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Abstract— This paper is concerned with setting the groundwork 

for the introduction of standards for Autonomic Computing, in 

terms of technologies and the composition of functionalities as 

well as validation methodologies. This is in line with addressing 

the lack of universal standards for autonomic (self-managing) 

systems and design methods used for them despite the 

increasingly pervasiveness of the technology. There are also 

significant limitations to the way in which these systems are 

assessed and validated, with heavy reliance on traditional design-

time techniques, despite the highly dynamic behaviour of these 

systems in dealing with run-time configuration changes and 

environmental and context changes. These limitations ultimately 

undermine the trustability of these systems and are barriers to 

eventual certification. We propose that the first vital step in this 

chain is to introduce robust techniques by which the systems can 

be described in universal language, starting with a description 

of, and means to measure the extent of autonomicity exhibited by 

a particular system. Existing techniques have mainly 

qualitatively classified autonomic systems according to some 

defined levels with no reference to the building blocks (core 

functionalities) of the systems. In this paper we present a novel 

and generic technique for measuring the Level of Autonomicity 

along several dimensions of autonomic system self-* (e.g., self-

configuration, self-healing, self-optimisation and self-protection) 

functionalities. To demonstrate the feasibility and practicability 

of our approach, a case example of two different scenarios is 

examined. One example focuses on a specific case approach for 

LoA measure within a Dynamic Qualitative Sensor Selection 

scenario. The second example is a deployment of a generic case 

approach to an envisioned Autonomic Marketing System that 

has many dimensions of freedom and which is sensitive to a 

number of contextual volatility. 

Keywords - autonomicity; level of autonomicity; autonomic system; 

trustworthiness; metrics; autonomic marketing, sensor selection 

I. INTRODUCTION 

 Autonomic Computing (AC) seeks the development of 

self-managing (or autonomic) systems to address 

management complexities of systems. The high rate of 

advancement of autonomic technology and methodologies has 

seen these systems increasingly deployed across a broad 

range of application domains yet without universal standards. 

Also the widening acceptance of Autonomic Systems (AS) is 

leading to more trust being placed in them with little or no 

basis for this trust, especially in the face of significant 

limitations regarding the way in which these systems are 

validated. The traditional design-time validation techniques 

fail to address the run-time requirements of AS’ 

environmental and contextual dynamism. These limitations 

undermine trustability and ultimately impinge on certification. 

The more this proliferation goes on without these challenges 

being addressed, the more difficult it gets to introduce 

standards and eventually achieve certifiable AS. It has 

therefore become pertinent and timely to address these issues. 

A vital first step in this course would be standards for the 

universal description of these systems and a standard 

technique for measuring Level of Autonomicity (LoA) 

achieved by these systems –and we have made progress in 

this area [1]. Standards for AC would be concerned with 

technologies, composition of functionalities and validation 

methodologies.  By autonomicity we mean the ability of a 

system to pursue its goal with minimal external interference 

in the form of configuration or control. Then, the extent of 

this interference defines autonomicity levels. Now the 

questions facing the AC community are, for a given system, 

“How autonomic should a system be?” and “How autonomic 

is a system and how is this determined?” The two questions 

address both pre and post system design phases. The first 

question is of primary importance to the designers of systems 

where autonomic specification is a critical part of the whole 

system requirements definition. A good example would be the 

spaceflight vehicles addressed in [2], where a level of 

autonomy assessment tool was developed to help determine 

the level of autonomy required for spaceflight vehicles. The 

second question is in two parts. On the one hand is the need to 

define systems according to a measure of autonomicity and 

another is the method and nature of the measure. Addressing 

this issue is the main thrust of this paper and here we improve 

on our initial work [1] in this area. Another significant aspect 

addressed here is the need for a standard way for assessing, 

comparing and evaluating different systems (with flexibility 

across many domains) and also in terms of their individual 

functionalities. Not only do we measure autonomicity but also 

look at how systems can be evaluated and compared in terms 

of their autonomic compositions.  

Eze et al [3] identified that defining LoA is one of the 

critical stages along the path towards certifiable AS. Along 

this path also is the need for an appropriate testing 

methodology that seeks to validate the AS decision-making 

process. But to know what testing (validation) is appropriate 

requires knowledge of the system in terms of its extent of 

autonomicity. Another issue that underpins the need for 

measuring LoA is that a means of answering the identified 

questions is also a solution for assessing AS and facilitates a 

proper understanding of such systems. 

Currently, the vast majority of research effort in this 

direction has progressed in answering the first question 

(“How autonomic should a system be?”) by providing us with 

scales that describe and analyse autonomy in systems. These 
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scales, referenced by many researchers, provide fundamental 

understanding of system autonomy by categorising autonomy 

according to level of human-machine involvement in 

decision-making and execution. A naturally upcoming 

concern with this approach is that high human involvement 

does not always necessarily translate to low autonomicity and 

vice versa. Also, most (if not all) of such approaches do not 

assess ASs based on demonstrated functionalities but on 

perceived or observed outcomes (performance). Some key 

works in this area include [2], [4], and [5]. For us, these scales 

only characterise autonomy levels qualitatively and offer no 

generic or robust means of quantitatively measuring extent of 

autonomicity. We would simply say that they are more 

sufficient for the purposes of proposing an appropriate level 

of autonomy during the design of a new system.   

ISO/IEC 9126-1 standard [6] decomposes overall 

software product quality into characteristics, sub 

characteristics (attributes) and associated measures. Adapting 

this, we define a framework for measuring LoA along several 

dimensions of AS self-* functionalities. Systems are well-

defined by their set of functional capabilities and a measure of 

these capabilities will form a better representation of the 

systems. These functional capabilities may be extended to 

mean, in other systems, characteristics (or attributes) and sub-

characteristics (or sub-attributes). While in our initial work 

[1] we restrict the functionalities to the core functionalities of 

ASs, the self-CHOP (self-configuration, self-healing, self-

optimisation and self-protection) functionalities, in this paper 

we extend the reach (scope) to cover all possible essential 

functionalities  and identify specific metrics for each of the 

functionalities. (This allows the approach to be entirely more 

generic.) The cumulative measure of these metrics defines a 

LoA. Our method is based on the establishment of a generic 

technique that can be applied to any application domain. This 

work is novel as it offers a quantitative measure of LoA in 

terms of system’s functionalities-based description and can be 

flexibly applied across different application instances. It also 

opens a new research focus for autonomicity measuring 

metrics. We believe this is timely because if not addressed we 

not only run the risk of classifying systems as trusted without 

basis but also risk losing track and control of these systems as 

a result of spiraling complexities in terms of technology and 

methodologies. [7] also raised the concern that if the 

proliferation of unmanned systems (and by extension ASs) is 

not checked by putting appropriate measures (or mechanisms) 

in place that ensure trustworthiness, the systems may 

ultimately lose acceptance and popularity. 

The remainder of this paper is organised as follows: 

related work is presented in Section II. In Section III, we 

introduce metrics for measuring autonomicity. Our proposed 

LoA measure and two case studies are presented in Sections 

IV and V respectively. Section VI concludes the work. 

II. RELATED WORK 

The study of AC is now a decade old. However, its rapid 

advancement has led to a wide range of views on meaning, 

architecture, and implementations. The criticality of 

understanding extent of autonomicity in defining AC systems 

has necessitated the need for evaluating these systems. The 

majority of research in this area has targeted specific 

application domains with datacentre applications topping the 

list [8]. Now, to the extent of our research review [8], there is 

no known (or published) quantitative approach for assessing 

autonomic systems. There are nonetheless, efforts towards 

classifying ASs according to extent of autonomicity but these 

efforts have not successfully met the need for assessing 

autonomic systems. In this section we review some of the 

proposed (existing) approaches. 

