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Abstract—The transformation of today’s energy market poses
new challenges for both, energy providers and customers alike
as the usage of renewable energy sources and energy-awareness
increases. Additionally, the energy infrastructure is changing
fundamentally. On the one hand, the installation of so called
smart meters offers the possibility of more detailed monitoring
and fine grained electricity billing. On the other hand, the amount
of data produced within the power grid increases dramatically.
Utility companies will use such data to increase prediction
accuracy and to improve energy production, while consumers will
more and more transform to prosumers. Within that environment
the necessity of short-term predictions increases to improve the
power grids stability. In this article, we respond to some of
the challenges that energy consumers and providers face by
an implementation of a prototypical recording, monitoring and
analysis landscape that uses smart meter data. The challenges
that this article tackles include: real-time energy consumption
classification; mass energy consumption data classification; and
early short-term energy consumption prediction. In extensive
experiments on real-world data, we show that such challenges
can be handled effectively. We leverage smart meter data via
a novel combination of machine-learning algorithms and latest

in-memory technology.

Keywords- energy pattern recognition; smart meters; ma-
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I. INTRODUCTION

The energy sector is currently undergoing transformational

changes: Energy providers are facing new challenges and

energy consumers are increasingly aware of their consumption

and the associated costs.

For energy providers, the rise of renewable energy sources,

such as solar or wind energy, drives the evolution from a

purely consumption controlled supply network to a production

controlled grid [2]. As the ratio of such energy sources in-

creases [3], energy providers must now, more than ever, predict

future energy consumption by their consumers earlier on the

most up-to-date data in order to match their energy supply with

their customers’ demand. If energy supply is not sufficient for

the predicted demand, the energy provider may decide to buy

missing resources from other providers or provide incentives

for the customer to change their behavior [4], e.g., via dynamic

pricing. In every case, early and accurate energy consumption

is essential for the energy provider.

For energy consumers, high environmental awareness [5]

as well as economical necessities enforced by rising energy

prices [6] drive conscious choices for energy consumption. In

the industrial sector, energy expenses can make up to 43%

of all operational expenses [7]. With ever increasing energy

prices, it is essential for companies to control their spending on

energy. Therefore, many companies monitor their energy usage

on a more detailed level than most private customers. Compa-

nies have successfully reduced their energy consumption, for

example, by 58% in the Aluminum industry since 1975 [7].

In the private household sector, a study by the US department

for energy showed that simple monitoring energy consumption

on in-home displays leads to different consumer behavior [8].

The study showed that 71% of private households changed

their energy usage behavior – even if the initial savings only

range from 4 to 15% [9]–[11], reported to stagnate at 7.8%

on the medium-term [12]. With the increasing number of

installed smart meters, private households are expected to

monitor their energy consumption on a more frequent basis,

leading to an increasing amount of computing power to satisfy

the consumers’ service needs. Summarizing, it is essential for

both energy consumer groups to better understand their own

energy consumption behavior.

This article considers pattern detection on energy consump-

tion data. The deployment of pattern detection has the potential

to help both, energy providers and energy consumers in their

adaptation to the changing energy landscape. Providers can

use energy consumption pattern classification to predict up-

coming energy usage early on. Pattern detection is particularly

useful towards such goals because very often, energy usage

is highly regular (e.g., the energy consumption pattern of a

manufacturing device). Once the (partial) energy consumption

pattern is classified, an already known energy usage pattern of

the same class can be used for early energy usage prediction.

Energy consumers can use pattern detection to classify their

existing energy footprint. Such classification could directly

result in savings, for example, by identifying which high-

energy consuming patterns occur at high energy price times

and subsequently move them to low price times.

Pattern detection on energy consumption data is a big



416

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data challenge by its nature. Additionally, there is a partic-

ular focus on real-time data with energy consumption data.

The reason for this is the Advanced Metering Infrastructure

(AMI) [13] which provides large amounts of real-time data

on energy consumption. Processing and storing this data is a

challenge in itself – running complex analyses on such real-

time data was infeasible with regards to the business value

until recently. However, with state-of-the-art infrastructure,

such as in-memory technology [14], analytics on large, real-

time data is now possible. In-memory technology is therefore

a perfect match for implementing pattern detection on energy

consumption data.

