
553

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Generic Approach towards Measuring Level of Autonomicity in Adaptive Systems

Thaddeus Eze, Richard Anthony, Alan Soper, and Chris Walshaw
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, A.J.Soper and C.Walshaw}@gre.ac.uk

Abstract— This paper is concerned with setting the groundwork

for the introduction of standards for Autonomic Computing, in

terms of technologies and the composition of functionalities as

well as validation methodologies. This is in line with addressing

the lack of universal standards for autonomic (self-managing)

systems and design methods used for them despite the

increasingly pervasiveness of the technology. There are also

significant limitations to the way in which these systems are

assessed and validated, with heavy reliance on traditional design-

time techniques, despite the highly dynamic behaviour of these

systems in dealing with run-time configuration changes and

environmental and context changes. These limitations ultimately

undermine the trustability of these systems and are barriers to

eventual certification. We propose that the first vital step in this

chain is to introduce robust techniques by which the systems can

be described in universal language, starting with a description

of, and means to measure the extent of autonomicity exhibited by

a particular system. Existing techniques have mainly

qualitatively classified autonomic systems according to some

defined levels with no reference to the building blocks (core

functionalities) of the systems. In this paper we present a novel

and generic technique for measuring the Level of Autonomicity

along several dimensions of autonomic system self-* (e.g., self-

configuration, self-healing, self-optimisation and self-protection)

functionalities. To demonstrate the feasibility and practicability

of our approach, a case example of two different scenarios is

examined. One example focuses on a specific case approach for

LoA measure within a Dynamic Qualitative Sensor Selection

scenario. The second example is a deployment of a generic case

approach to an envisioned Autonomic Marketing System that

has many dimensions of freedom and which is sensitive to a

number of contextual volatility.

Keywords - autonomicity; level of autonomicity; autonomic system;

trustworthiness; metrics; autonomic marketing, sensor selection

I. INTRODUCTION

 Autonomic Computing (AC) seeks the development of

self-managing (or autonomic) systems to address

management complexities of systems. The high rate of

advancement of autonomic technology and methodologies has

seen these systems increasingly deployed across a broad

range of application domains yet without universal standards.

Also the widening acceptance of Autonomic Systems (AS) is

leading to more trust being placed in them with little or no

basis for this trust, especially in the face of significant

limitations regarding the way in which these systems are

validated. The traditional design-time validation techniques

fail to address the run-time requirements of AS’

environmental and contextual dynamism. These limitations

undermine trustability and ultimately impinge on certification.

The more this proliferation goes on without these challenges

being addressed, the more difficult it gets to introduce

standards and eventually achieve certifiable AS. It has

therefore become pertinent and timely to address these issues.

A vital first step in this course would be standards for the

universal description of these systems and a standard

technique for measuring Level of Autonomicity (LoA)

achieved by these systems –and we have made progress in

this area [1]. Standards for AC would be concerned with

technologies, composition of functionalities and validation

methodologies. By autonomicity we mean the ability of a

system to pursue its goal with minimal external interference

in the form of configuration or control. Then, the extent of

this interference defines autonomicity levels. Now the

questions facing the AC community are, for a given system,

“How autonomic should a system be?” and “How autonomic

is a system and how is this determined?” The two questions

address both pre and post system design phases. The first

question is of primary importance to the designers of systems

where autonomic specification is a critical part of the whole

system requirements definition. A good example would be the

spaceflight vehicles addressed in [2], where a level of

autonomy assessment tool was developed to help determine

the level of autonomy required for spaceflight vehicles. The

second question is in two parts. On the one hand is the need to

define systems according to a measure of autonomicity and

another is the method and nature of the measure. Addressing

this issue is the main thrust of this paper and here we improve

on our initial work [1] in this area. Another significant aspect

addressed here is the need for a standard way for assessing,

comparing and evaluating different systems (with flexibility

across many domains) and also in terms of their individual

functionalities. Not only do we measure autonomicity but also

look at how systems can be evaluated and compared in terms

of their autonomic compositions.

Eze et al [3] identified that defining LoA is one of the

critical stages along the path towards certifiable AS. Along

this path also is the need for an appropriate testing

methodology that seeks to validate the AS decision-making

process. But to know what testing (validation) is appropriate

requires knowledge of the system in terms of its extent of

autonomicity. Another issue that underpins the need for

measuring LoA is that a means of answering the identified

questions is also a solution for assessing AS and facilitates a

proper understanding of such systems.

Currently, the vast majority of research effort in this

direction has progressed in answering the first question

(“How autonomic should a system be?”) by providing us with

scales that describe and analyse autonomy in systems. These

554

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scales, referenced by many researchers, provide fundamental

understanding of system autonomy by categorising autonomy

according to level of human-machine involvement in

decision-making and execution. A naturally upcoming

concern with this approach is that high human involvement

does not always necessarily translate to low autonomicity and

vice versa. Also, most (if not all) of such approaches do not

assess ASs based on demonstrated functionalities but on

perceived or observed outcomes (performance). Some key

works in this area include [2], [4], and [5]. For us, these scales

only characterise autonomy levels qualitatively and offer no

generic or robust means of quantitatively measuring extent of

autonomicity. We would simply say that they are more

sufficient for the purposes of proposing an appropriate level

of autonomy during the design of a new system.

ISO/IEC 9126-1 standard [6] decomposes overall

software product quality into characteristics, sub

characteristics (attributes) and associated measures. Adapting

this, we define a framework for measuring LoA along several

dimensions of AS self-* functionalities. Systems are well-

defined by their set of functional capabilities and a measure of

these capabilities will form a better representation of the

systems. These functional capabilities may be extended to

mean, in other systems, characteristics (or attributes) and sub-

characteristics (or sub-attributes). While in our initial work

[1] we restrict the functionalities to the core functionalities of

ASs, the self-CHOP (self-configuration, self-healing, self-

optimisation and self-protection) functionalities, in this paper

we extend the reach (scope) to cover all possible essential

functionalities and identify specific metrics for each of the

functionalities. (This allows the approach to be entirely more

generic.) The cumulative measure of these metrics defines a

LoA. Our method is based on the establishment of a generic

technique that can be applied to any application domain. This

work is novel as it offers a quantitative measure of LoA in

terms of system’s functionalities-based description and can be

flexibly applied across different application instances. It also

opens a new research focus for autonomicity measuring

metrics. We believe this is timely because if not addressed we

not only run the risk of classifying systems as trusted without

basis but also risk losing track and control of these systems as

a result of spiraling complexities in terms of technology and

methodologies. [7] also raised the concern that if the

proliferation of unmanned systems (and by extension ASs) is

not checked by putting appropriate measures (or mechanisms)

in place that ensure trustworthiness, the systems may

ultimately lose acceptance and popularity.

The remainder of this paper is organised as follows:

related work is presented in Section II. In Section III, we

introduce metrics for measuring autonomicity. Our proposed

LoA measure and two case studies are presented in Sections

IV and V respectively. Section VI concludes the work.

II. RELATED WORK

The study of AC is now a decade old. However, its rapid

advancement has led to a wide range of views on meaning,

architecture, and implementations. The criticality of

understanding extent of autonomicity in defining AC systems

has necessitated the need for evaluating these systems. The

majority of research in this area has targeted specific

application domains with datacentre applications topping the

list [8]. Now, to the extent of our research review [8], there is

no known (or published) quantitative approach for assessing

autonomic systems. There are nonetheless, efforts towards

classifying ASs according to extent of autonomicity but these

efforts have not successfully met the need for assessing

autonomic systems. In this section we review some of the

proposed (existing) approaches.