One major proposal for classifying ASs according to 

extent of autonomicity (or measuring LoA) is the scale-based 

approach. This approach, based on level of human-machine 

involvement in decision-making and execution, uses a scale 

of (1 – max) to define a system’s LoA where ‘1’, the lower 

bound, is the lowest autonomic level usually describing a 

state of least machine involvement in decision-making and 

‘max’, the upper bound, is the highest autonomic level 

describing a state of least human involvement. Prominent in 

this category of approach are efforts in [2], [4], [9, 27], and 

[20]. Clough [4] proposes a scale of (1–10) for determining 

Unmanned Aerial Vehicles’ (UAV’s) autonomy. Level 1 

‘remotely piloted vehicle’ describes the traditional remotely 

piloted aircraft, while level 10 ‘fully autonomous’ describes 

the ultimate goal of complete autonomy for UAVs. Clough 

populates the levels between by defining metrics for UAVs. 

Sheridan [9] also proposes a 10-level scale of autonomic 

degrees. Unlike Clough’s scale, Sheridan’s levels 2-4 centre 

on who makes the decisions (human or machine), while levels 

5-9 centre on how to execute decisions. Ryan et al [2], in a 

study to determine the level of autonomy of a particular AS 

decision-making function, developed an 8-level autonomy 

assessment tool.  The tool ranks each of the OODA (Observe, 

Orient, Decide and Act) loop functions across Sheridan’s 

proposed scale of autonomy [9]. OODA is a decision-making 

loop architecture for ASs. The scale’s bounds (1 and 8) 

correspond to complete human and complete machine 

responsibilities respectively. They first identified the tasks 

encompassed by each of the functions and then tailored each 

level of the scale to fit appropriate tasks. The challenge here 

is ensuring relative consistency in magnitude of change 

between levels across the functions. The levels are broken 

into three sections. Levels 1-2 (human is primary, computer is 

secondary), levels 3-5 (computer and human have similar 

levels of responsibility), and levels 6-8 (computer is 

independent of human). To determine the level of autonomy 

needed to design into a spaceflight vehicle, Ryan et al [2] 

needed a way to map particular functions onto the scale and 

determine how autonomous each function should be. They 

designed a questionnaire and sent it to system designers, 

programmers and operators. The questionnaire considered 

what they call ‘factors for determining level of autonomy’, 

which include level of autonomy trust limit and cost/benefit 

ratio limit. This implies that a particular level of autonomy for 

a function is favoured when a balance is struck between trust 

and cost/benefit ratio limits. Ultimately the pertinent question 
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is “How autonomous should future spaceflight vehicles be?” 

This is a brilliant technique towards answering the first 

identified question (“How autonomic should a system be?”) 

IBM’s 5 levels of automation [5] describes the extent of 

automation of the IT and business processes. We consider 

these to be too narrowly defined and [10] observes that the 

differentiation between levels is too vague to describe the 

diversity of self-management, making it difficult to align ASs 

with those levels [28]. One major concern with the scale-

based approach is that a system is not necessarily less 

autonomic when human interferes with its operations and vice 

versa. Another is the complexity of applying the approach 

across different application instances (systems) –this is in 

terms of populating the levels in-between the scales: the 

differentiation between levels is complex (and can vary 

significantly depending on who is using the approach) to 

determine appropriate magnitude for each level. In general the 

autonomy scale approach is qualitative and does not 

discriminate between behaviour types. We posit that a more 

appropriate approach should comprise both qualitative and 

quantitative (as a way of assigning magnitude or value to the 

description and classification of systems) measures. These 

concerns are considered and addressed in our approach. 

Hui-Min et al. [20] is a government’s front for addressing 

the challenge of classifying the pervasive unmanned systems 

(UMS) according to their levels of autonomy. [20] alludes 

that UMS’ autonomy cannot be rightly evaluated 

quantitatively without thorough technical basis and that the 

development of autonomy levels for unmanned systems must 

take into account factors like task complexity, human 

interaction, and environmental difficulty. The product in [20] 

is Autonomy Levels for Unmanned Systems (ALFUS) 

Framework which, more specifically, provides the 

terminology for prescribing and evaluating the level of 

autonomy that an unmanned system can achieve. The 

framework, in which the levels of autonomy can be described, 

addresses the technical aspects of UMS and includes terms 

and definitions (set of standard terms and definitions that 

support the autonomy level metrics), detailed model for 

autonomy levels, summary model for autonomy levels, and 

guidelines, processes, and use cases. While we accept that 

autonomicity cannot be correctly evaluated without thorough 

technical basis, our approach further takes into account key 

functionalities of ASs rather than individual breakdown of 

technical operations and operational conditions –a major 

difference with our work. The work in [20], which is updated 

in [21], focuses more on standardised categorisation of UMS.  

Barber and Martin [11] supposes that in a multi-agent 

system environment, agent autonomy is measured in terms of 

a system-wide goal. It proposes a collaborative decision-

making algorithm for multi-agent systems. In the proposed 

algorithm, a plan for achieving the system’s goal is decided 

by the agents. Every agent suggests a complete plan with 

justification for how to achieve the entire system’s goal. Each 

agent evaluates each suggested plan and determines the value 

of its justification. Each plan receives an integer number of 

votes from the deciding agents. The plan with the highest 

votes becomes the plan for the entire system. The ratio of an 

agent’s number of votes (received for suggested plan) to the 

total number of votes cast is a measure of that agent’s 

autonomy and the extent of its capability to influence the 

system. This method, however, does not offer a measure for 

LoA but gives a valuable description of agents’ individual 

influence in a multi-agent system environment which is useful 

to our approach: In further evaluating a system, we adapt this 

formula to determine the rate of individual functionality 

contribution in our proposed LoA measure (see Section IV B). 

Fernando et al [12] proposes measures for evaluating the 

autonomy of software agents. It believes that a measure of 

autonomy (or any other agent feature) can be determined as a 

function of well-defined characteristics. Firstly, it identifies 

the agent autonomy attributes (as self-control, functional 

independence, and evolution capability) and then defines a set 

of measures for each of the identified attributes. The agent’s 

LoA is defined by normalising the results of the defined 

measures using a set of functions. [12] considers autonomicity 

measure with reference to system’s characteristics and 

attributes. But in that work ‘characteristics’ are a broad range 

of attributes that describe a system which also include 

features outside the system’s core functionalities. Not going 

into the argument of right/wrong constitution of system 

attributes (or functionalities), the important aspect to note is 

the idea of defining a system with respect to its attributes and 

characteristics. We have adapted this approach in our 

proposal for autonomic systems but with reference to [core] 

autonomic self-* functionalities. 

III. AUTONOMICITY MEASURING METRICS  

In this section, we introduce example metrics for each of 

the core four functionalities that define autonomicity of AS. 

Though metrics are application domain dependent, the 

metrics presented here are generic and serve as examples 

only. We understand that autonomic functionalities are 

emergent and these vary (or are defined) according to 

application instances. The point is that, for any system 

(whether or not autonomic), there are required functionalities 

(determined by designers and/or users) which can be 

measurable by some identified metrics. We present at least 

one metric for each of the functionalities (using the self-

CHOP for example). This is part of a wider (and separate) 

research focus. This section only focuses on how autonomic 

metrics can be generated. We also show how metrics can be 

normalised (see Section IV). We will start with a definition of 

each CHOP. (For more on these definitions see [13] and [14]). 