In short, the contribution of this article is as follows. Using

an implementation of in-memory technology [15] as a key

component of a monitor, record and analyze environment

for energy consumption data, the computational feasibility

of energy consumption pattern classification for various use

cases is assessed. Extensive experiments show that pattern

detection is not only computationally feasible, but also fast

and accurate. Classic machine-learning algorithms as well

as a purpose-built algorithm (so-called Inter Quartile Range

Coverage) for pattern detection are used. Our experiments use

real-world energy consumption traces, which were collected

for this purpose and published jointly with this article.

This article extends our previous work [1]. Large sections

of the original paper were re-written for improved exposition.

Additional detail on the data of the experiments is given

and the consumption data used in the experiments is pub-

lished [16]. The main change consists of a more comprehen-

sive experimental evaluation.

The remainder of this article is essentially organized into

two parts. In the first part, the foundation for the extensive ex-

perimental evaluation that makes up the second part is consid-

ered. When considering the foundations for the experiments,

Section III presents the used pattern classification methods.

Section IV describes the data on which the experiments are

conducted. The data collection process by our monitor, record

and analyze infrastructure is described and we comment on

some characteristics of the data. In the second part consisting

of Section V, the pattern recognition algorithms are evaluated

in a series of experiments. The conclusion and an outlook

on future work are presented in Section VI. We begin with

discussing related work and technological foundations next.

II. BACKGROUND: RELATED WORK AND

TECHNOLOGICAL FOUNDATIONS

In this section, we discuss the background of this article,

in particular work related to our research and we describe

the technological and infrastructural aspects leading to our

decision of using components of in-memory technology as the

technological foundation for our work.

A. Related Work

The presentation of work related to this article is structured

along the information flow in our experimental set-up, i.e.,

along the three steps monitoring, recording and analysis. First,

energy consumption monitoring and then energy consumption

recording infrastructure is discussed, followed by reports on

literature on the usage of such information via advanced

analytics on such data.

For the considered scenario, smart meters and, more gen-

erally speaking, smart grids are fundamental. They are con-

sidered to be the continuation of the classical power grid in

the information age [4]. In order to avoid different conflicting

standards amongst its participant countries, the European

Union has instantiated the Smart Meter Coordination Group

(SMCG) [17]. In this context, the OPENmeter project has pro-

posed the AMI to be used for the smart grid [18]. Additionally,

the Open Metering System has proposed a standard for com-

munication between metering utilities that is independent of

the metering devices’ manufacturer. Open Metering Systems

collaborates with SMCG and also assumes the AMI [17], [19].

Our experimental architecture to monitor and collect energy

consumption data in Section IV is similar to the AMI.

Smart meter data will typically be stored in some database.

For a number of years, in-memory databases and in particu-

lar the so-called in-memory technology, which makes heavy

use of column-oriented in-memory databases, have received

considerable attention in the literature [1], [14], [20], [21].

In-memory technology can be used to access smart meter

data quickly, even though formerly, a column-oriented data

layout was perceived not to be well suited for write-intensive

workloads originating from a smart grid. To enable the han-

dling of write-intensive workloads as they occur within an

AMI, column-oriented in-memory databases use techniques

like write-optimized differential buffers and bulk loading [20],

[22]. Such techniques have proved that column-oriented in-

memory databases are also useful in write-intensive workloads.

Apart from storing and providing access to data, in-memory

databases have been shown to provide additional benefits:

a recent trend in the literature is the usage of in-memory

technology for advanced analytical scenarios [4], [23], [24].

The present article extends this line of work.

Once stored in a database, collected smart meter data can be

used for various use cases. Optimizing consumer contracts [25]

and charging [4] are examples.

Another use case is prediction of energy consumption. Pre-

dicting the energy consumption for medium and shorter terms

has been done for example with SVMs, e.g., [26], and artificial

intelligence approaches such as neural networks [27], [28].

Further related work has focussed on comparing different al-

gorithms for efficient pattern matching over event streams [29].