One major proposal for classifying ASs according to

extent of autonomicity (or measuring LoA) is the scale-based

approach. This approach, based on level of human-machine

involvement in decision-making and execution, uses a scale

of (1 – max) to define a system’s LoA where ‘1’, the lower

bound, is the lowest autonomic level usually describing a

state of least machine involvement in decision-making and

‘max’, the upper bound, is the highest autonomic level

describing a state of least human involvement. Prominent in

this category of approach are efforts in [2], [4], [9, 27], and

[20]. Clough [4] proposes a scale of (1–10) for determining

Unmanned Aerial Vehicles’ (UAV’s) autonomy. Level 1

‘remotely piloted vehicle’ describes the traditional remotely

piloted aircraft, while level 10 ‘fully autonomous’ describes

the ultimate goal of complete autonomy for UAVs. Clough

populates the levels between by defining metrics for UAVs.

Sheridan [9] also proposes a 10-level scale of autonomic

degrees. Unlike Clough’s scale, Sheridan’s levels 2-4 centre

on who makes the decisions (human or machine), while levels

5-9 centre on how to execute decisions. Ryan et al [2], in a

study to determine the level of autonomy of a particular AS

decision-making function, developed an 8-level autonomy

assessment tool. The tool ranks each of the OODA (Observe,

Orient, Decide and Act) loop functions across Sheridan’s

proposed scale of autonomy [9]. OODA is a decision-making

loop architecture for ASs. The scale’s bounds (1 and 8)

correspond to complete human and complete machine

responsibilities respectively. They first identified the tasks

encompassed by each of the functions and then tailored each

level of the scale to fit appropriate tasks. The challenge here

is ensuring relative consistency in magnitude of change

between levels across the functions. The levels are broken

into three sections. Levels 1-2 (human is primary, computer is

secondary), levels 3-5 (computer and human have similar

levels of responsibility), and levels 6-8 (computer is

independent of human). To determine the level of autonomy

needed to design into a spaceflight vehicle, Ryan et al [2]

needed a way to map particular functions onto the scale and

determine how autonomous each function should be. They

designed a questionnaire and sent it to system designers,

programmers and operators. The questionnaire considered

what they call ‘factors for determining level of autonomy’,

which include level of autonomy trust limit and cost/benefit

ratio limit. This implies that a particular level of autonomy for

a function is favoured when a balance is struck between trust

and cost/benefit ratio limits. Ultimately the pertinent question

555

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is “How autonomous should future spaceflight vehicles be?”

This is a brilliant technique towards answering the first

identified question (“How autonomic should a system be?”)

IBM’s 5 levels of automation [5] describes the extent of

automation of the IT and business processes. We consider

these to be too narrowly defined and [10] observes that the

differentiation between levels is too vague to describe the

diversity of self-management, making it difficult to align ASs

with those levels [28]. One major concern with the scale-

based approach is that a system is not necessarily less

autonomic when human interferes with its operations and vice

versa. Another is the complexity of applying the approach

across different application instances (systems) –this is in

terms of populating the levels in-between the scales: the

differentiation between levels is complex (and can vary

significantly depending on who is using the approach) to

determine appropriate magnitude for each level. In general the

autonomy scale approach is qualitative and does not

discriminate between behaviour types. We posit that a more

appropriate approach should comprise both qualitative and

quantitative (as a way of assigning magnitude or value to the

description and classification of systems) measures. These

concerns are considered and addressed in our approach.

Hui-Min et al. [20] is a government’s front for addressing

the challenge of classifying the pervasive unmanned systems

(UMS) according to their levels of autonomy. [20] alludes

that UMS’ autonomy cannot be rightly evaluated

quantitatively without thorough technical basis and that the

development of autonomy levels for unmanned systems must

take into account factors like task complexity, human

interaction, and environmental difficulty. The product in [20]

is Autonomy Levels for Unmanned Systems (ALFUS)

Framework which, more specifically, provides the

terminology for prescribing and evaluating the level of

autonomy that an unmanned system can achieve. The

framework, in which the levels of autonomy can be described,

addresses the technical aspects of UMS and includes terms

and definitions (set of standard terms and definitions that

support the autonomy level metrics), detailed model for

autonomy levels, summary model for autonomy levels, and

guidelines, processes, and use cases. While we accept that

autonomicity cannot be correctly evaluated without thorough

technical basis, our approach further takes into account key

functionalities of ASs rather than individual breakdown of

technical operations and operational conditions –a major

difference with our work. The work in [20], which is updated

in [21], focuses more on standardised categorisation of UMS.

Barber and Martin [11] supposes that in a multi-agent

system environment, agent autonomy is measured in terms of

a system-wide goal. It proposes a collaborative decision-

making algorithm for multi-agent systems. In the proposed

algorithm, a plan for achieving the system’s goal is decided

by the agents. Every agent suggests a complete plan with

justification for how to achieve the entire system’s goal. Each

agent evaluates each suggested plan and determines the value

of its justification. Each plan receives an integer number of

votes from the deciding agents. The plan with the highest

votes becomes the plan for the entire system. The ratio of an

agent’s number of votes (received for suggested plan) to the

total number of votes cast is a measure of that agent’s

autonomy and the extent of its capability to influence the

system. This method, however, does not offer a measure for

LoA but gives a valuable description of agents’ individual

influence in a multi-agent system environment which is useful

to our approach: In further evaluating a system, we adapt this

formula to determine the rate of individual functionality

contribution in our proposed LoA measure (see Section IV B).

Fernando et al [12] proposes measures for evaluating the

autonomy of software agents. It believes that a measure of

autonomy (or any other agent feature) can be determined as a

function of well-defined characteristics. Firstly, it identifies

the agent autonomy attributes (as self-control, functional

independence, and evolution capability) and then defines a set

of measures for each of the identified attributes. The agent’s

LoA is defined by normalising the results of the defined

measures using a set of functions. [12] considers autonomicity

measure with reference to system’s characteristics and

attributes. But in that work ‘characteristics’ are a broad range

of attributes that describe a system which also include

features outside the system’s core functionalities. Not going

into the argument of right/wrong constitution of system

attributes (or functionalities), the important aspect to note is

the idea of defining a system with respect to its attributes and

characteristics. We have adapted this approach in our

proposal for autonomic systems but with reference to [core]

autonomic self-* functionalities.

III. AUTONOMICITY MEASURING METRICS

In this section, we introduce example metrics for each of

the core four functionalities that define autonomicity of AS.

Though metrics are application domain dependent, the

metrics presented here are generic and serve as examples

only. We understand that autonomic functionalities are

emergent and these vary (or are defined) according to

application instances. The point is that, for any system

(whether or not autonomic), there are required functionalities

(determined by designers and/or users) which can be

measurable by some identified metrics. We present at least

one metric for each of the functionalities (using the self-

CHOP for example). This is part of a wider (and separate)

research focus. This section only focuses on how autonomic

metrics can be generated. We also show how metrics can be

normalised (see Section IV). We will start with a definition of

each CHOP. (For more on these definitions see [13] and [14]).

Self-Configuring: A system is self-configuring when it

is able to automate its own installation and setup according to

high-level goals. When a new component is introduced into

an AS it registers itself so that other components can easily

interact with it. The extent of this interoperability I is a

measure of self-configuration, measured as the ratio of actual

number of components () to expected number of

components () successfully interacting with the new

component after configuration.

556

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Interoperability ratio I measures to what extent a

system is distorted by an upgrade. A system is self-

configuring to the extent of its ability to curb this distortion.

This example can be related to the problem diagnosis system

for AS upgrade discussed in [13]. Here an upgrade introduces

5 software modules. The installation regression testers found

faulty output in 3 of the new modules. This implies that only

2 modules out of 5 successfully integrated with the system.