Self-Configuring: A system is self-configuring when it 

is able to automate its own installation and setup according to 

high-level goals. When a new component is introduced into 

an AS it registers itself so that other components can easily 

interact with it. The extent of this interoperability I is a 

measure of self-configuration, measured as the ratio of actual 

number of components (         ) to expected number of 

components (          ) successfully interacting with the new 

component after configuration.  



556

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

    

 

      Interoperability ratio I measures to what extent a 

system is distorted by an upgrade. A system is self-

configuring to the extent of its ability to curb this distortion. 

This example can be related to the problem diagnosis system 

for AS upgrade discussed in [13]. Here an upgrade introduces 

5 software modules. The installation regression testers found 

faulty output in 3 of the new modules. This implies that only 

2 modules out of 5 successfully integrated with the system. 

Self-Optimising: A system is self-optimising when it is 

capable of adapting to meet current requirements and also of 

taking necessary actions to self-adjust to better its 

performance. Resource management (e.g., load balancing) is 

an aspect of self-optimisation. An autonomic system is 

required to be able to learn how to adapt its state to meet new 

challenges. Also needed is consistent update of the system’s 

knowledge of how to modify its state. State is defined by a set 

of variables such as current load distribution, CPU utilization, 

resource usage, etc. The values of these variables are 

influenced by certain event occurrences like new 

requirements (e.g., process fluctuations or disruptions). By 

changing the values of these variables, the event also changes 

the state of the system. The status of these variables is then 

updated by a set of executable statements (policies) to meet 

any new requirement. A typical example would be an 

autonomic job scheduling system. At first, the job scheduler 

could assign equal processing time quanta to all systems 

requiring processing time. The sizes of the time quantum 

becomes the current state and as events occur (e.g., 

fluctuations in processing time requirement, disruptions of 

any kind, etc.), the scheduler is able to adjust the processing 

time allocation according to priorities specified as policies. In 

this way the state of the system is updated. But this may lead 

to erratic tuning (as a result of over or under compensation) 

causing instability in the system. We define Stability as a 

measure of self-optimisation. If an event leads to erratic 

behaviour, incoherent results or system is not able to retrace 

its working state beyond a certain safe margin (a margin 

within which instability is tolerated), then the system is not 

effectively self-optimising.  

Self-Healing: A system is self-healing when it is able to 

detect errors or symptoms of potential errors by monitoring its 

own performance and automatically initiate remediation [15]. 

Fault tolerance is one aspect of self-healing. It allows the 

system to continue its operation possibly at a reduced level 

instead of stopping completely as a result of a part failure. 

One critical factor here is latency; the amount of time the 

system takes to detect a problem and then react to it. We 

define reaction time T as a metric for self-healing capability. 

This is crucial to the reliability of a system. If a change occurs 

at time    and the system is able to detect and work out a new 

configuration and ready to adapt at time   , then (2) defines 

the reaction time T. (Average is taken instead where 

variations of T are possible). 

 

                                      (2) 
 

A case scenario is a stock trading system where time is 

of paramount importance. The system needs to track changes 

(e.g., in trade volumes, price, rates etc.) in real time in order 

to make profitable trading decisions.  

Self-Protecting: A system is self-protecting when it is 

able to detect and protect itself from attacks by automatically 

configuring and tuning itself to achieve security. It may also 

be capable of proactively preventing a security breach 

through its knowledge based on previous occurrences. While 

self-healing is reactive, self-protecting is proactive. A 

proactive system, for example, would maintain a kind of log 

of trends leading to security problems (threats and breaches) 

and a list of solutions to resolve them (a list of problems and 

corresponding solutions only applies to self-healing). One 

major metric here is the ability of the system to prevent 

security issues based on its experience of past occurrences. 

For example let’s assume     {   } to be true if      trend 

leads to     problem where     is a log of all identified trends 

and corresponding problems.   is a particular instance of 

trend-problem combination. A self-protecting manager will 

avoid a situation of same trend leading to the same problem 

again by blocking the problem, addressing it or preventatively 

shutting down part of the system. We define ability to detect 

repeat events E as a self-protecting metric. E is a Boolean 

value (True indicates the manager is able to stop a repeating 

problem and False otherwise).  If we choose two samples of 

{   }  at different times (t1 and t2) then (3) defines E. 

(Different trends may lead to the same problem but a repeated 

trend-problem combination indicates a failure of the system to 

prevent a reoccurrence).  
 

               {   }     {   }                        (3) 
 

One typical implementation of this is an antivirus 

system. Some antivirus systems learn about trends or patterns 

(signatures) and are able to make decisions based on these to 

proactively protect a system from an attack. The antivirus is 

able to stop repeatable patterns. Detecting problem 

reoccurrence is an active research focus in Autonomic 

Computing [16]. 

IV. PROPOSED LOA MEASURE 

An AS is defined based on its achievement of the self-* 

capabilities [15]. In our approach, we define a level of AS in 

terms of its extent of achieving the identified functionalities. 

If a system fails to demonstrate at least a certain level of one 

of the self-* (required for the system in question), the system 

is said to be non-autonomic. On the other hand, if the system 

demonstrates a full level of all identified (or required) 

capabilities, it is said to have achieved full autonomicity (as 

defined by our proposed scheme). In this section, we present 

our updated approach towards measuring autonomic systems 

LoA. In the most part, a mathematical algorithm is used for 

the proposed approach. 

𝐼    
𝑛𝑖𝑎𝑐𝑡𝑢𝑎𝑙
𝑛𝑖𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑖

 

 

 

(1) 
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Each functionality is defined by a set of metrics. Each 

functionality contributes a level of autonomic value which is 

spread across the set of metrics for that functionality. It then 

follows that each metric contributes a certain quota of the 

autonomic value for that functionality. Metrics and 

functionalities are weighted according to relevance or 

importance. The cumulative normalisation of the measure of 

all metrics (for all functionalities) defines a LoA. The need 

for normalisation of values enables comparison of systems 

across different implementations. With an ongoing debate on 

the composition of AS functionalities and the list substantially 

growing [17, 18], our approach is generic to accommodate 

evolving functionalities as may be defined by the user. Figure 

1 is a pictorial illustration of our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given that any AS is defined by a number of self-* 

autonomic functionalities, say n, the mathematical 

Combination expression (4) is the representation of the 

possible combinations of the functionalities:  
 

1

n
n

r

rC


    → # of possible combinations                    (4) 

 

The number of possible combinations indicates the 

possible functionality compositions of a system where n is the 

number of functionalities (the self-*) and r is an enumerator of 

the possible implementation combinations (see the rightmost 

enumerated values in Figure 2). The functionalities may not 

be of equal importance to an application domain so 

combinations indicate what functionality is important to an 

application domain. And depending on choice of usage, this 

may be defined as required functionalities (in which case r 

may be equal to n) or demonstrated functionalities (in which 

case    ).  

Autonomic functionalities may overlap i.e., are not 

necessarily orthogonal. For example, a function that primarily 

achieves self-healing may change internal configuration and 

thus may also be described as self-configuring. To represent 

this, we allocate weights to indicate the extent to which a 

particular algorithm achieves the different functionalities. 

