parallel algorithms. But the tasks are
designed in a way that makes it very hard to create a non-
linear pipeline similar to the one Bobox provides. Such
pipeline may be necessary for complex data processing [27].
Bobox also provides more services for data passing and flow
control.

The latest version of OpenMP [28] also provides a way to
execute tasks in parallel, but it provides less features and less
control than TBB. The OpenMP library is mainly focused on
mathematical computations – it can execute simple loops in
parallel really fast, it can also run blocks of code in parallel,
but it is not well suited for parallel execution of a complex
structure of blocks. Unlike TBB or Bobox, it is a language
extension and not just a library; the compiler is well aware
of the parallelization and optimize the code better, but it
also enables OpenMP to provide features that cannot be
done with just a library, like defining the way variables are
shared among threads with a simple declaration. In TBB
such variable has to be explicitly passed to an appropriate
algorithm by the programmer. In Bobox, it must either be
explicitly passed to the model or sent using an envelope at
run-time.

Some of the architectural decisions could be implemented
in a different manner. One way would be to create a thread
for each box and via in the model instance. This would also
ensure that each box or via is running at most once at any
given time. However, this is considered a bad practice [29].
There are two main reasons for not using this architecture.
First, it creates a large number of threads, usually much
larger than the number of CPU cores. Although it forces the
operating system to switch the threads running on a core, it
may not impact the overall performance that badly, since it
can be arranged that the idling threads (those assigned to a
box or via that is not processing any data at the moment) are
suspended and do not consume any CPU time. The second
problem is that when data (envelopes) are transfered from
one box to another, there is very little chance that it would
still be hot in the cache, since the thread that corresponds
to the second box is likely to be scheduled to a different
CPU, that does not share its cache with the original one.
The concept of tasks used by TBB and Bobox avoid these
problems and the use of thread pool, fixed number of threads
and explicit scheduling gives developers of the libraries
better control of parallel execution.

Besides these low-level techniques of parallel data pro-
cessing, the MapReduce approach gained significant atten-
tion. While it is often considered a step back [30], there
are application areas where MapReduce may outperform
a parallel database [31]. Although MapReduce was origi-
nally targeted to other environments, it was also studied in
shared-memory settings (similar to Bobox) [32], [33]. Unlike
MapReduce, Bobox is desiged to support more complicated
processing environment, namely nonlinear pipelines.



312

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Parallel Databases

In a relational database management system, parallelism
may be employed at various levels of its architecture:

• Inter-transaction parallelism. Running different trans-
actions in parallel has been a standard practice for
decades. Besides dealing with disk latency, it is also the
easiest way to achieve a degree of parallelism in shared-
memory or shared-disk environment. Although it is not
considered a specific feature of parallel databases, it
must be carefully considered in the design of parallel
databases since parallel transactions compete for mem-
ory, cache, and bandwidth resources [34], [35].

• Intra-transaction parallelism. Queries of a transaction
may be executed in parallel, provided they do not in-
terfere among themselves and they do not interact with
external world. Since these conditions are met rather
rarely, this kind of parallelism is seldom exploited
except for experiments [36].

• Inter-operator parallelism. Since individual operators
of a physical query plan have well-defined interfaces
and mostly independent behavior, they may be arranged
to run in parallel relatively easily. On the other hand,
the effect of such parallelism is limited because most
of the cost of a query plan is often concentrated in one
or a few of the operators [37].

• Intra-operator parallelism. Parallelizing the operation
of a single physical operator is the central idea of
parallel databases. From the architectural point of view,
there are two different approaches:

– a) Partitioning [38] – this technique essentially
distributes the workload using the fact that many
physical algebra operators are distributive with
respect to union (or may be rewritten using such
operators).

– b) Parallel algorithms – implementing the operator
using a parallel algorithm usually offers the free-
dom of control over the time and resource sharing
and machine-specific means like atomic operations
or SIMD instructions. However, designing, imple-
menting, and tuning a parallel algorithm is an
extremely complex task, often producing errors or
varying performance results [39]. Moreover, the
evolution of hardware may soon make a parallel
implementation obsolete [40]. For these reasons,
parallelizing frameworks are developed [41].

The central principle of Bobox allows parallelism among
boxes but prohibits (thread-based) parallelism inside a box.
This is similar to inter-transaction and inter-operator par-
allelism; however, a box does not necessarily correspond
to a relational operator. In particular, Bobox allows the
same approach to partitioning as in parallel databases, using
transformation of the query plan.

Bobox does not allow parallel algorithms to be im-
plemented inside a box (except of the use of SIMD in-
structions). Therefore, individual single-threaded parts of
a parallel algorithm must be enclosed in their boxes and
the complete algorithm must be built as a network of
these boxes. This is certainly a limitation in the expressive
power of the system; on the other hand, the communication
and synchronization tasks are handled automatically by the
Bobox framework.