Self-Optimising: A system is self-optimising when it is

capable of adapting to meet current requirements and also of

taking necessary actions to self-adjust to better its

performance. Resource management (e.g., load balancing) is

an aspect of self-optimisation. An autonomic system is

required to be able to learn how to adapt its state to meet new

challenges. Also needed is consistent update of the system’s

knowledge of how to modify its state. State is defined by a set

of variables such as current load distribution, CPU utilization,

resource usage, etc. The values of these variables are

influenced by certain event occurrences like new

requirements (e.g., process fluctuations or disruptions). By

changing the values of these variables, the event also changes

the state of the system. The status of these variables is then

updated by a set of executable statements (policies) to meet

any new requirement. A typical example would be an

autonomic job scheduling system. At first, the job scheduler

could assign equal processing time quanta to all systems

requiring processing time. The sizes of the time quantum

becomes the current state and as events occur (e.g.,

fluctuations in processing time requirement, disruptions of

any kind, etc.), the scheduler is able to adjust the processing

time allocation according to priorities specified as policies. In

this way the state of the system is updated. But this may lead

to erratic tuning (as a result of over or under compensation)

causing instability in the system. We define Stability as a

measure of self-optimisation. If an event leads to erratic

behaviour, incoherent results or system is not able to retrace

its working state beyond a certain safe margin (a margin

within which instability is tolerated), then the system is not

effectively self-optimising.

Self-Healing: A system is self-healing when it is able to

detect errors or symptoms of potential errors by monitoring its

own performance and automatically initiate remediation [15].

Fault tolerance is one aspect of self-healing. It allows the

system to continue its operation possibly at a reduced level

instead of stopping completely as a result of a part failure.

One critical factor here is latency; the amount of time the

system takes to detect a problem and then react to it. We

define reaction time T as a metric for self-healing capability.

This is crucial to the reliability of a system. If a change occurs

at time and the system is able to detect and work out a new

configuration and ready to adapt at time , then (2) defines

the reaction time T. (Average is taken instead where

variations of T are possible).

 (2)

A case scenario is a stock trading system where time is

of paramount importance. The system needs to track changes

(e.g., in trade volumes, price, rates etc.) in real time in order

to make profitable trading decisions.

Self-Protecting: A system is self-protecting when it is

able to detect and protect itself from attacks by automatically

configuring and tuning itself to achieve security. It may also

be capable of proactively preventing a security breach

through its knowledge based on previous occurrences. While

self-healing is reactive, self-protecting is proactive. A

proactive system, for example, would maintain a kind of log

of trends leading to security problems (threats and breaches)

and a list of solutions to resolve them (a list of problems and

corresponding solutions only applies to self-healing). One

major metric here is the ability of the system to prevent

security issues based on its experience of past occurrences.

For example let’s assume { } to be true if trend

leads to problem where is a log of all identified trends

and corresponding problems. is a particular instance of

trend-problem combination. A self-protecting manager will

avoid a situation of same trend leading to the same problem

again by blocking the problem, addressing it or preventatively

shutting down part of the system. We define ability to detect

repeat events E as a self-protecting metric. E is a Boolean

value (True indicates the manager is able to stop a repeating

problem and False otherwise). If we choose two samples of

{ } at different times (t1 and t2) then (3) defines E.

(Different trends may lead to the same problem but a repeated

trend-problem combination indicates a failure of the system to

prevent a reoccurrence).

 { } { } (3)

One typical implementation of this is an antivirus

system. Some antivirus systems learn about trends or patterns

(signatures) and are able to make decisions based on these to

proactively protect a system from an attack. The antivirus is

able to stop repeatable patterns. Detecting problem

reoccurrence is an active research focus in Autonomic

Computing [16].

IV. PROPOSED LOA MEASURE

An AS is defined based on its achievement of the self-*

capabilities [15]. In our approach, we define a level of AS in

terms of its extent of achieving the identified functionalities.

If a system fails to demonstrate at least a certain level of one

of the self-* (required for the system in question), the system

is said to be non-autonomic. On the other hand, if the system

demonstrates a full level of all identified (or required)

capabilities, it is said to have achieved full autonomicity (as

defined by our proposed scheme). In this section, we present

our updated approach towards measuring autonomic systems

LoA. In the most part, a mathematical algorithm is used for

the proposed approach.

𝐼
𝑛𝑖𝑎𝑐𝑡𝑢𝑎𝑙
𝑛𝑖𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑖

(1)

557

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each functionality is defined by a set of metrics. Each

functionality contributes a level of autonomic value which is

spread across the set of metrics for that functionality. It then

follows that each metric contributes a certain quota of the

autonomic value for that functionality. Metrics and

functionalities are weighted according to relevance or

importance. The cumulative normalisation of the measure of

all metrics (for all functionalities) defines a LoA. The need

for normalisation of values enables comparison of systems

across different implementations. With an ongoing debate on

the composition of AS functionalities and the list substantially

growing [17, 18], our approach is generic to accommodate

evolving functionalities as may be defined by the user. Figure

1 is a pictorial illustration of our approach.

Given that any AS is defined by a number of self-*

autonomic functionalities, say n, the mathematical

Combination expression (4) is the representation of the

possible combinations of the functionalities:

1

n
n

r

rC


 → # of possible combinations (4)

The number of possible combinations indicates the

possible functionality compositions of a system where n is the

number of functionalities (the self-*) and r is an enumerator of

the possible implementation combinations (see the rightmost

enumerated values in Figure 2). The functionalities may not

be of equal importance to an application domain so

combinations indicate what functionality is important to an

application domain. And depending on choice of usage, this

may be defined as required functionalities (in which case r

may be equal to n) or demonstrated functionalities (in which

case).

Autonomic functionalities may overlap i.e., are not

necessarily orthogonal. For example, a function that primarily

achieves self-healing may change internal configuration and

thus may also be described as self-configuring. To represent

this, we allocate weights to indicate the extent to which a

particular algorithm achieves the different functionalities.

Further, self-managing actions are not necessarily linear in

their operation; i.e., the relationship between a self-tuning

parameter change internally and the externally seen effect of

the change may be non-linear. In addition, for a given system,

one autonomic behaviour e.g., self-healing may have a much

more significant effect on system behavior than perhaps self-

optimisation which may be more subtle. Such non-linearity in

the contribution to LoA is catered for by a combination of

weighting and normalisation (see Section IV part C). Weights

are applied to reflect the extent of impact one of a particular

functionality. Our current technique caters for orthogonality

and non-linearity although to some extent these are open

challenges that need further addressing.

 Table I is a description of notation keys used. To

measure the LoA of a system, we require the following:

 Number of functionalities: this is a value indicating the

number of functionalities present or required in a

particular system – a specific implementation

combination of the functionalities.

 Number of metrics: this is the number of identified

metrics for the respective functionalities.

 Weighting: weights are assigned to functionalities and

metrics according to priority or importance.

TABLE I: NOTATION KEYS

Key Description

aij autonomic value contribution for individual

metric j of functionality i

ki autonomic value contribution for individual
functionality i

LoA total level of autonomicity measure for all fi & mij

Mi number of metrics for functionality i

Mc, Mh, Mo, & Mp number of metrics for each of the self-*
functionalities respectively

mij individual metric j for functionality i

n number of functionalities

ni individual functionalities

r possible combinations of functionalities

Ri rank of a functionality i in the autonomic

composition of a system

vi weighting for functionality i

wij weighting for metric j of functionality i

ci, hi, oi and pi autonomic metric contributions of the
functionalities for a CHOP-based system

All indices (i and j) begin at 1

A. Preliminary Work: A Specific Case Approach

To make progress in this approach, a preliminary effort is

set out in [1]. This initial effort works perfectly well in cases

where functionalities are orthogonal and for specific systems

of limited (known) number of functionalities. Now, following

on from equation (4) and taking a specific system in isolation,

for example, (say a system with only four functionalities, e.g.,

the CHOP), this will give 16 possible combinations as shown

in Figure 2, although the 16
th

 combination is a special case

which implies the system demonstrates no autonomic

functionality and thus it is not considered further. The CHOP

Figure 1: Pictorial illustration of how LoA is achieved by

summing the metric autonomic value contributions of all

metrics defining all functionalities of a particular AS.