Further, self-managing actions are not necessarily linear in 

their operation; i.e., the relationship between a self-tuning 

parameter change internally and the externally seen effect of 

the change may be non-linear. In addition, for a given system, 

one autonomic behaviour e.g., self-healing may have a much 

more significant effect on system behavior than perhaps self-

optimisation which may be more subtle. Such non-linearity in 

the contribution to LoA is catered for by a combination of 

weighting and normalisation (see Section IV part C). Weights 

are applied to reflect the extent of impact one of a particular 

functionality. Our current technique caters for orthogonality 

and non-linearity although to some extent these are open 

challenges that need further addressing.  

 Table I is a description of notation keys used. To 

measure the LoA of a system, we require the following: 

 Number of functionalities: this is a value indicating the 

number of functionalities present or required in a 

particular system – a specific implementation 

combination of the functionalities. 

 Number of metrics: this is the number of identified 

metrics for the respective functionalities. 

 Weighting: weights are assigned to functionalities and 

metrics according to priority or importance. 
 

TABLE I: NOTATION KEYS 

Key Description 

aij autonomic value contribution for individual 

metric j of functionality i 

ki autonomic value contribution for individual 
functionality i 

LoA total level of autonomicity measure for all fi & mij 

Mi number of metrics for functionality i 

Mc, Mh, Mo, & Mp number of metrics for each of the self-* 
functionalities respectively 

mij individual metric j for functionality i 

n number of functionalities 

ni individual functionalities 

r possible combinations of functionalities  

Ri rank of a functionality i in the autonomic 

composition of a system 

vi weighting for functionality i 

wij weighting for metric j of functionality i 

ci, hi, oi and pi autonomic metric contributions of the 
functionalities for a CHOP-based system 

All indices (i and j) begin at 1 
 

A. Preliminary Work: A Specific Case Approach 

To make progress in this approach, a preliminary effort is 

set out in [1]. This initial effort works perfectly well in cases 

where functionalities are orthogonal and for specific systems 

of limited (known) number of functionalities. Now, following 

on from equation (4) and taking a specific system in isolation, 

for example, (say a system with only four functionalities, e.g., 

the CHOP), this will give 16 possible combinations as shown 

in Figure 2, although the 16
th

 combination is a special case 

which implies the system demonstrates no autonomic 

functionality and thus it is not considered further. The CHOP 

Figure 1: Pictorial illustration of how LoA is achieved by 

summing the metric autonomic value contributions of all 

metrics defining all functionalities of a particular AS. 

AS 

Functionality 1 

Metric 11 

Metric ij 

Functionality i 

Metric 11 

Metric ij 

……. 
……. 

……. 

……. 

∑ → LoA 

……. 

……. 
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functionalities may not all be of equal importance to a 

particular application domain hence we enumerate the 

possible combinations of functionalities, for reference. 

Combination 2 means that only two functionalities are of 

importance to the system’s domain –so for example {C, H, 

not O, not P} is a specific combination representing a system 

with enumeration 4 in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 implies that, in terms of autonomic functionality 

composition, a system deemed autonomic (within the self-

CHOP boundary) can be defined (or described) in one of n
2
-1 

ways. The remaining combination (enumerated 16 in Figure 

2) represents a non-autonomic system, as it exhibits none of 

the autonomic functionalities. If we define autonomic metrics 

for each of the functionalities, then the sum of the 

autonomicity in each of the constituent functionalities for a 

particular AS gives the system’s LoA (5). For example, the 

LoA of a system represented by line 9 in Figure 2 will be the 

summation of the autonomic metrics defining the self-healing, 

self-optimising and self-protecting functionalities.   

 

 

 

 
 

Subscripted M is the number of identified metrics for the 

respective functionalities.   ,  ,    and    are the autonomic 

metric contributions of the functionalities. These can be 

composed of functions of different measures but as explained 

in Section IV(C), they are normalised to yield autonomic 

values. For more details regarding the preliminary work and 

the specific case approach of the proposed measure, see [1]. 

B. Measuring LoA: A Generic Case Approach 

Having looked at specific (of known number of 

functionalities) case instance of the proposed approach, we 

seek, in this subsection, to establish a generic case in which 

this approach is suited for application across different 

scenario instances. Now, extending the approach and making 

it more generic, weighting is introduced. Functionalities are 

not necessarily orthogonal –i.e. a single behaviour could 

enhance the contribution of more than one metric and this 

could be across more than one functionality. This is important 

because the measurement approach has to work in situations 

where the functionalities are and are not orthogonal. In cases 

of non-orthogonality, the weighting is applied to tune 

sensitivity of contributing behaviours.  

For flexibility of applying the technique across different 

application instances, LoA is normalised to a value in the 

range 0 to 1. It also follows that all autonomic value 

contributions and weighting are normalised within the same 

interval range: 
 

                           

 (6) 

                          
 

Normalisation of the individual components of the 

formulae is important to enable comparison of different 

systems with different implementations, and also to address 

non-linearity aspects. The way we measure the system should 

not on its own change the outcome –for example, higher 

number of metrics should not result in higher LoA value and 

as well does not translate to being ‘more autonomic’. So in all 

cases, and for normalisation purposes, the following rules 

must apply: 

 

 

 

 

 
 The metric weighting (wij) and metric autonomic value 

contribution (aij) are both with reference to individual 

functionalities and so are bound to the number of metrics for 

those functionalities (Mi). However, the functionality 

weighting (vi) is with reference to the system itself and so is 

bound to the total number of functionalities (n) .This explains 

why the total individual autonomic value contribution (∑  ) 
can go up to n –see equation (9). If we ignore, for now, all 

indices and have a top level view of the proposed LoA 

calculation, for a single functionality, then: 

 

   (   )            (8) 

 

  ∑    ∑     (9) 

 

                             ∑(   )  
 

 ∑[(   )   ]                     (10) 

 

Decomposing (9) and (10) above, and for total autonomic 

value contribution of all functionalities   : 
 

 

 

 

(7)  𝑤𝑖𝑗               

𝑀𝑖

𝑗= 

 𝑣𝑖     

𝑛

𝑖= 

  𝑎𝑖𝑗      

𝑀𝑖

𝑗= 

 

 

𝐿𝑜𝐴    [𝑐𝑖]

𝑀𝑐

𝑖= 

+  [ 𝑖]

𝑀 

𝑖= 

+  [𝑜𝑖]

𝑀𝑜

𝑖= 

+  [𝑝𝑖]

𝑀𝑝

𝑖= 

 

 

  (5) 

𝑘𝑖    𝑎𝑖𝑗  𝑤𝑖𝑗       𝑛𝑖𝑎𝑛𝑑 𝑚𝑖𝑗

𝑀𝑖

𝑗= 

 (11) 

Figure 2: Combination of autonomic functionalities (for n = 4).  
 

AS 
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And applying the functionality weighting to the individual 

autonomic value contribution (ki), we have: 

 

  

 

 
 
LoA is then given by summing equation (12) for all values of 

   and    : 

 

   

 

 

 

 

In the case of orthogonality or where weighting is not 

required, level of autonomicity is given by the basic 

expression: 

 

 

 

 

 

This is equivalent to equation (5). Procedure 1 is a basic 

algorithm of the implementation of the proposed measure of 

autonomicity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the proposed approach is a 2-dimensional 

definition. That is, it supports only two levels of description, 

e.g., a system on one hand and its functionalities or 

characteristics on the other hand. A bit of tweaking and 

adaptation is required to support higher dimensional 

definitions e.g., a system, its functionalities or characteristics, 

sub-functionalities or sub-characteristics, etc. 

C. Normalisation and Scaling of Autonomic Metrics 

Dimensions 

There is still a point though that needs to be addressed. 