The general literature on machine learning algorithms is very

rich. SVMs are discussed, for example, in [30], [31]. Duan

and Keerthi discuss various multi-class implementations of

SVMs [32]. Shakhnarovich et al. provide an overview of

theory and application of the knn algorithm [33].

This article is set apart from existing approaches by two

novel aspects. First, it considers algorithms that were pre-

viously not discussed in conjunction with in-memory tech-

nology. Second, a new and relevant use-case for in-memory

technology is considered: energy consumption pattern detec-
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tion. We are not aware of other approaches in the literature

that combine machine learning algorithms with in-memory

technology for energy consumption pattern detection.

B. Aspects of In-Memory Technology

Utility companies store their data within relational databases

in so-called utility systems. The database as the single source

of truth within the central system is a logical entry point for

implementing new applications that work on real-time energy

data like the pattern matching algorithms proposed in this

article. In initial experiments, we found that conventional,

row-oriented and disk-based database systems could not fulfill

the interactive performance needs of our industry-scale sized

scenario. This is due to the pure size of the collected data

(471 million tuples in the database, including 27 million of

the appliance used for the experiments). A disk-based column

store like Sybase IQ [34], [35] or HP Vertica [36] would

have presented a much better fit based on the analytical style

queries needed for realising the scenario of interest of this

article. These databases provide the usage of an relational

model as presented in Section IV-A2, while reducing the

required amount of storage space and hard disk seek times

by using columnar storage layout and dictionary encoding. As

an additional requirement, we want to run the database queries

on real-time data with an ongoing stream of new data inputs

into the database. This is the main reason for choosing SAP

HANA [15] as the database engine because it provides storage

space and combines analytical query optimized columnar

layout with the insert performance of row-oriented, in-memory

databases [20]. Despite the fact that SAP HANA is an in-

memory database, data is stored persistently using database

logging techniques, e.g., [37].

All algorithms rely on in-memory technology, in particular

the in-memory database engine, for managing the in- and

output of data. While all collected smart meter readings are

stored within the database, the presented algorithms only

need to operate on a pre-aggregated subset of the data. They

compare the time series energy consumption data against a

global repository of energy patterns. Therefore, the database

has to select the corresponding data sets of a certain smart

meter, aggregate the data onto a certain granularity level

and present the data to the algorithm. Naturally, this step is

included in each execution of the algorithms.

III. PATTERN RECOGNITION ALGORITHMS

The field of pattern recognition studies the automatic dis-

covery of similarities in data by using machine learning tech-

niques. Pattern matching can be used for regression analysis

and classification [30]. Regression analysis fits a function on

a set of data points with the goal to extrapolate this data set.

The task in classification is to decide whether a data point

belongs to a certain class (or not). In this article, focus is on

classification.

Supervised learning methods are used in the following. Con-

trary to un-supervised learning methods, a (mostly) correctly

classified training set of data points is given [38]. The goal is

to match time series consisting of energy consumption points

to energy consumption classes. A classifier gets trained on the

training data and is later on used to to classify time series that

are not contained in the training set.

More formally, for an input vector ~x, a classifier y that

correctly classifies ~x into its class C is build. The existence

of K classes is assumed. Supervised learning uses a learning

phase, where it is given a set of training vectors X with the

corresponding classes. The goal of the learning phase is to

construct a (hopefully robust) classifier y that minimizes the

classification error on the training set.

We selected the following three implemented pattern match-

ing algorithms for a more detailed presentation: Inter-Quartile

Range Coverage, a multi class support vector machine, and a

k-nearest neighbor algorithm.

A. Inter-Quartile Range Coverage (IQRC)

The IQRC pattern matching algorithm was specifically

implemented for our scenario to classify recorded patterns.

Given a set of training vectors Xk with |Xk| = n that

belong to the same class Ck, the upper and lower quartile for

each component of each ~x ∈ Xk, ~x ∈ R
d are calculated.