AS

Functionality 1

Metric 11

Metric ij

Functionality i

Metric 11

Metric ij

…….
…….

…….

…….

∑ → LoA

…….

…….

558

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functionalities may not all be of equal importance to a

particular application domain hence we enumerate the

possible combinations of functionalities, for reference.

Combination 2 means that only two functionalities are of

importance to the system’s domain –so for example {C, H,

not O, not P} is a specific combination representing a system

with enumeration 4 in Figure 2.

Figure 2 implies that, in terms of autonomic functionality

composition, a system deemed autonomic (within the self-

CHOP boundary) can be defined (or described) in one of n
2
-1

ways. The remaining combination (enumerated 16 in Figure

2) represents a non-autonomic system, as it exhibits none of

the autonomic functionalities. If we define autonomic metrics

for each of the functionalities, then the sum of the

autonomicity in each of the constituent functionalities for a

particular AS gives the system’s LoA (5). For example, the

LoA of a system represented by line 9 in Figure 2 will be the

summation of the autonomic metrics defining the self-healing,

self-optimising and self-protecting functionalities.

Subscripted M is the number of identified metrics for the

respective functionalities. , , and are the autonomic

metric contributions of the functionalities. These can be

composed of functions of different measures but as explained

in Section IV(C), they are normalised to yield autonomic

values. For more details regarding the preliminary work and

the specific case approach of the proposed measure, see [1].

B. Measuring LoA: A Generic Case Approach

Having looked at specific (of known number of

functionalities) case instance of the proposed approach, we

seek, in this subsection, to establish a generic case in which

this approach is suited for application across different

scenario instances. Now, extending the approach and making

it more generic, weighting is introduced. Functionalities are

not necessarily orthogonal –i.e. a single behaviour could

enhance the contribution of more than one metric and this

could be across more than one functionality. This is important

because the measurement approach has to work in situations

where the functionalities are and are not orthogonal. In cases

of non-orthogonality, the weighting is applied to tune

sensitivity of contributing behaviours.

For flexibility of applying the technique across different

application instances, LoA is normalised to a value in the

range 0 to 1. It also follows that all autonomic value

contributions and weighting are normalised within the same

interval range:

 (6)

Normalisation of the individual components of the

formulae is important to enable comparison of different

systems with different implementations, and also to address

non-linearity aspects. The way we measure the system should

not on its own change the outcome –for example, higher

number of metrics should not result in higher LoA value and

as well does not translate to being ‘more autonomic’. So in all

cases, and for normalisation purposes, the following rules

must apply:

 The metric weighting (wij) and metric autonomic value

contribution (aij) are both with reference to individual

functionalities and so are bound to the number of metrics for

those functionalities (Mi). However, the functionality

weighting (vi) is with reference to the system itself and so is

bound to the total number of functionalities (n) .This explains

why the total individual autonomic value contribution (∑)
can go up to n –see equation (9). If we ignore, for now, all

indices and have a top level view of the proposed LoA

calculation, for a single functionality, then:

 () (8)

 ∑ ∑ (9)

 ∑()

 ∑[()] (10)

Decomposing (9) and (10) above, and for total autonomic

value contribution of all functionalities :

(7) 𝑤𝑖𝑗

𝑀𝑖

𝑗=

 𝑣𝑖

𝑛

𝑖=

 𝑎𝑖𝑗

𝑀𝑖

𝑗=

𝐿𝑜𝐴 [𝑐𝑖]

𝑀𝑐

𝑖=

+ [𝑖]

𝑀

𝑖=

+ [𝑜𝑖]

𝑀𝑜

𝑖=

+ [𝑝𝑖]

𝑀𝑝

𝑖=

 (5)

𝑘𝑖 𝑎𝑖𝑗 𝑤𝑖𝑗 𝑛𝑖𝑎𝑛𝑑 𝑚𝑖𝑗

𝑀𝑖

𝑗=

 (11)

Figure 2: Combination of autonomic functionalities (for n = 4).

AS

559

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

And applying the functionality weighting to the individual

autonomic value contribution (ki), we have:

LoA is then given by summing equation (12) for all values of

 and :

In the case of orthogonality or where weighting is not

required, level of autonomicity is given by the basic

expression:

This is equivalent to equation (5). Procedure 1 is a basic

algorithm of the implementation of the proposed measure of

autonomicity.

Note that the proposed approach is a 2-dimensional

definition. That is, it supports only two levels of description,

e.g., a system on one hand and its functionalities or

characteristics on the other hand. A bit of tweaking and

adaptation is required to support higher dimensional

definitions e.g., a system, its functionalities or characteristics,

sub-functionalities or sub-characteristics, etc.

C. Normalisation and Scaling of Autonomic Metrics

Dimensions

There is still a point though that needs to be addressed.

When computing for LoA, we are normalising values that are

products of aggregated metric values of different units and

dimensions. Depending on the application domain, metrics

can be scalar (of different measures) or non-scalar values

(e.g., observing a capability, Boolean based decisions, etc.).

So, despite what measure or form these metrics take, there

needs to be a way of scaling the metric values (of all

contributing metrics) to a centric unit of autonomic metric

contribution within a certain normalised range. But, because

the range of values and metrics can vary significantly, each

choice of how these are scaled can influence very differently

the final LoA. A possible solution is to define scaling factors

for all contributing metrics within a normalised range (of [0,

1] in our case). In this way, the metrics’ values (irrespective

of units of measure) are normalised into real numbers that are

summed to give LoA. One challenge here, though, is defining

the scaling factors. We identify two simple methods for

normalisation: 1) By ranking values according to high,

medium, and low. The meaning of this ranking is metric-

dependent and is based on a defined margin. For example, if a

maximum expected value is 6, a value of 0-2 will be ranked

low, while 3-4 will be ranked medium and 5-6 ranked high. A

medium value would contribute fifty percent of the metric’s

autonomic value contribution in the range of [0, 1] (recall that

0.0 ≤ ≤ 1.0 from equation (6)), while the two extremes

would contribute zero and hundred percents –these may differ

depending on choice of usage. This can be used for scalar

metrics like the interoperability ratio and reaction time

metrics discussed in Section III. 2) By having a Boolean kind

of contribution where two values can suggest two extremes –

either affirming a capability or not. For example, if a ‘True’

outcome affirms a capability then it contributes hundred

percent of the autonomic value contribution, while a ‘False’

outcome contributes zero. Another example in this category is

where an instance of an event either does or does not confirm

a capability (e.g., the stability metric for self-optimising).

Other specific methods, like the Mahalanobis Distance [22]

discussed and used in [23], have been proposed. In scaling the

different dimensions of distances between points (measured in

different distance measurement units), the authours of [23]

use a simplified form of the Mahalanobis Distance, where for

each dimension, they compute the standard deviation over all

available values and then express the components of the

distances between points as multiples of the standard

deviation for each component.

In the end, anyone can choose any form of scaling and

normalisation as long as it is uniformly used across board for

all systems to be evaluated and all values are within the range

[0, 1] as explained in equations (6) and (7).