When computing for LoA, we are normalising values that are 

products of aggregated metric values of different units and 

dimensions. Depending on the application domain, metrics 

can be scalar (of different measures) or non-scalar values 

(e.g., observing a capability, Boolean based decisions, etc.). 

So, despite what measure or form these metrics take, there 

needs to be a way of scaling the metric values (of all 

contributing metrics) to a centric unit of autonomic metric 

contribution within a certain normalised range. But, because 

the range of values and metrics can vary significantly, each 

choice of how these are scaled can influence very differently 

the final LoA. A possible solution is to define scaling factors 

for all contributing metrics within a normalised range (of [0, 

1] in our case). In this way, the metrics’ values (irrespective 

of units of measure) are normalised into real numbers that are 

summed to give LoA. One challenge here, though, is defining 

the scaling factors. We identify two simple methods for 

normalisation: 1) By ranking values according to high, 

medium, and low. The meaning of this ranking is metric-

dependent and is based on a defined margin. For example, if a 

maximum expected value is 6, a value of 0-2 will be ranked 

low, while 3-4 will be ranked medium and 5-6 ranked high. A 

medium value would contribute fifty percent of the metric’s 

autonomic value contribution in the range of [0, 1] (recall that 

0.0 ≤     ≤ 1.0 from equation (6)), while the two extremes 

would contribute zero and hundred percents –these may differ 

depending on choice of usage. This can be used for scalar 

metrics like the interoperability ratio and reaction time 

metrics discussed in Section III. 2) By having a Boolean kind 

of contribution where two values can suggest two extremes –

either affirming a capability or not. For example, if a ‘True’ 

outcome affirms a capability then it contributes hundred 

percent of the autonomic value contribution, while a ‘False’ 

outcome contributes zero. Another example in this category is 

where an instance of an event either does or does not confirm 

a capability (e.g., the stability metric for self-optimising). 

Other specific methods, like the Mahalanobis Distance [22] 

discussed and used in [23], have been proposed. In scaling the 

different dimensions of distances between points (measured in 

different distance measurement units), the authours of [23] 

use a simplified form of the Mahalanobis Distance, where for 

each dimension, they compute the standard deviation over all 

available values and then express the components of the 

distances between points as multiples of the standard 

deviation for each component.  

In the end, anyone can choose any form of scaling and 

normalisation as long as it is uniformly used across board for 

all systems to be evaluated and all values are within the range 

[0, 1] as explained in equations (6) and (7). 

D. Measuring LoA: Comparison of Approaches 

Assessing autonomic systems and being able to analyse 

and compare diverse systems of different degrees is an open 

research challenge that needs significant attention. There have 

been several attempts to develop a way of measuring 

autonomicity but unfortunately a universal solution has not 

been found. [8] shows that up to this point, there is one main 

approach to measuring the extent of autonomicity of 

autonomic systems (the scale-based approach which is 

explained in Section II), and a number of variations of this 

Procedure 1: Algorithm for implementing LoA 

 
    1:  Input (main) variables: n and Mi 
  2:  i = 1, 2, …, n and j = 1, 2, …, Mi 
  3:     if at n1, M1 = 3, then j = 1, 2, 3  

  4:   k1 = (wii   a11) + (w12   a12) + (w13   a13) 

  5:  k(1) = 0 //initialising k array 

    6:  for i = 1 to n 

    7:   for j = 1 to M(i) 

  8:    sum(j) = w(ij)   a(ij) 
  9:    k(i) = k(i) + sum(j) 
 10:   next j 
 11:  next i 

 12:   LoA = (k1   v1) + … + (kn   vn) 

(13) 𝐿𝑜𝐴     𝑣𝑖     𝑎𝑖𝑗  𝑤𝑖𝑗 

𝑀𝑖

𝑗= 

  

𝑛

𝑖= 

 

(14) 
𝐿𝑜𝐴      𝑎𝑖𝑗 

𝑀𝑖

𝑗= 

𝑛

𝑖= 

  

 

𝑘𝑖  𝑣𝑖     𝑎𝑖𝑗  𝑤𝑖𝑗      

𝑀𝑖

𝑗= 

     𝑛𝑖𝑎𝑛𝑑 𝑚𝑖𝑗 (12) 
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have been explored. The fundamental purpose of this 

approach is to reflect the level of involvement in decision-

making between the system and the human user. The major 

variations of the scale-based approach are Clough [4], 

Sheridan [9], and Ryan et al. [2]. Clough’s 10-level scale is a 

result of developing national intelligent autonomous UAV 

metrics for the Department of Defence (DoD). Though it is 

tied to UAVs, its use of metrics to measure the level of 

autonomy of UAVs makes it stand out. The levels in-between 

the scale are populated by defining metrics for UAVs. This is 

good because using metrics that define functionalities gives a 

clearer understanding of the systems. Yet there is no 

normalised single point of reference that can be used in 

comparing two systems using this approach. Sheridan’s 10-

level scale measures two aspects; decision making (levels 2-

4) and decision execution (levels 5-9). Ultimately, Sheridan 

focuses on human-machine relations (and human supervisory 

control) and not necessarily on the level of autonomicity of 

systems. Ryan et al extended Sheridan’s concept and 

developed an 8-level scale that determines the level of 

autonomy needed in designing autonomic systems; although 

their work cannot actually be said to offer a way of measuring 

autonomic systems’ level of autonomicity.  

None of these is sufficiently sophisticated in measuring 

LoA. The technique we propose here is more sophisticated in 

a number of ways: it is the only technique that ties down LoA 

to a numeric value; it takes into account individual weights;  it 

is flexible in the sense that it can take any number of degrees 

(functionalities), and the fact that the numeric value is scaled 

always to a normalised value (to cater for comparisons 

between systems with different numbers of  dimensions of 

autonomicity and different numbers of metrics for measuring 

the extent of functionality achieved in each dimension). 

Normalisation gives you the power to compare two different 

systems no matter the number of individual metrics. 

E. Evaluating Autonomic Systems 

Evaluating Autonomic Systems using equation (5) or 

equation (13) gives their separate LoA values –which are 

aggregated values. This, however, does not give a fine-

grained picture of the systems’ performances in terms of 

individual functionalities. Systems are classified according to 

their implementation combinations (r). This is in terms of 

what self-* functionalities are required or demonstrated in 

their specific application domains. One thing remains to be 

clarified at this point –‘how do we rank each functionality in 

the autonomic composition of a system?’ This can be in terms 

of importance or extent of functionality provided. We focus 

on the later –the extent of functionality provided as against 

what is needed. Take for instance, if two systems are of the 

same combination we may wish to know which of them 

provides a greater degree of say self-healing or self-protection 

in any application domain. To address this, we adapt a 

function that measures agent’s decision-making power in a 

multi-agent autonomic system defined in [11]. The rank of a 

functionality Ri in the autonomic composition of a system is 

defined by the ratio of its autonomic contribution (   or    ) 

to the total autonomic contribution of all metrics defining the 

composite functionalities of that system: 
 

    
  

   
         (15) 

 

This applies where weighting is considered. If weighting is 

not considered,    is given by equation (16): 

       

1

i

j

M

ij
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where (    or    ) is the autonomic contribution of the 

considered functionality which could be the summation of   , 
  ,    or    in equation (5) or the calculation of    in equation 

(11) or the summation of     (e.g., the case in equation (14)). 

With equations (15) and (16), any composite functionality can 

be ranked in terms of their autonomic contribution.  