VII. CONCLUSIONS AND FUTURE WORK

In the paper, we presented a parallel SPARQL processing
engine that was built using the Bobox framework with a
focus on efficient query processing: parsing, optimization,
transformation and parallel execution. We also presented
the parallelization of nested loops join algorithm to increase
parallelism during the evaluation of time consuming queries.
Despite the fact that this parallelization is very simple to be
done using Bobox, the measurements show that it scales
very well in a multiprocessor environment.

To test the performance, we performed multiple sets of
experiments. We have chosen established frameworks for
RDF data processing as the reference systems. The results
seem very promising; using SP2Bench queries we have
identified that our solution is able to process many queries
significantly faster than other engines and to obtain results on
larger datasets. Therefore, such a parallel approach to RDF
data processing has a potential to provide better performance
than current engines. On the other hand, we also identified
several issues:

• We are working on improvements of our statistics used
by the compiler to generate more optimal query plans.

• The pilot implementation of the compiler is not well
optimized which is problem especially in Q1 and Q2.

• Our heuristics sometimes result in long chains of boxes.
Streamed processing and fast merge joins minimize this
disadvantage; however, it is better to have bushy query
plans for efficient parallel evaluation.

• Also, some methods proposed in SP2Bench, such as
graph pattern reuse, are not efficiently applicable in the
current Bobox version.

• The query Q4 is very time consuming and does not
benefit much from the fact that the system has multiple
processors. Therefore, we must parallelize besides the
nested loops join also merge join, which is the bottle-
neck of this query.

• Currently, we support only in-memory databases. In
order to have engine usable for processing of really
large RDF databases such as BTC Dataset (Billion
triple challenge) [42], we must keep the database in
external memory.

Because of these issues, we are convinced that there is
still space for optimization in parallel RDF processing and
we want to focus on them and improve our solution.



313

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENTS

The authors would like to thank the GAUK project no.
28910, 277911 and SVV-2012-265312, and GACR project
no. 202/10/0761, which supported this paper.

REFERENCES

[1] M. Cermak, J. Dokulil, Z. Falt, and F. Zavoral, “SPARQL
Query Processing Using Bobox Framework,” in SEMAPRO
2011, The Fifth International Conference on Advances in
Semantic Processing. IARIA, 2011, pp. 104–109.

[2] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Lan-
guage for RDF,” W3C Recommendation, 2008.

[3] J. J. Carroll and G. Klyne, Resource Description
Framework: Concepts and Abstract Syntax, W3C, 2004.
[Online]. Available: http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/

[4] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan,
“Efficiently querying rdf data in triple stores,” in Proceeding
of the 17th international conference on World Wide Web, ser.
WWW ’08. New York, NY, USA: ACM, 2008, pp. 1053–
1054.

[5] J. Broekstra, A. Kampman, and F. v. Harmelen, “Sesame: A
generic architecture for storing and querying RDF and RDF
schema,” in ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web. London,
UK: Springer-Verlag, 2002, pp. 54–68.

[6] “Jena – a semantic web framework for
Java,” http://jena.sourceforge.net. [Online]. Available:
http://jena.sourceforge.net, retrieved 10/2012

[7] “Virtuoso data server,” http://virtuoso.openlinksw.com, re-
trieved 10/2012

[8] A. Kiryakov, D. Ognyanov, and D. Manov, “Owlim a
pragmatic semantic repository for owl,” 2005, pp. 182–192.

[9] T. Neumann and G. Weikum, “The rdf-3x engine for scalable
management of rdf data,” The VLDB Journal, vol. 19, pp.
91–113, February 2010.

[10] J. Huang, D. Abadi, and K. Ren, “Scalable sparql querying
of large rdf graphs,” Proceedings of the VLDB Endowment,
vol. 4, no. 11, 2011.

[11] Z. Falt, D. Bednarek, M. Cermak, and F. Zavoral, “On Parallel
Evaluation of SPARQL Queries,” in DBKDA 2012, The
Fourth International Conference on Advances in Databases,
Knowledge, and Data Applications. IARIA, 2012, pp. 97–
102.

[12] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Data-
Flow Awareness in Parallel Data Processing,” in 6th Inter-
national Symposium on Intelligent Distributed Computing -
IDC 2012. Springer-Verlag, 2012.

[13] “The Bobox Project - Parallelization Framework and Server
for Data Processing,” 2011, Technical Report 2011/1. [On-
line]. Available: http://www.ksi.mff.cuni.cz/bobox, retrieved
12/2012

[14] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and
C. Pinkel, “An Experimental Comparison of RDF Data Man-
agement Approaches in a SPARQL Benchmark Scenario,” in
ISWC, Karlsruhe, 2008, pp. 82–97.

[15] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Bobox:
Parallelization Framework for Data Processing,” in Advances
in Information Technology and Applied Computing, 2012.

[16] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel,
“Sp2bench: A sparql performance benchmark,” CoRR, vol.
abs/0806.4627, 2008.