D. Measuring LoA: Comparison of Approaches

Assessing autonomic systems and being able to analyse

and compare diverse systems of different degrees is an open

research challenge that needs significant attention. There have

been several attempts to develop a way of measuring

autonomicity but unfortunately a universal solution has not

been found. [8] shows that up to this point, there is one main

approach to measuring the extent of autonomicity of

autonomic systems (the scale-based approach which is

explained in Section II), and a number of variations of this

Procedure 1: Algorithm for implementing LoA

 1: Input (main) variables: n and Mi
 2: i = 1, 2, …, n and j = 1, 2, …, Mi
 3: if at n1, M1 = 3, then j = 1, 2, 3

 4: k1 = (wii a11) + (w12 a12) + (w13 a13)

 5: k(1) = 0 //initialising k array

 6: for i = 1 to n

 7: for j = 1 to M(i)

 8: sum(j) = w(ij) a(ij)
 9: k(i) = k(i) + sum(j)
 10: next j
 11: next i

 12: LoA = (k1 v1) + … + (kn vn)

(13) 𝐿𝑜𝐴 𝑣𝑖 𝑎𝑖𝑗 𝑤𝑖𝑗

𝑀𝑖

𝑗=

𝑛

𝑖=

(14)
𝐿𝑜𝐴 𝑎𝑖𝑗

𝑀𝑖

𝑗=

𝑛

𝑖=

𝑘𝑖 𝑣𝑖 𝑎𝑖𝑗 𝑤𝑖𝑗

𝑀𝑖

𝑗=

 𝑛𝑖𝑎𝑛𝑑 𝑚𝑖𝑗 (12)

560

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

have been explored. The fundamental purpose of this

approach is to reflect the level of involvement in decision-

making between the system and the human user. The major

variations of the scale-based approach are Clough [4],

Sheridan [9], and Ryan et al. [2]. Clough’s 10-level scale is a

result of developing national intelligent autonomous UAV

metrics for the Department of Defence (DoD). Though it is

tied to UAVs, its use of metrics to measure the level of

autonomy of UAVs makes it stand out. The levels in-between

the scale are populated by defining metrics for UAVs. This is

good because using metrics that define functionalities gives a

clearer understanding of the systems. Yet there is no

normalised single point of reference that can be used in

comparing two systems using this approach. Sheridan’s 10-

level scale measures two aspects; decision making (levels 2-

4) and decision execution (levels 5-9). Ultimately, Sheridan

focuses on human-machine relations (and human supervisory

control) and not necessarily on the level of autonomicity of

systems. Ryan et al extended Sheridan’s concept and

developed an 8-level scale that determines the level of

autonomy needed in designing autonomic systems; although

their work cannot actually be said to offer a way of measuring

autonomic systems’ level of autonomicity.

None of these is sufficiently sophisticated in measuring

LoA. The technique we propose here is more sophisticated in

a number of ways: it is the only technique that ties down LoA

to a numeric value; it takes into account individual weights; it

is flexible in the sense that it can take any number of degrees

(functionalities), and the fact that the numeric value is scaled

always to a normalised value (to cater for comparisons

between systems with different numbers of dimensions of

autonomicity and different numbers of metrics for measuring

the extent of functionality achieved in each dimension).

Normalisation gives you the power to compare two different

systems no matter the number of individual metrics.

E. Evaluating Autonomic Systems

Evaluating Autonomic Systems using equation (5) or

equation (13) gives their separate LoA values –which are

aggregated values. This, however, does not give a fine-

grained picture of the systems’ performances in terms of

individual functionalities. Systems are classified according to

their implementation combinations (r). This is in terms of

what self-* functionalities are required or demonstrated in

their specific application domains. One thing remains to be

clarified at this point –‘how do we rank each functionality in

the autonomic composition of a system?’ This can be in terms

of importance or extent of functionality provided. We focus

on the later –the extent of functionality provided as against

what is needed. Take for instance, if two systems are of the

same combination we may wish to know which of them

provides a greater degree of say self-healing or self-protection

in any application domain. To address this, we adapt a

function that measures agent’s decision-making power in a

multi-agent autonomic system defined in [11]. The rank of a

functionality Ri in the autonomic composition of a system is

defined by the ratio of its autonomic contribution (or)

to the total autonomic contribution of all metrics defining the

composite functionalities of that system:

 (15)

This applies where weighting is considered. If weighting is

not considered, is given by equation (16):

1

i

j

M

ij

i

a

R
LoA




where (or) is the autonomic contribution of the

considered functionality which could be the summation of ,
 , or in equation (5) or the calculation of in equation

(11) or the summation of (e.g., the case in equation (14)).

With equations (15) and (16), any composite functionality can

be ranked in terms of their autonomic contribution.

V. AUTONOMIC SYSTEMS EVALUATION CASE STUDY

In this section, two example cases that cover the specific

and generic case approaches (explained in Section IV) are

examined. The first is based on Dynamic Qualitative Sensor

Selection System (DQSSS) application scenario (see [19] for

full details of the DQSS system). This is used to demonstrate

a case where functionalities are assumed to be orthogonal and

for specific systems of fixed number of autonomic

functionalities. This is consistent with the preliminary work in

[1] and suites the proponents of the view that autonomic

systems are only defined by the generally accepted and core

functionalities of the self-CHOP.

The second case example deploys one of the current

technology innovations –Autonomic Marketing. This is used

to demonstrate a generic case instance where functionalities

are not necessarily orthogonal and where systems are defined

by n number of autonomic functionalities. For more details on

the autonomic marketing system scenario see [24] and [25].

For each case example, three systems (or autonomic

managers) are examined. When comparing these systems, it is

important to look closely at the performances of individual

autonomic functionality to give clearer understanding of the

calculated LoA.

A. Dynamic Qualitative Sensor Selection Case Example

In this example, autonomic functionalities are limited to

the original, and generally accepted four self-CHOP

functionalities, supposing that any autonomic system is

defined by them. This is representative of many real-world

systems of known (fixed) functionalities or characteristics.

The DQSSS case study is based on work in [19]. The goal of

DQSSS is to dynamically select a sensor (amongst many)

based on continuously variable qualitative characteristics

(e.g., signal quality and noise levels). This is typical of an

application that accesses several sensors generating raw data

from monitoring a particular context; these could be physical

attributes of a system or perhaps information feeds from a

(16)

561

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service (e.g. financial data). In such applications, it is

expected that a DQSSS would generate and differentiate signal

characteristics and trends, choose the best signal and without

compromising stability, be continuous, unsupervised,

dynamic, and detect and react if a sensor goes down.

Autonomic metrics are drawn from these characteristics. By

definition, self-configuration, self-optimization and self-

healing are of importance to this system (i.e., r=3 and also n

is fixed at 4). The DQSSS in [19] is presented in three

progressive stages which we refer here to as systems A, B and

C. All three systems are able to differentiate sensors by their

signal characteristics such as noise level and spikes. These are

then combined in a utility function to determine the better

quality sensor. Systems B and C are able to generate trends in

signal quality using trend analysis logic. Only system C

ensures stability (avoiding unhealthy oscillation in sensor

selection) by implementing dead zone logic, while none of the

systems has a way of detecting a failed sensor.

TABLE II: REPRESENTATION OF THE DQSSS [19]

In keeping with the normalisation of values as contained

in (6) and (7), the maximum achievable LoA becomes ‘1’

implying that each CHOP contributes an autonomic value in

the range (

) spread across its metrics.

Normalising the identified metrics in Table II (the numbers of

metrics in each combination are: M1 = 4 (for self-configuring C),

M2 = 2 (for self-healing H), and M3 = 3 (for self-optimising O)) in

the autonomic value range (

) and applying

equation (5) or (14) gives the result in Table III. Equation

(17) is an expression of how each instance of the metrics

contribution is calculated.

Figure 3 is a radar chart analysis of systems A, B and C

in terms of their separate autonomic functionality

composition. Recall that only three functionalities (CHO-) are

of importance here which explains why self-protection P has

no value. Based on the LoA achievements of the three systems

A, B and C as shown in Table III (0.25, 0.33 and 0.63

respectively), it means that in a dynamic sensor selection

application domain (as defined), system C can be depended

upon to carry out the task with a higher confidence level and

lower risk factor compare to systems B and A.

One powerful aspect of our proposal, particularly the

specific case approach with fixed number of functionalities, is

that it offers the flexibility of qualitatively interpreting LoA

results using any scale-based approach. This is done by

applying the upper bound of the chosen scale to equation (17)

as in equation (18) and then interpreting the results within the

levels of the scale.