V. AUTONOMIC SYSTEMS EVALUATION CASE STUDY  

In this section, two example cases that cover the specific 

and generic case approaches (explained in Section IV) are 

examined. The first is based on Dynamic Qualitative Sensor 

Selection System (DQSSS) application scenario (see [19] for 

full details of the DQSS system). This is used to demonstrate 

a case where functionalities are assumed to be orthogonal and 

for specific systems of fixed number of autonomic 

functionalities. This is consistent with the preliminary work in 

[1] and suites the proponents of the view that autonomic 

systems are only defined by the generally accepted and core 

functionalities of the self-CHOP.  

The second case example deploys one of the current 

technology innovations –Autonomic Marketing. This is used 

to demonstrate a generic case instance where functionalities 

are not necessarily orthogonal and where systems are defined 

by n number of autonomic functionalities. For more details on 

the autonomic marketing system scenario see [24] and [25]. 

For each case example, three systems (or autonomic 

managers) are examined. When comparing these systems, it is 

important to look closely at the performances of individual 

autonomic functionality to give clearer understanding of the 

calculated LoA. 

A.  Dynamic Qualitative Sensor Selection Case Example 

In this example, autonomic functionalities are limited to 

the original, and generally accepted four self-CHOP 

functionalities, supposing that any autonomic system is 

defined by them. This is representative of many real-world 

systems of known (fixed) functionalities or characteristics. 

The DQSSS case study is based on work in [19]. The goal of 

DQSSS is to dynamically select a sensor (amongst many) 

based on continuously variable qualitative characteristics 

(e.g., signal quality and noise levels). This is typical of an 

application that accesses several sensors generating raw data 

from monitoring a particular context; these could be physical 

attributes of a system or perhaps information feeds from a 

(16) 
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service (e.g. financial data). In such applications, it is 

expected that a DQSSS would generate and differentiate signal 

characteristics and trends, choose the best signal and without 

compromising stability, be continuous, unsupervised, 

dynamic, and detect and react if a sensor goes down. 

Autonomic metrics are drawn from these characteristics. By 

definition, self-configuration, self-optimization and self-

healing are of importance to this system (i.e., r=3 and also n 

is fixed at 4). The DQSSS in [19] is presented in three 

progressive stages which we refer here to as systems A, B and 

C. All three systems are able to differentiate sensors by their 

signal characteristics such as noise level and spikes. These are 

then combined in a utility function to determine the better 

quality sensor. Systems B and C are able to generate trends in 

signal quality using trend analysis logic. Only system C 

ensures stability (avoiding unhealthy oscillation in sensor 

selection) by implementing dead zone logic, while none of the 

systems has a way of detecting a failed sensor.  

 
TABLE II: REPRESENTATION OF THE DQSSS [19] 

 

In keeping with the normalisation of values as contained 

in (6) and (7), the maximum achievable LoA becomes ‘1’ 

implying that each CHOP contributes an autonomic value in 

the range (       
 

  
) spread across its metrics. 

Normalising the identified metrics in Table II (the numbers of 

metrics in each combination are: M1 = 4 (for self-configuring C), 

M2 = 2 (for self-healing H), and M3 = 3 (for self-optimising O)) in 

the autonomic value range (       
 

  
) and applying 

equation (5) or (14) gives the result in Table III. Equation 

(17) is an expression of how each instance of the metrics 

contribution is calculated. 

 

 

 

 
 

Figure 3 is a radar chart analysis of systems A, B and C 

in terms of their separate autonomic functionality 

composition. Recall that only three functionalities (CHO-) are 

of importance here which explains why self-protection P has 

no value. Based on the LoA achievements of the three systems 

A, B and C as shown in Table III (0.25, 0.33 and 0.63 

respectively), it means that in a dynamic sensor selection 

application domain (as defined), system C can be depended 

upon to carry out the task with a higher confidence level and 

lower risk factor compare to systems B and A.  

One powerful aspect of our proposal, particularly the 

specific case approach with fixed number of functionalities, is 

that it offers the flexibility of qualitatively interpreting LoA 

results using any scale-based approach. This is done by 

applying the upper bound of the chosen scale to equation (17) 

as in equation (18) and then interpreting the results within the 

levels of the scale. 

 

 

 
 

Where max is upper bound of the scale used. 
 

Applying Ryan et al level of autonomy assessment scale 

[2] which, as explained in Related Work section, is an 8-level 

autonomy assessment tool (used for either identifying 

(qualitatively) the level of autonomy of an existing system or 

for proposing an appropriate level of autonomy during the 

design of a new system), max becomes 8. So, in computing 

(18) with max = 8, system A falls within level 2 of the scale 

which points to a situation where ‘computer shadows human’ 

in the self-management process. This indicates that system A 

only has a narrow envelope of environmental conditions in 

which it is both autonomic and returns satisfactory behaviour. 

System B tends toward level 3 on the scale which is ‘human 

shadows computer’ which translates into a wider operational 

envelope, but once the limits of that envelope are reached 

human input is needed in the form of retuning, or manual 

override in the case of oscillation, which for example system 

C can deal with autonomically. System C falls within level 5, 

which points to ‘collaboration with reduced human 

intervention’. This indicates that C is sufficiently 

sophisticated to operate autonomically and yield satisfactory 

results under almost all perceivable operating circumstances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Employing (16) to rank the functionalities and taking 

just self-configuration for example, we find that in system A, 

Characteristics (metrics) Contributing CHOP Sys A Sys B Sys C 

Continuous  C √ √ √ 

Unsupervised C √ √ √ 

Trends examination O - √ √ 

Stability O - - √ 

Dynamic (logic switching) O - - √ 

Signal characteristics  C √ √ √ 
Signal  differentiation C √ √ √ 

Failure sensitivity (sensors) H - - - 

Robust (fault tolerance) H - - √ 

Figure 3: LoA representation of systems A, B & C in the CHOP 

domains. 

 Sys 

A 

Sys 

B 

Sys 

C 

C 0.25 0.25 0.25 

H 0.00 0.00 0.13 

O 0.00 0.08 0.25 

P 0.00 0.00 0.00 

LoA 0.25 0.33 0.63 

 

TABLE III: ANALYSIS RESULT 
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self-configuration contributes 100% of its autonomic 

achievement, while in systems B and C the contribution is 

75% and 40% respectively. This provides another analytic 

spectrum that gives a clearer understanding of the 

composition of the calculated LoA.  

The benefit of analyzing Autonomic Systems in terms of 

their extent of autonomicity not only offers a path to 

Autonomic Systems’ certification as stated earlier, it also 

offers a way of comparing these systems, and also facilitates a 

proper description of these systems to users.  

B. Autonomic Marketing Case Example 

In this example, we consider a specific aspect of 

autonomic marketing system based on the work and 

experiment presented in [25]. As there are yet no standardised 

(or defined) lists of autonomic metrics, at least for the case 

example system, we draw autonomic metrics and 

functionalities for the purposes of this case example from the 

specified goal of the system as detailed in [25]. So, metrics 

are drawn based on (or limited to) what is explained in the 

experiment and not on what autonomic marketing systems, 

generally, should have as metrics. In the end, the interest here 

is to show how the proposed LoA measurement approach can 

be applied to systems.  

The particular case example autonomic marketing 

system studied here is that of targeted television advertising 

during a live sports competition airing. A company is 

interested in running an adaptable marketing campaign on 

television with different adverts (of different products 

appealing to audiences of different demographics) to be aired 

at different times during a live match between two teams. 

There are three adverts (Ad1, Ad2 and Ad3) to be run and the 

choice of an ad will be influenced by, amongst other things, 

viewer demographics, time of ad (local time, time in game, 

e.g., half time, TV peak/off-peak time, etc.), length of ad 

(time constraint), cost of ad, who is winning in the game, etc. 