For simplicity of notation, n is assumed to be an even

number divisible by 4. The range between the upper and lower

quartile is called inter-quartile range (IQR). For each class, d
IQRs based on the training vectors are calculated, one for

each component. More formally, let us define ~vki as a non-

decreasingly ordered sequence containing all n values from

the training vectors Xk for component i. The element j is

denoted by writing (~vki )j . So, (~vki )n/2 is the median of the

sequence~vki . We define IQR(~vki ) = [Q1(~v
k
i ), Q3(~v

k
i )], where

Q1(~v
k
i ) = (~vki )n/4 and Q3(~v

k
i ) = (~vki )3n/4.

IQRC is used to classify data as follows. Given a vector ~x,

the number of components of ~x that lie in the IQRs for Ck for

k ∈ {1, . . . ,K} is computed. If a previously set threshold for

class Ck is exceeded, i.e., a set number of components of ~x
lies within the IQRs of a class Ck, ~x is classified as belonging

to Ck. It is possible that IQRC decides that ~x may belong to

more than one class. In order to break such ties, the class is

chosen, in which the threshold has been exceeded the most.

For classes with a high deviation amongst its members, the

IQRs will be larger than for classes with a small deviation. In

order to account for this, the weight of a component i lying

in the IQR of a class Ck is set as

1

1 +Q3(~vki )−Q1(~vki )
. (1)

Note that Q3(~v
k
i ) − Q1(~v

k
i ) may equal 0 for certain com-

ponents i. With the weight as defined in (1), we rate those

components that lie in smaller IQRs higher than values that

lie in a greater IQRs.

The classifier y for IQRC is then formalized as follows. Let

δ(k) denote the threshold of class Ck.

We have
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y(~x) = argmax
k∈K

(

(

∑

i∈I

w(~xi, ~v
k
i )

)

− δ(k)

)

where w(~xi, ~v
k
i ) =

{

1
1+Q3(~vk

i
)−Q1(~vk

i
)
, if ~xi ∈ IQR(~vki ),

0, else.

Recall that if more than one class has an IQRC above the

threshold, the class for which the threshold is exceeded the

most gets chosen. For a relatively high overlap among the

classes, it is challenging to identify a threshold that is exceeded

by all positive but by none of the negative examples. In the

training phase of our algorithm, therefore δ(k) must be chosen

carefully for k ∈ K . We propose a modified hill climbing

algorithm [39] in the following. The optimization goal is to

maximize the number of true positives, while false positives

should be minimized.

Initially, the threshold for each class is determined such

that none of the training patterns are classified. Furthermore,

the classes are ordered by the size of the corresponding

training sets non-increasingly. We start to decrement the first

threshold as long as the number of correctly classified training

vectors increases. If no further increase occurs, this threshold

is then fixed for the class. We continue with the next class

to decrement the threshold as long as the number of correctly

classified training vectors increases. This step is repeated until

all classes were considered. After processing all classes, a

new iteration over the classes is started. Contrary to the first

iteration, the thresholds of all other products can be assumed to

be at a reasonably good value. The iterations over all products

are continued until, for one entire iteration over all products,

the number of correctly classified vectors does not improve.

In our scenario, this typically happens after four iterations.

To place less burden on the choice of the threshold for

correct classification, it would also be interesting to consider

another variant of IQRC where proximity to the median is

weighted additionally. We leave this idea for future work.

B. Multi-Class Support Vector Machine

We also consider classification by Support Vector Ma-

chines (SVMs) [31]. SVMs offer binary classification. In

our scenario, we aim at classification into K classes, with

K > 2 typically. The most common approach to extend

SVMs for such multi-class classification is the one-versus-all

approach [32] which we refer to as MCSVM. In the training

phase where we have K classes C1, . . . , Cn and corresponding

training vectors, we create K binary SVMs, one for each class.

The SVM corresponding to class Ci is trained with all training

vectors from Ci for its first target and with the rest of the

training vectors for the other target.

When classifying a pattern that is not contained in the

training set, this incoming pattern is passed to each SVM.

Ideally, only one SVM detects a positive result. If there is more

than one SVM classifying the input as Ci, then the one with

the largest result vector is used. If there is no SVM classifying

the input as Ci, the one with the smallest negative result vector

is chosen. Assuming K classes, this approach needs to test K
SVMs.