[17] Z. Falt, J. Bulanek, and J. Yaghob, “On Parallel Sorting of
Data Streams,” in ADBIS 2012 - 16th East European Con-
ference in Advances in Databases and Information Systems,
2012.

[18] J. Dokulil and J. Katreniakova, “Bobox model visualization,”
in 14th International Conference Information Visualisation.
London, UK: IEEE Computer Society, 2010, pp. 537–542.

[19] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Using
Methods of Parallel Semi-structured Data Processing for
Semantic Web,” in 3rd International Conference on Advances
in Semantic Processing, SEMAPRO. IEEE Computer Society
Press, 2009, pp. 44–49.

[20] J. Galgonek, “Tequila - a query language for the semantic
web,” in DATESO 2009, ser. CEUR Workshop Proceedings,
K. Richta, J. Pokorný, and V. Snášel, Eds., vol. 471. Czech
Technical University in Prague, 2009, pp. 105–118.

[21] M. Krulis and J. Yaghob, “Revision of relational joins for
multi-core and many-core architectures,” in Proceedings of
the Dateso 2011. Pisek, Czech Rep.: FEECS, 2011.

[22] Z. Falt and J. Yaghob, “Task Scheduling in Data Stream
Processing,” in Proceedings of the Dateso 2011 Workshop.
Citeseer, 2011, pp. 85–96.

[23] H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/rule
based query rewrite optimization in starburst,” SIGMOD Rec.,
vol. 21, pp. 39–48, June 1992.

[24] O. Hartig and R. Heese, “The SPARQL Query Graph Model
for query optimization,” in The Semantic Web: Research
and Applications, ser. Lecture Notes in Computer Science,
E. Franconi, M. Kifer, and W. May, Eds. Springer Berlin /
Heidelberg, 2007, vol. 4519, pp. 564–578.

[25] M. Cermak, J. Dokulil, and F. Zavoral, “SPARQL Compiler
for Bobox,” Fourth International Conference on Advances in
Semantic Processing, pp. 100–105, 2010.

[26] A. Kukanov and M. J. Voss, “The foundations for scalable
multi-core software in Intel Threading Building Blocks,” Intel
Technology Journal, vol. 11, no. 04, pp. 309–322, November
2007.

[27] D. Bednárek, “Bulk evaluation of user-defined functions in
XQuery,” Ph.D. dissertation, Department of Software Engi-
neering, Faculty of Mathematics and Physics, Charles Uni-
versity in Prague, 2009.



314

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] OpenMP Application Program Interface, Version 3.0,
OpenMP Architecture Review Board, May 2008,
http://www.openmp.org/mp-documents/spec30.pdf, retrieved
9/2011.

[29] J. Reinders, Intel Threading Building Blocks. O’Reilly, 2007.

[30] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paul-
son, A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss:
friends or foes?” Commun. ACM, vol. 53, pp. 64–71, 2010.

[31] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian, “A comparison of join algorithms for log processing
in mapreduce,” in SIGMOD ’10: Proceedings of the 2010
international conference on Management of data. USA:
ACM, 2010, pp. 975–986.

[32] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and
multiprocessor systems,” in HPCA ’07: Proceedings of the
2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 13–24.

[33] G. Kovoor, “MR-J: A MapReduce framework for multi-core
architectures,” Ph.D. dissertation, University of Manchester,
2009.

[34] F. Morvan and A. Hameurlain, “Dynamic memory allocation
strategies for parallel query execution,” in SAC ’02: Proceed-
ings of the 2002 ACM symposium on Applied computing.
New York, NY, USA: ACM, 2002, pp. 897–901.

[35] Z. Zhang, P. Trancoso, and J. Torrellas, “Memory
system performance of a database in a shared-
memory multiprocessor,” 2007. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1924,
retrieved 10/2012

[36] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry,
“Optimistic intra-transaction parallelism on chip multiproces-
sors,” in VLDB ’05: Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment,
2005, pp. 73–84.

[37] A. N. Wilschut, J. Flokstra, and P. M. G. Apers, “Parallel
evaluation of multi-join queries,” in SIGMOD ’95: Proceed-
ings of the 1995 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 1995,
pp. 115–126.

[38] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, no. 6, pp. 85–98, 1992.

[39] J. Aguilar-Saborit, V. Muntes-Mulero, C. Zuzarte, A. Zubiri,
and J.-L. Larriba-Pey, “Dynamic out of core join processing
in symmetric multiprocessors,” in PDP ’06: Proceedings of
the 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 28—35.

[40] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs.
hash revisited: fast join implementation on modern multi-core
cpus,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1378–1389,
2009.

[41] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye, “Automatic
contention detection and amelioration for data-intensive op-
erations,” in SIGMOD ’10: Proceedings of the 2010 interna-
tional conference on Management of data. New York, NY,
USA: ACM, 2010, pp. 483–494.

[42] “Billion triple challenge.” [Online]. Available:
http://challenge.semanticweb.org, retrieved 10/2012