This is a typical example of a system with many dimensions 

of freedom and very wide behaviour space. The behaviour 

space is divided into four zones along two dimensions of 

freedom (Mood and CostImplication) as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The two dimensions of freedom, which are influenced 

by several contextual variables, represent a collation of all 

possible decision influencers. Each action (ad) is thus 

activated only in its allocated zone following specified policy 

in order to achieve the system’s goal defined by a set of rules 

(Figure 5). Following the set policy, the autonomic manager, 

at every decision instance (of a sample collection) decides on 

which ad to run. The optimisation of the system is in terms of 

achieving balance between efficient just-in-time target-

marketing decision and cost effectiveness (savings 

maximisation) while maintaining improved trustability, 

stability and dependability in the process.   
 

 

 

 

 

 

 

 

 

 

 

 
 

Three autonomic managers, based on three different 

levels of autonomic architectures, are designed to implement 

this system. In this example, we evaluate these three 

managers (full detail of experiment is available in [25]). 

Basically, the first manager, AC (AutonomicControlling at its 

core), is concerned with making decisions within the 

boundaries of the rules while the second, VC 

(ValidationCheck at its core) goes beyond decision making to 

validate decisions for conformity with the rules. The third 

manager, DC (DependabilityCheck at its core) verifies that 

the measure of success is achieved. DC also improves 

reliability by instilling stability in the system. This is done by 

introducing dead-zone boundaries (Figure 4b) within which, 

no action is taken (avoiding erratic and unnecessary changes) 

and implementing a TRC (Tolerance-Range-Check) to 

address rules in particular.  

Based on the goal of the system, specified in the rules of 

Figure 5, we have drawn three functionalities (self-

configuration, self-optimisation and self-stability) and six 

metrics. Table IV shows the metrics and contributing rules. 

The simulation was run for a total duration of 50 sample 

collection instances. This means that for the duration of the 

simulation, external variables (that influence decisions for 

ads) were fed to the autonomic managers fifty times. 

 
TABLE IV: AUTONOMIC METRICS FOR SYSTEMS AC, VC & DC 

Metrics Description Contributing rule 

# of ad change (x) Number of times ads changed Rule 2 

# of ad run (y) Number of ads that were run Rules 3 and 4 

# of decision (d) Number of decision instances d is a constant 

Rate of ad change (Tx 

= x/50) 

Rate at which ads were 

changing 

Rules 2 and 5 

Rate of ad run (Ty = 

y/50) 

Rate at which ads were run Rules 4 and 7 

Decision ad change 

ratio (dx = x/d) 

Number of decision ad change 

relation 

Rule 3 

Stability (s) Number of times TRC bounds 

were breached 

Rules 5 and 6 

D 

Figure 4: System behaviour space in 2 dimensions of freedom [25]  

Key: 
 

L = Low, H = High 
md = Mood 
cs = CostImplication 

D = Dead-Zone 

CostImplication 

M
oo

d 
 

HmdLcs HmdHcs 

LmdHcs LmdLcs 

CostImplication 

M
oo

d 
 

HmdLcs 

(RunAd2) 

HmdHcs 

(RunAd3) 

LmdHcs 

(Null) 

LmdLcs 

(RunAd1) 

(a) 

(b) D 

1. Extract external variables (decision parameters) at defined time interval 
and decide on action 

2. Send trap msg and change action if (*condition omitted*) otherwise retain 
previous action 

3. If current action is same as previous action, do not send trap and do not 
change action 
    =================Measure of Success================ 

4. Cost of action change (total ad run) must fall within budget 
5. Rate of change should be considerably reasonable 
6. Maximum of one ad change within the first five sample collections and 

subsequently maximum of two in any three sample instances 
7. Turnover should justify cost 

 

Figure 5: Excerpt of rules defining system goal [25]. 
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Recall that functionalities are not always orthogonal as 

in this example some metrics contribute to more than one 

functionality (see Table V). The rate of the influence of the 

metrics on the functionalities is tuned by applying weighting. 

Table V shows the autonomic value contributions of all 

metrics and the corresponding functionalities. Weights are 

discretely allocated to reflect relevance and importance of 

functionalities (based on the goal of the system). Metric 

values are averages of 10 different simulation runs of the 50 

sample collection instances (see Appendix A for more 

details). In this example, we assume all metrics to be of equal 

weight within their respective functionalities. 

 
TABLE V: DISTRIBUTION OF METRIC VALUES 

Functionality 

(ni) 

Weight 

(vi) 

Metric 

(Mi) 

Metric weight 

(wij) 

Metric contribution 

(aij) 

AC VC DC AC VC DC 

Self-

configuration 

 

0.20 
x 0.50 0.50 0.50 0.000 2.000 4.800 

Tx 0.50 0.50 0.50 0.768 0.808 0.864 

 

Self-

optimisation 

 

0.40 

y 0.20 0.20 0.20 2.600 3.900 5.800 

Ty 0.30 0.30 0.30 11.42 11.45 11.49 

s 0.30 0.30 0.30 9.600 10.20 11.60 

dx 0.20 0.20 0.20 0.000 0.171 0.414 

 

Self-stability 

 

0.40 

Tx 0.25 0.25 0.25 0.768 0.808 0.864 

y 0.05 0.05 0.05 2.600 3.900 5.800 

Ty 0.20 0.20 0.20 11.42 11.45 11.49 

s 0.50 0.50 0.50 9.600 10.20 11.60 

 

From the values of Table V, we can now calculate the 

LoA of all three systems (AC, VC, and DC). Because of space 

we will only show the calculations for that of system AC and 

then use the LoA Calculator (see Section V C) to calculate the 

rest. 
 

n = 3 
 

For n1: M1 = 2, v1 = 0.20, w11 = 0.50, w12 = 0.50, a11 = 0.00, and a12 

= 0.768 
 

For n2: M2 = 4, v2 = 0.40, w21 = 0. 25, w22 = 0. 25, w23 = 0. 25, w24 = 

0. 25, a21 = 2.600, a22 = 11.42, a23 = 9.600, and a24 = 0.000 
 

For n3: M3 = 4, v3 = 0.40, w31 = 0.25, w32 = 0. 25, w33 = 0. 25, w34 = 

0. 25, a31 = 0.768, a32 = 2.600, a33 = 11.42, and a34 = 9.600 
 

k1 = (a11   w11) + (a12   w12) = (0.00   0.50) + (0.768   0.50)  

= (0.00) + (0.384)  

= 0.384 
 

k2 = (a21   w21) + (a22   w22) + (a23   w23) + (a24   w24)  

= (2.600   0. 25) + (11.42   0. 25) + (9.60   0. 25) + (0.0   0. 25) 

= (0.65) + (2.80) + (2.40) + (0.00)  

= 5.850 
 

k3 = (a31   w31) + (a32   w32) + (a33   w33) + (a34   w34) = 

(0.768   0. 25) + (2.600   0. 25) + (11.42   0. 25) + (9.60   0. 25) 

= (0.192) + (0.650) + (2.855) + (2.400)  

= 6.097 
 

Applying equation (13): 

 

LoA = (k1   v1) + (k2   v2) + (k3   v3) 

= (0.384   0.20) + (5.850   0.40) + (6.097   0.40) 

= 0.0768 + 2.340 + 2.439 

= 4.8558 

Figure 6 is a snapshot of the LoA Calculator’s result 

console showing the LoA results of systems VC and DC. 