C. K-Nearest Neighbor

When looking at our energy consumption data, we noticed

that the energy consumption patterns have a considerable

variance, even if they belong to the same class. Clustering

energy consumption patterns into their corresponding classes

leads to rather big and possibly even overlapping clusters.

Therefore, we also consider classifying an energy consumption

pattern by looking for the pattern that is most closely related to

the pattern to be classified. The intuition for this is as follows.

In a subspace with many energy consumption patterns of class

C1, a pattern of class C2 varying from the others might still

be identified as one that more closely resembles the input

and should therefore be chosen. This is what the k-nearest

neighbor algorithm does. In the following, we refer to this

algorithm as the knn algorithm. In our case, it suffices to set k

to 1. Given an input vector to be classified, the knn classifier

returns the class of the training set element for which the

distance is minimal [33]. For simplicity and the fact that our

vectors represent continuous variables, we use the Euclidian

distance as metric.

An advantage of the knn algorithm is the potential for

speed-up by parallelization. Also, there is no computationally

expensive learning phase required.

IV. SMART METER DATA

The evaluation of the algorithms described in Section III

requires an appropriate data set. While some smart meter data

is publicly available, e.g., [40], such data sets are typically

too small to be useful in experiments on industry-scale data,

which are the focus of this article. Since we also did not want

to rely on artificially generated data for our experiments, we

decided to record smart metering energy consumption data

ourselves. In this section, we describe the experimental set-up

for collecting the energy consumption data. We also describe

some characteristics of the energy consumption data and the

used data model. We decided to make the energy consumption

of the used appliance data publicly available [16], in order

to, hopefully, facilitate future research in the area of energy

pattern classification.

A. Data Collection

Recording real-world energy consumption data presents a

challenge in itself [19]. We responded to this challenge by set-

ting up the following experimental environment. We monitored

all electric energy consuming devices inside a shared space

of our research group and recorded their energy consumption

over a period of three months.

1) Monitoring: The electric devices that we monitored rep-

resent a subset of the major devices in households: television

and home entertainment components, regular illumination,

IT components, two fridges and a coffee machine. In our

experiment, we measure all devices independently.
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Figure 1. FMC Illustration of Advanced Metering Infrastructure, as defined in [13].

With the costs of self-measuring devices in mind, we

decided to use an Emerson Network Power Rack Power Dis-

tribution Unit (PDU) with a Liebert MPX control module [41]

for monitoring the energy consumption. This PDU is capable

of measuring energy data for each connected device indepen-

dently, e.g., power, voltage, current and rating. The measuring

accuracy of the PDU is ±10%. Throughout our experiments,

we will use the consumption data of the coffee machine for

pattern detection purposes. From our collected data, we chose

the coffee machine because it presents the toughest challenges

for our algorithms. For example, energy consumption varies

depending on the coffee being made whereas the energy

consumption of a fridge does not vary as much. Both, private

households and industry have started to adapt smart meters in

order to monitor energy consumption [42]. We expect smart

meter to become more prevalent in the future.

2) Recording: For the recording of the energy consumption

of the devices, we created an AMI-like multi-level architec-

ture [19], where the energy consumption readings of devices

are transmitted via a concentrator component to a central

system. In our case, we chose an in-memory database as

this central system. This architecture closely resembles the

AMI that is expected to be applied for collecting energy

consumption data within the power grid of the future. We

depict the AMI in Figure 1.

Figure 2 contains a schematic view of our recording infras-

tructure. The PDU itself is connected to a local area network

and data is retrieved using the Simple Network Management

Protocol.

The data collector queries the PDU in average once per

second to collect the data for each device. Based on these

Table I
SCHEMA OF THE TABLES USED FOR PREDICTION.

DEVICE_READINGS

DEVICE_ID INTEGER
DATETIME INTEGER
CONSUMPTION FLOAT

PATTERN_RECOGNITION

DATETIME INTEGER
CONSUMPTION FLOAT
PRODUCT FLOAT

physical measurements, we calculate the power consumption.