Where max is upper bound of the scale used.

Applying Ryan et al level of autonomy assessment scale

[2] which, as explained in Related Work section, is an 8-level

autonomy assessment tool (used for either identifying

(qualitatively) the level of autonomy of an existing system or

for proposing an appropriate level of autonomy during the

design of a new system), max becomes 8. So, in computing

(18) with max = 8, system A falls within level 2 of the scale

which points to a situation where ‘computer shadows human’

in the self-management process. This indicates that system A

only has a narrow envelope of environmental conditions in

which it is both autonomic and returns satisfactory behaviour.

System B tends toward level 3 on the scale which is ‘human

shadows computer’ which translates into a wider operational

envelope, but once the limits of that envelope are reached

human input is needed in the form of retuning, or manual

override in the case of oscillation, which for example system

C can deal with autonomically. System C falls within level 5,

which points to ‘collaboration with reduced human

intervention’. This indicates that C is sufficiently

sophisticated to operate autonomically and yield satisfactory

results under almost all perceivable operating circumstances.

Employing (16) to rank the functionalities and taking

just self-configuration for example, we find that in system A,

Characteristics (metrics) Contributing CHOP Sys A Sys B Sys C

Continuous C √ √ √

Unsupervised C √ √ √

Trends examination O - √ √

Stability O - - √

Dynamic (logic switching) O - - √

Signal characteristics C √ √ √
Signal differentiation C √ √ √

Failure sensitivity (sensors) H - - -

Robust (fault tolerance) H - - √

Figure 3: LoA representation of systems A, B & C in the CHOP

domains.

 Sys

A

Sys

B

Sys

C

C 0.25 0.25 0.25

H 0.00 0.00 0.13

O 0.00 0.08 0.25

P 0.00 0.00 0.00

LoA 0.25 0.33 0.63

TABLE III: ANALYSIS RESULT

 Sys C

 Sys B

 Sys A

O

H

C

P

1/4

1/4 1/4 1/8 1/8

1/8

1/4

1/8

(17) 𝑎𝑖𝑗

𝑛

𝑀𝑖

(18) 𝑎𝑖𝑗
𝑚𝑎𝑥

𝑛

𝑀𝑖

562

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

self-configuration contributes 100% of its autonomic

achievement, while in systems B and C the contribution is

75% and 40% respectively. This provides another analytic

spectrum that gives a clearer understanding of the

composition of the calculated LoA.

The benefit of analyzing Autonomic Systems in terms of

their extent of autonomicity not only offers a path to

Autonomic Systems’ certification as stated earlier, it also

offers a way of comparing these systems, and also facilitates a

proper description of these systems to users.

B. Autonomic Marketing Case Example

In this example, we consider a specific aspect of

autonomic marketing system based on the work and

experiment presented in [25]. As there are yet no standardised

(or defined) lists of autonomic metrics, at least for the case

example system, we draw autonomic metrics and

functionalities for the purposes of this case example from the

specified goal of the system as detailed in [25]. So, metrics

are drawn based on (or limited to) what is explained in the

experiment and not on what autonomic marketing systems,

generally, should have as metrics. In the end, the interest here

is to show how the proposed LoA measurement approach can

be applied to systems.

The particular case example autonomic marketing

system studied here is that of targeted television advertising

during a live sports competition airing. A company is

interested in running an adaptable marketing campaign on

television with different adverts (of different products

appealing to audiences of different demographics) to be aired

at different times during a live match between two teams.

There are three adverts (Ad1, Ad2 and Ad3) to be run and the

choice of an ad will be influenced by, amongst other things,

viewer demographics, time of ad (local time, time in game,

e.g., half time, TV peak/off-peak time, etc.), length of ad

(time constraint), cost of ad, who is winning in the game, etc.

This is a typical example of a system with many dimensions

of freedom and very wide behaviour space. The behaviour

space is divided into four zones along two dimensions of

freedom (Mood and CostImplication) as shown in Figure 4.

The two dimensions of freedom, which are influenced

by several contextual variables, represent a collation of all

possible decision influencers. Each action (ad) is thus

activated only in its allocated zone following specified policy

in order to achieve the system’s goal defined by a set of rules

(Figure 5). Following the set policy, the autonomic manager,

at every decision instance (of a sample collection) decides on

which ad to run. The optimisation of the system is in terms of

achieving balance between efficient just-in-time target-

marketing decision and cost effectiveness (savings

maximisation) while maintaining improved trustability,

stability and dependability in the process.

Three autonomic managers, based on three different

levels of autonomic architectures, are designed to implement

this system. In this example, we evaluate these three

managers (full detail of experiment is available in [25]).

Basically, the first manager, AC (AutonomicControlling at its

core), is concerned with making decisions within the

boundaries of the rules while the second, VC

(ValidationCheck at its core) goes beyond decision making to

validate decisions for conformity with the rules. The third

manager, DC (DependabilityCheck at its core) verifies that

the measure of success is achieved. DC also improves

reliability by instilling stability in the system. This is done by

introducing dead-zone boundaries (Figure 4b) within which,

no action is taken (avoiding erratic and unnecessary changes)

and implementing a TRC (Tolerance-Range-Check) to

address rules in particular.

Based on the goal of the system, specified in the rules of

Figure 5, we have drawn three functionalities (self-

configuration, self-optimisation and self-stability) and six

metrics. Table IV shows the metrics and contributing rules.

The simulation was run for a total duration of 50 sample

collection instances. This means that for the duration of the

simulation, external variables (that influence decisions for

ads) were fed to the autonomic managers fifty times.

TABLE IV: AUTONOMIC METRICS FOR SYSTEMS AC, VC & DC

Metrics Description Contributing rule

of ad change (x) Number of times ads changed Rule 2

of ad run (y) Number of ads that were run Rules 3 and 4

of decision (d) Number of decision instances d is a constant

Rate of ad change (Tx

= x/50)

Rate at which ads were

changing

Rules 2 and 5

Rate of ad run (Ty =

y/50)

Rate at which ads were run Rules 4 and 7

Decision ad change

ratio (dx = x/d)

Number of decision ad change

relation

Rule 3

Stability (s) Number of times TRC bounds

were breached

Rules 5 and 6

D

Figure 4: System behaviour space in 2 dimensions of freedom [25]

Key:

L = Low, H = High
md = Mood
cs = CostImplication

D = Dead-Zone

CostImplication

M
oo

d

HmdLcs HmdHcs

LmdHcs LmdLcs

CostImplication

M
oo

d

HmdLcs

(RunAd2)

HmdHcs

(RunAd3)

LmdHcs

(Null)

LmdLcs

(RunAd1)

(a)

(b) D

1. Extract external variables (decision parameters) at defined time interval
and decide on action

2. Send trap msg and change action if (*condition omitted*) otherwise retain
previous action

3. If current action is same as previous action, do not send trap and do not
change action
 =================Measure of Success================

4. Cost of action change (total ad run) must fall within budget
5. Rate of change should be considerably reasonable
6. Maximum of one ad change within the first five sample collections and

subsequently maximum of two in any three sample instances
7. Turnover should justify cost

Figure 5: Excerpt of rules defining system goal [25].

563

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recall that functionalities are not always orthogonal as

in this example some metrics contribute to more than one

functionality (see Table V). The rate of the influence of the

metrics on the functionalities is tuned by applying weighting.

Table V shows the autonomic value contributions of all

metrics and the corresponding functionalities. Weights are

discretely allocated to reflect relevance and importance of

functionalities (based on the goal of the system). Metric

values are averages of 10 different simulation runs of the 50

sample collection instances (see Appendix A for more

details). In this example, we assume all metrics to be of equal

weight within their respective functionalities.