Recall that the choice of scaling and normalisation used can 

influence very differently the final LoA. In making a choice, 

the nature of system and metrics need to be considered. In this 

example, we can choose to normalise the individual sub-

columns of the aij column within the range (0 ≤ aij ≥ 1), but 

this will negatively affect the values across all three systems 

and make it difficult for LoA calculations. Also we cannot 

normalise within the column across rows as that will 

overshoot the normalisation range within the sub-columns. 

So, we calculate with raw values and then normalise the final 

LoA values. How the metric values in Table V are scaled is 

shown in Appendix A. 
 

From Figure 6: 
 

LoA for system VC = 5.4887 

LoA for system DC = 6.4722 

 

The calculated LoA for system AC = 4.8558 

 

Then, normalising all three values within the normalisation 

range of (0 ≤ LoA ≥ 1) using expression (19): 

 

 

 
 

For system AC 

 LoA = 
      

       
        

 

For system VC 

 LoA = 
      

       
        

 

For system DC 

 LoA = 
      

       
        

 

The results clearly indicate the superiority of the systems 

from DC down to AC in terms of level of autonomicity (based 

on the criteria set as system goal). What this means is that, in 

terms of the criteria specified as the goal of the system, the 

autonomic manager of system DC is more autonomic than the 

others followed by system VC. The margins reflect, almost 

with the same magnitude, the performances of the systems as 

results show in [25]. 

 

 

 

 

 

 

 

 

 

 
  

Figure 6: LoA calculate console result for systems VC and DC 

(19) 𝐴𝐶   
𝐴𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)
 𝑉𝐶   

𝑉𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)
 𝐷𝐶   

𝐷𝐶

(𝐴𝐶 + 𝑉𝐶 + 𝐷𝐶)
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Recall that the optimisation of the system in question is 

in terms of achieving balance between efficient just-in-time 

target-marketing decision and cost effectiveness (savings 

maximisation) while maintaining improved trustability, 

stability and dependability in the process. From experimented 

results, system DC shows significant gain in stability and cost 

savings. It also smoothened the high fluctuation rate (high 

adaptability frequency) experienced by other systems and in 

general, reduces the average ad change ratio of about one 

change in three sample collections (1:3) to one change in ten 

sample collections (1:10), representing an overall gain of 

about 31.25% in terms of stability and cost efficiency. 

C. LoA Calculator 

The LoA Calculator is an application that helps in 

calculating system’s level of autonomicity. The application is 

developed using C# and can be used in calculating the LoA of 

any system at any level of complexity. The application can be 

used for both the generic and specific case approaches. For 

the specific case approach (that may require no weights), the 

user enters the value ‘1’ (one) in the place of all weights and 

that will automatically cancel the weighting effects. Basically, 

all variables and values used are user-defined and are fed into 

the application for LoA computation. There are two formats 

for the application. The basic format is for simple systems of 

few variables and provides a dialogue interface (a form) for a 

user to enter system variables. This is suitable when there are 

only a few data to be fed into the application and can be done 

through the keyboard. Figure 7 is a snapshot of the dialogue 

interface. The other format is more complex and is used for 

complex systems (of multiple data). The complex format 

feeds data into the application using comma separated text file 

(csv file). The user specifies raw data in a CSV file template 

and provides the file path to the application during run-time. 

Both formats work on the same principle (the core is based on 

equation (13)) and can be used interchangeably but it is more 

tedious using the basic format for complex systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the current (first) version of the application, only 

variables and values for one system can be fed into the system 

at any one time. Subsequent versions will be able to take 

values for more than one system at one instance and evaluate 

the systems in terms of their separate LoAs. The application is 

available for download at [26]. 

VI. CONCLUSION AND FUTURE WORK 

A system is better defined by its capabilities and so 

measuring the LoA of Autonomic Systems without a 

reference to autonomic functionalities would be inaccurate. 

We have proposed a functionality-based LoA measurement. In 

our proposal, a typical AS is defined by some core autonomic 

functionalities and LoA is measured with respect to these 

functionalities. Each functionality is defined by a set of 

metrics. The metrics values are normalised and aggregated to 

give the autonomic contribution of each functionality which 

are then combined to yield a LoA value for an AS. Our 

proposed approach is in two forms; the specific case approach 

and the generic case approach. The specific case approach 

works perfectly well in cases where functionalities are 

orthogonal and for specific systems of limited (fixed) number 

of functionalities. We have shown how this approach can 

adapt any scale-based approach to enable a qualitative 

understanding of the quantitative LoA measure proposed 

here. The generic case approach is used to demonstrate a 

generic case instance where functionalities are not necessarily 

orthogonal and where systems are defined by n number of 

autonomic functionalities. We have also shown how systems 

can further be evaluated to give a fine-grained picture of the 

systems’ performances in terms of individual functionalities 

looking at the ratio of autonomic contributions of their 

separate functionalities. In this, we found that only systems 

within the same implementation combination can be 

compared. We have carried out two case study examples (for 

the specific and generic case approaches) to demonstrate the 

usage and applicability of our proposed LoA measure. There 

are several other research works trying to develop a way of 

measuring autonomicity but have not succeeded. Some 

approaches have been proposed but none of these is 

sufficiently sophisticated in measuring LoA. Our technique 

here is more sophisticated in a number of ways: the fact that it 

is the only one that ties down LoA to a numeric value, the fact 

that it takes into account individual weights, it is flexible in 

the sense that it can take any number of degrees (properties), 

and the fact that numeric values are scaled always to a 

normalised value – (which otherwise gives the wrong 

impression that more metrics mean more autonomicity. 

Normalisation gives you the power to compare two different 

systems no matter the number of individual metrics). 

The standardization of a technique for the measurement 

of LoA will bring many quality-related benefits which include 

being able to compare alternative configurations of autonomic 

systems, and even to be able to compare alternate systems 

themselves and approaches to building autonomic systems, in 

terms of the LoA they offer. This in turn has the potential to 

improve the consistency of the entire lifecycle of Autonomic Figure 7: LoA Calculator basic format dialogue interface 
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Systems and in particular links across the requirements 

analysis, design and acceptance testing stages. 

One research challenge is the study and standardisation 

of autonomic metrics for different autonomic systems. The 

metrics definitions can be grouped or modularised (e.g., the 

standardised categorisation of UMS in [20]). So, as future 

work, we are looking at standardised ways of properly 

defining and generating autonomic metrics to strengthen our 

framework. This is a key component towards our wider 

research which focuses on the challenge of validating 

autonomic computing systems to achieve trustworthiness. We 

will be developing more sophisticated versions of the LoA 

Calculator. 
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1 shows the raw values of 10 different runs of the 

same simulation. It is not scientifically reliable to work with values 

of a single simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2 (left side) is a collation of the averages of the 

values of Table A1. On the right side of the table are the working 

values used. These are generated with reference to the possible 

maximum values of the individual metrics. For example, ads are 

changed or retained at every decision instance and since on the 

average, there are 11.6 decision instances, there are as much 

maximum possible number of ad change. So, the actual number of ad 

change is the difference between the number of possible ad changes 

and observed number of ad changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Stability measures the rate at which the tolerance 

range check (TRC) is breached. The column for DC is all zero 

because, in all 10 simulation runs DC did not breach the TRC bound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AC number of ad change metric is 11.6 (same as the 

number of decisions) indicating that AC changes ad at every 

decision instance. This tends to instability. Compare this to the value 

for DC and observe the difference. 

 

 

 

 

 

 

Table A1: Raw metric values as collected from experimental results 

 

Table A2: Scaled metric values 

Metric  