Finally, we transfer the energy consumption data into the in-

memory database. The resulting transmission interval from

PDU to database is between 0.5 and 2 seconds depending

on the current traffic on our local Ethernet network.

We store the collected data in a table called

device_readings. The occurrence of a pattern is

recorded in pattern_recognition. The entire database

schema is depicted in Table I.

B. Training Set

As mentioned in Section III, supervised machine learning

techniques are used for energy pattern detection in our work.

Therefore a set of correctly classified energy consumption

pattern is needed that can be used to train the algorithms.

The classification challenge for the coffee machine is to

detect the type of product that the coffee machine produces,

e.g., cappuccino, hot milk or espresso, based on the energy

consumption. During the beginning of our data monitoring
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and recording phase, users of the coffee machine were asked

to input the type of coffee product they had selected into

a purpose-built application next to the coffee machine. This

classification is stored together with the energy consumption

data and thus creates a training set for our supervised machine

learning algorithms.

Before using this data as a training set for the algorithms, a

simple data cleansing algorithm is performed to eliminate en-

ergy consumption patterns that have more than three times the

standard deviation from the other patterns in their class [43].

Tables II summarizes the training set.

Table II
DETAILS ON THE TRAINING SET.

Product Number of %
Occurrences

cappuccino 9 4
cleaning 33 15
single espresso 10 4
double espresso 13 6
single coffe 58 26
double coffee 7 3
latte macchiato 89 39
only milk 7 3

total 226 100

Figure 3 shows quartiles of two selected energy patterns,

latte macchiato and single coffee. We see the difference

between both patterns clearly. However, we note that there

is also a large spread of values in each pattern. A number of

factors may cause this. For example, measuring inaccuracies

by the PDU or coffee-machine inherent reasons such as the

coffee water having varying temperatures. It is this large

spread among the patterns which makes classification such

a challenge.

C. Publicly Available Consumption Data

A condensed energy consumption data of the coffee ma-

chine used in our experiments is now publicly available [16].

We removed most records that correspond to an idle state

Table III
SCHEMA OF PUBLISHED ENERGY DATA.

DEVICE_READINGS

UNIXTIME FLOAT Time in seconds from 01.01.1972
DEVICE_ID INTEGER ID of the device at the PDU
POWER_STATE INTEGER Power state of the output (2=on)
POWER INTEGER Power at the PDU output in W
VOLTAGE FLOAT Voltage at the PDU output in V
AMPERAGE FLOAT Amperage at the PDU output in A
PATTERN INTEGER Identified pattern

of the coffee machine. Table III contains details for the

database schema of [16]. Apart from the energy consumption

details, the data also contains the classification, whenever it

is available. Even though our data comes from a comparably

narrow scenario, we think that more general conclusions based

on this data are possible. First, the data consists of real, noisy

energy consumption. Therefore, it is more appropriate than

randomly generated data. Second, the energy consumption

traces present a considerable variety of patterns as we noted

in Section IV-B. Third, and most important, the sheer size

of the data allows for direct conclusion on the computational

feasibility of energy pattern detection use cases. The original

data set of the coffee machine consists of roughly 27 million

tuples, which correspond to one month history of current smart

meters for roughly 10,000 households.

V. EVALUATION

In this section, we evaluate the algorithms from Section III

on the data presented in Section IV. In our experiments,

we evaluate in-memory technology for different energy con-

sumption pattern detection use-cases such as: computational

feasibility of on-line pattern classification, accuracy of classi-

fication and short-term prediction. Before going into details of

the experiments, we give further details on the experimental

set-up.
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Figure 3. Example Quartile Plots for Coffee Products.

A. Preliminaries

For our experiments, we use a HP ProLiant DL580 G7 series

server that is equipped with four Intel Nehalem X7560 CPUs

and 256 GB main memory. The server runs a 64-bit version

of openSUSE 11.2 (kernel 2.6.31.14). We use an instance

of SAP’s implementation of in-memory technology called

HANA [15]. As mentioned in Section II-B, among HANA’s

features is a column-oriented data layout that is particularly

well suited for analytical workloads. Our implementation uses

the System R [44] interface of the database development ver-

sion. The tight integration of R into HANA is a further reason

for choosing in-memory technology. Our implementations of

knn and MCSVM rely on the rminer package [45].