TABLE V: DISTRIBUTION OF METRIC VALUES

Functionality

(ni)

Weight

(vi)

Metric

(Mi)

Metric weight

(wij)

Metric contribution

(aij)

AC VC DC AC VC DC

Self-

configuration

0.20
x 0.50 0.50 0.50 0.000 2.000 4.800

Tx 0.50 0.50 0.50 0.768 0.808 0.864

Self-

optimisation

0.40

y 0.20 0.20 0.20 2.600 3.900 5.800

Ty 0.30 0.30 0.30 11.42 11.45 11.49

s 0.30 0.30 0.30 9.600 10.20 11.60

dx 0.20 0.20 0.20 0.000 0.171 0.414

Self-stability

0.40

Tx 0.25 0.25 0.25 0.768 0.808 0.864

y 0.05 0.05 0.05 2.600 3.900 5.800

Ty 0.20 0.20 0.20 11.42 11.45 11.49

s 0.50 0.50 0.50 9.600 10.20 11.60

From the values of Table V, we can now calculate the

LoA of all three systems (AC, VC, and DC). Because of space

we will only show the calculations for that of system AC and

then use the LoA Calculator (see Section V C) to calculate the

rest.

n = 3

For n1: M1 = 2, v1 = 0.20, w11 = 0.50, w12 = 0.50, a11 = 0.00, and a12

= 0.768

For n2: M2 = 4, v2 = 0.40, w21 = 0. 25, w22 = 0. 25, w23 = 0. 25, w24 =

0. 25, a21 = 2.600, a22 = 11.42, a23 = 9.600, and a24 = 0.000

For n3: M3 = 4, v3 = 0.40, w31 = 0.25, w32 = 0. 25, w33 = 0. 25, w34 =

0. 25, a31 = 0.768, a32 = 2.600, a33 = 11.42, and a34 = 9.600

k1 = (a11 w11) + (a12 w12) = (0.00 0.50) + (0.768 0.50)

= (0.00) + (0.384)

= 0.384

k2 = (a21 w21) + (a22 w22) + (a23 w23) + (a24 w24)

= (2.600 0. 25) + (11.42 0. 25) + (9.60 0. 25) + (0.0 0. 25)

= (0.65) + (2.80) + (2.40) + (0.00)

= 5.850

k3 = (a31 w31) + (a32 w32) + (a33 w33) + (a34 w34) =

(0.768 0. 25) + (2.600 0. 25) + (11.42 0. 25) + (9.60 0. 25)

= (0.192) + (0.650) + (2.855) + (2.400)

= 6.097

Applying equation (13):

LoA = (k1 v1) + (k2 v2) + (k3 v3)

= (0.384 0.20) + (5.850 0.40) + (6.097 0.40)

= 0.0768 + 2.340 + 2.439

= 4.8558

Figure 6 is a snapshot of the LoA Calculator’s result

console showing the LoA results of systems VC and DC.

Recall that the choice of scaling and normalisation used can

influence very differently the final LoA. In making a choice,

the nature of system and metrics need to be considered. In this

example, we can choose to normalise the individual sub-

columns of the aij column within the range (0 ≤ aij ≥ 1), but

this will negatively affect the values across all three systems

and make it difficult for LoA calculations. Also we cannot

normalise within the column across rows as that will

overshoot the normalisation range within the sub-columns.

So, we calculate with raw values and then normalise the final

LoA values. How the metric values in Table V are scaled is

shown in Appendix A.

From Figure 6:

LoA for system VC = 5.4887

LoA for system DC = 6.4722

The calculated LoA for system AC = 4.8558

Then, normalising all three values within the normalisation

range of (0 ≤ LoA ≥ 1) using expression (19):

For system AC

 LoA =

For system VC

 LoA =

For system DC

 LoA =

The results clearly indicate the superiority of the systems

from DC down to AC in terms of level of autonomicity (based

on the criteria set as system goal). What this means is that, in

terms of the criteria specified as the goal of the system, the

autonomic manager of system DC is more autonomic than the

others followed by system VC. The margins reflect, almost

with the same magnitude, the performances of the systems as

results show in [25].

Figure 6: LoA calculate console result for systems VC and DC

(19) 𝐴𝐶
𝐴𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)
 𝑉𝐶

𝑉𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)
 𝐷𝐶

𝐷𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)

564

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recall that the optimisation of the system in question is

in terms of achieving balance between efficient just-in-time

target-marketing decision and cost effectiveness (savings

maximisation) while maintaining improved trustability,

stability and dependability in the process. From experimented

results, system DC shows significant gain in stability and cost

savings. It also smoothened the high fluctuation rate (high

adaptability frequency) experienced by other systems and in

general, reduces the average ad change ratio of about one

change in three sample collections (1:3) to one change in ten

sample collections (1:10), representing an overall gain of

about 31.25% in terms of stability and cost efficiency.

C. LoA Calculator

The LoA Calculator is an application that helps in

calculating system’s level of autonomicity. The application is

developed using C# and can be used in calculating the LoA of

any system at any level of complexity. The application can be

used for both the generic and specific case approaches. For

the specific case approach (that may require no weights), the

user enters the value ‘1’ (one) in the place of all weights and

that will automatically cancel the weighting effects. Basically,

all variables and values used are user-defined and are fed into

the application for LoA computation. There are two formats

for the application. The basic format is for simple systems of

few variables and provides a dialogue interface (a form) for a

user to enter system variables. This is suitable when there are

only a few data to be fed into the application and can be done

through the keyboard. Figure 7 is a snapshot of the dialogue

interface. The other format is more complex and is used for

complex systems (of multiple data). The complex format

feeds data into the application using comma separated text file

(csv file). The user specifies raw data in a CSV file template

and provides the file path to the application during run-time.

Both formats work on the same principle (the core is based on

equation (13)) and can be used interchangeably but it is more

tedious using the basic format for complex systems.

In the current (first) version of the application, only

variables and values for one system can be fed into the system

at any one time. Subsequent versions will be able to take

values for more than one system at one instance and evaluate

the systems in terms of their separate LoAs. The application is

available for download at [26].

VI. CONCLUSION AND FUTURE WORK

A system is better defined by its capabilities and so

measuring the LoA of Autonomic Systems without a

reference to autonomic functionalities would be inaccurate.

We have proposed a functionality-based LoA measurement. In

our proposal, a typical AS is defined by some core autonomic

functionalities and LoA is measured with respect to these

functionalities. Each functionality is defined by a set of

metrics. The metrics values are normalised and aggregated to

give the autonomic contribution of each functionality which

are then combined to yield a LoA value for an AS. Our

proposed approach is in two forms; the specific case approach

and the generic case approach. The specific case approach

works perfectly well in cases where functionalities are

orthogonal and for specific systems of limited (fixed) number

of functionalities. We have shown how this approach can

adapt any scale-based approach to enable a qualitative

understanding of the quantitative LoA measure proposed

here. The generic case approach is used to demonstrate a

generic case instance where functionalities are not necessarily

orthogonal and where systems are defined by n number of

autonomic functionalities. We have also shown how systems

can further be evaluated to give a fine-grained picture of the

systems’ performances in terms of individual functionalities

looking at the ratio of autonomic contributions of their

separate functionalities. In this, we found that only systems

within the same implementation combination can be

compared. We have carried out two case study examples (for

the specific and generic case approaches) to demonstrate the

usage and applicability of our proposed LoA measure. There

are several other research works trying to develop a way of

measuring autonomicity but have not succeeded. Some

approaches have been proposed but none of these is

sufficiently sophisticated in measuring LoA. Our technique

here is more sophisticated in a number of ways: the fact that it

is the only one that ties down LoA to a numeric value, the fact

that it takes into account individual weights, it is flexible in

the sense that it can take any number of degrees (properties),

and the fact that numeric values are scaled always to a

normalised value – (which otherwise gives the wrong

impression that more metrics mean more autonomicity.