1) Classification Accuracy Benchmarking: When we

benchmark the classification accuracy of our algorithms, we

divide our training data set into two parts. One set is used

for training the algorithms, while the other set is required for

testing the accuracy by comparing the output classification of

the algorithms with the actual classification.

We use a cross validation technique to achieve reliable

results. The pattern set of each class/product is split into

five parts. Each iteration of the algorithm, uses four parts for

training and one for testing purposes. The overall performance

is calculated by taking the average over all iterations. This

technique is called leave-some-out cross validation [46].

2) Data Features Used for Classification: In order to

classify energy consumption patterns, we use a set of features

of each pattern to run our classification algorithms on. Com-

plementing the raw data for electronic power consumption in

watt hours, we additionally consider the following features

of the gathered data. Let ~x ∈ R
d be an energy-consumption

pattern.

◦ Number of peaks: the number of local maxima in ~x, i.e.,

|{xj : xj−1 < xj ∧ xj > xj+1, 1 < j < d}|.
◦ Greatest Delta: maxi=1,...,d xi −mini=1,...,d xi

◦ Sum:
∑

1≤i≤d xi

◦ Duration: d
◦ Moving Average: a time series ~a ∈ R

d−k with ~ai =
1/k

∑

1≤j≤k xi−j/2 for appropriate i and suitably chosen

k. Within our experiments, k = 4 produced the best results,

reducing the effect of outliers on the local estimate without

over-smoothing the time series.

◦ Histogram: a sequence of occurrences of distinct energy

consumption values ordered non-decreasingly by energy

consumption values.

B. Computational Performance of Real-Time Classification

In the first experiment, the computational feasibility of

classifying energy consumption patterns is evaluated. Compu-

tational speed is important because of the following reasons.

Fast response times of our classifiers are mandatory to enable

close to real-time matching. The faster the response time is,

the earlier the short-term demand can be predicted. This may

have direct monetary consequences. Furthermore, only a fast

classification allows interaction for which the response limit

is 2 seconds [47]. Therefore, queries that are triggered by

real-time classification have to be answered within this time

interval.

Real-time classification is implemented as a background

process that performs classification cycles periodically. When

the coffee machine is idle, one cycle takes about three mil-

liseconds. If the coffee machine is not idle, i.e., is currently

producing, a cycle still takes less than a second. Table IV

shows the cycle times for the different algorithms. It can be

seen that knn is the fastest algorithm, on average as well as

in the worst case. Matching with MCSVM takes about 30%

longer. IQRC needs about twice the time compared to knn.

Overall, our experiments clearly show that all algorithms have

satisfying performance, as they are well below the critical limit

of 2 seconds.

C. Accuracy of Pattern Classification

Our next experiment tests the ability of our algorithms to

classify energy consumption patterns after they have been
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Table IV
COMPUTING TIMES FOR OUR ALGORITHMS FOR REAL-TIME

CLASSIFICATION: AVERAGE AND EXTREME COMPUTING TIMES.

Algorithm Shortest time Longest time Average time
in ms in ms in ms

knn 3 806 9
MCSVM 3 1116 10

IQRC 3 1547 13
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Figure 4. The comparison of three algorithms with different data features.

observed in full. Figure 4 shows the ratios of correctly

classified patterns over all patterns for all data features from

Section V-A2. We refer to this ratio as the hit ratio. We test

IQRC, knn, and MCSVM with these features. We remind the

reader that we use these features additionally to the raw energy

consumption data, i.e., the energy consumption time series

themselves.

For IQRC, we were not able to perform the benchmark

with the histogram feature, because all patterns of one product

result in one histogram. They do not have any deviations or

quartiles. The lower boundary for the matching performance

with eight different products is 12.5% which would be the

accuracy of chance. Recall from Section IV that the PDU,

which was used for measuring the consumption data, has an

accuracy of ±10% for its measurements [41].

As we can see in Figure 4, the composite feature moving

average performs almost equally well across all algorithms

and outperforms by far all other features. We think that the

smoothing achieved by moving average evens out un-natural

deviations caused by measuring inaccuracies and therefore is

closer to an idealized pattern.