Normalisation gives you the power to compare two different

systems no matter the number of individual metrics).

The standardization of a technique for the measurement

of LoA will bring many quality-related benefits which include

being able to compare alternative configurations of autonomic

systems, and even to be able to compare alternate systems

themselves and approaches to building autonomic systems, in

terms of the LoA they offer. This in turn has the potential to

improve the consistency of the entire lifecycle of Autonomic Figure 7: LoA Calculator basic format dialogue interface

565

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Systems and in particular links across the requirements

analysis, design and acceptance testing stages.

One research challenge is the study and standardisation

of autonomic metrics for different autonomic systems. The

metrics definitions can be grouped or modularised (e.g., the

standardised categorisation of UMS in [20]). So, as future

work, we are looking at standardised ways of properly

defining and generating autonomic metrics to strengthen our

framework. This is a key component towards our wider

research which focuses on the challenge of validating

autonomic computing systems to achieve trustworthiness. We

will be developing more sophisticated versions of the LoA

Calculator.

REFERENCES

[1] Eze T., Anthony R., Walshaw C. and Soper A. A Technique

for Measuring the Level of Autonomicity of Self-managing

Systems. In proceedings of The 8th International Conference

on Autonomic and Autonomous Systems (ICAS 2012), St.

Maarten, The Netherlands Antilles, March 2012

[2] Proud R., Hart J., and Mrozinski R. Methods for

Determining the Level of Autonomy to Design into a Human

Spaceflight Vehicle: A Function Specific Approach. Report

date September 2003 http://handle.dtic.mil/100.2/ADA515467

accessed 04/09/2012

[3] Eze T., Anthony R., Walshaw C. and Soper A. The

Challenge of Validation for Autonomic and Self-Managing

Systems. In proceedings of The 7th International Conference

on Autonomic and Autonomous Systems (ICAS), May 22-

27, 2011 – Venice/Mestre, Italy

[4] Clough B. Metrics, Schmetrics! How The Heck Do You

Determine A UAV’s Autonomy Anyway? In Proceedings of

PerMis Workshop, pp 1–7. NIST, Gaithersburg, MD, 2002.

[5] IBM Autonomic Computing White Paper. An architectural

blueprint for autonomic computing. 3rd edition, June 2005

[6] ISO/IEC 9126-1:2001(E). Software engineering — Product

quality — Part 1: Quality model

[7] Honeycutt G. How Much Do we Trust Autonomous Systems?

Unmanned Systems -2008

[8] Eze T., Anthony R., Walshaw C. and Soper A. Autonomic

Computing in the First Decade: Trends and Direction. In

proceedings of The 8th International Conference on

Autonomic and Autonomous Systems (ICAS), St. Maarten,

The Netherlands Antilles, March 2012

[9] Sheridan T. Telerobotics, Automation, and Human

Supervisory Control. The MIT Press. Cambridge, MA,

USA 1992. ISBN:0-262-19316-7

[10] Huebscher M. and McCann J. A survey of autonomic

computing—degrees, models, and applications. ACM

Computer Survey, 40, 3, Article 7 (August 2008)

[11] Barber, K. and Martin, C. Agent Autonomy: Specification,

Measurement, and Dynamic Adjustment. In Proceedings of

the Autonomy Control Software Workshop at Autonomous

Agents 1999 (Agents’99), 8-15. Seattle

[12] Alonso F., Fuertes J., Martínez L., and Soza H. Towards a

Set of Measures for Evaluating Software Agent Autonomy. In

proceedings of 8th Mexican Int’l Conference on Artificial

Intelligence (MICAI), 2009

[13] Kephart J., and Chess D. The Vision of Autonomic

Computing. Computer, IEEE, Vol 36, Issue 1, 2003, pp 41-50

[14] McCann J. and Huebscher M. Evaluation issues in

Autonomic Computing. In proceedings of Grid and

Corporative Computing (GCC) Workshop, LNCS 3252, pp.

597-608, Springer-V erlag, Birlin Heidelber, 2004

[15] Bantz D., Bisdikian C., Challener D., Karidis J., Mastrianni

S., Mohindra A., Shea D., and Vanover M. Autonomic

Personal Computing. IBM Systems Journal, Vol 42, No 1,

2003

[16] Mark B., Sheng M., Guy L., Laurent M., Mark W., Jon C.,

and Peter S. Quickly Finding Known Software Problems via

Automated Symptom Matching, The 2nd International

Conference on Autonomic Computing (ICAC), 2005,

Seattle, USA

[17] Tianfield H. Multi-agent Based Autonomic Architecture for

Network Management. In Proc. IEEE International

Conference on Industrial Informatics, pp. 462–469, 2003

[18] Truszkowski W., Hallock L., Rouff C., Karlin J., Rash J.,

Hinchey M., and Sterritt R. Autonomous and Autonomic

Systems. Springer, 2009

[19] Anthony R. Policy-based autonomic computing with integral

support for self-stabilisation, Int. Journal of Autonomic

Computing, Vol. 1, No. 1, pp.1–33. 2009

[20] Huang H., Albus J., Messina E., Wade R., and English W.

Specifying Autonomy Levels for Unmanned Systems: Interim

Report, SPIE Defense and Security Symposium 2004,

Conference 5422, Orlando, Florida, April 2004.

[21] Huang H., Pavek K., Albus J., and Messina E. Autonomy

Levels for Unmanned Systems (ALFUS) Framework: An

Update. In proceedings of SPIE Defense and Security

Symposium, Orlando, Florida. 2005

[22] Online article. Mahalanobis Distance, available via

http://classifion.sicyon.com/References/M_distance.pdf

viewed 10/09/2012

[23] Huebscher M. and McCann J. An adaptive middleware

framework for context-aware applications, Springer Volume

10, Issue 1, pp 12-20, February 2006

[24] Adams C., Anthony R., Powley W., Bell D., White C., and

Wu C. Towards Autonomic Marketing, The 8th International

Conference on Autonomic and Autonomous Systems

(ICAS), pp. 28-31, St. Maarten 2012.

[25] Eze T., Anthony R., Walshaw C. and Soper A. A New

Architecture for Trustworthy Autonomic Systems. In

proceedings of The 4th International Conference on

Emerging Network Intelligence (EMERGING), Barcelona,

Spain, 2012

[26] LoA Calculator Downloads via http://thaddeus-eze.com.

Accessed 19/12/2012
[27] Parasuraman R., Sheridan T., and Wickens C. “A model for

types and levels of human interaction with automation,”

IEEE Transactions on Systems, MAN, And

Cyberneticsparta: Systems and Humans, vol. 30, pp. 286–

297, MAY 2000

[28] Truszkowski W., Hallock L., Rouff C., Karlin J., Rash J.,

Hinchey M., and Sterritt R. Autonomous and Autonomic

Systems. Springer, 2009

566

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX A

Table A1 shows the raw values of 10 different runs of the

same simulation. It is not scientifically reliable to work with values

of a single simulation.

Table A2 (left side) is a collation of the averages of the

values of Table A1. On the right side of the table are the working

values used. These are generated with reference to the possible

maximum values of the individual metrics. For example, ads are

changed or retained at every decision instance and since on the

average, there are 11.6 decision instances, there are as much

maximum possible number of ad change. So, the actual number of ad

change is the difference between the number of possible ad changes

and observed number of ad changes

Note that Stability measures the rate at which the tolerance

range check (TRC) is breached. The column for DC is all zero

because, in all 10 simulation runs DC did not breach the TRC bound.

The AC number of ad change metric is 11.6 (same as the

number of decisions) indicating that AC changes ad at every

decision instance. This tends to instability. Compare this to the value

for DC and observe the difference.

Table A1: Raw metric values as collected from experimental results

Table A2: Scaled metric values

Metric