In general, we observe that the richer the feature is, the

more information can be used for classification. This results

in higher hit ratios. Comparably simple features perform

significantly worse than richer ones. They even seem to disturb

the classification. Note that the histogram feature could only

be implemented for knn and MCSVM. Though the histogram

leads to a slightly better classification than other features, it

is still noticeably worse than composite features. The reason

is that the measured values hardly differ in size, because the

histogram has a lot of different values with low frequencies.

If we compare the algorithms against each other, we notice

that knn performs slightly better than the other two. It performs

about 5 to 10% better than the other algorithms in all features

except for the greatest delta and sum feature. For moving av-

erage, the IQRC algorithm has the same hit ratio as MCSVM.

Nonetheless, IQRC outperforms MCSVM slightly considering

the number of peaks and duration features. MCSVM on the

other hand has the strongest results for the greatest delta

and sum criteria. The implementation of MCSVM using one-

versus-all is susceptible to mis-classification if all machines

calculate a negative result [48]. Due to the high deviation

amongst patterns in our scenario, this case occurs more often.

Therefore, the overall accuracy of MCSVM is not as we

initially had hoped for. However, due to the high deviation

among energy consumption patterns, the hit ratio seems to be

overall satisfactory.

D. Computational Performance of Bulk Pattern Recognition

Next, we analyze the computational feasibility with respect

to computing times for bulk pattern recognition, where we

compare the complete history of the energy consumption data

with a set of defined patterns. This scenario is interesting for

both the industrial and the private sector, because one could

gain an in-depth understanding of the underlying mechanisms

of energy consumption behavior. Having classified the energy

consumption history allows analyses such as: how much

energy was spent on which product/device, or which devices

are primarily used during times of highest energy prices.

Similar to the experiment in Section V-B, computing times

are a critical factor to allow human interaction. However, due

to the much larger amount of historical data (versus the live

data in Section V-B), computing times will necessarily be

significantly higher.

In our experiment, we calculated the average time for one

cycle in the algorithm over multiple hours of operation. When

we repeat the measurement for the different algorithms, we

measure the same time slots on different days. We define one

cycle as querying the database for new data plus the time used

for matching given there is a pattern detected. Note that we

also use energy consumption data that is not contained in the

training set for this experiment. Due to the large amount of

data involved, the use of an in-memory database is mandatory

to allow reasonable computation times. For our experiments,

accessing the largest set of data takes a few seconds.

Figure 5 shows the execution times of the MCSVM

algorithm, depending on the number of readings in the

device_readings table for different numbers of used

cores (we shall comment on the number of cores further be-

low). We chose this algorithm for our experiment because the

MCSVM’s computational performance is roughly an average

of the other algorithms as the experiment in Section V-B

showed. The values in Figure 5 represent the averages of

ten measurements with a standard deviation of 11%. One

reason for the comparatively large deviation in computing

times comes from the fact that during our experiments, energy
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consumption data was still being loaded into the database

system. We did not stop the loading in order to guarantee

more realistic experimental settings.

This experiment shows that the computation time for bulk

matching grows linearly in the number of records. Note that

both axes have a log-scale. This is particularly pronounced

for more than 1000 records. Based on this and the low

total computing times, we conclude that bulk matching is

computationally feasible for data set sizes that match smart

grid use cases as we commented in Section IV-C.

In Table V, we give the results of the bulk pattern classifi-

cation. We do not give statistics on the accuracy, as we have

already commented on this in Section V-C and we cannot

measure accuracy on unclassified data. However, we note

that the distribution of patterns resembles the training set in

Table II.

In this experiment, we laid a special focus on parallelization.

Note that the rminer package, on which the implementation of

our algorithms is based, does not parallelize its computation.

However, we parallelized the execution of our algorithms by

partitioning the data. Each of the CPUs could then indepen-

dently work on an equally sized fraction of the total values in

the energy consumption data.

We remark that, independent of the degree of parallelization

achieved (measured in the number of used cores in Figure 5),

the computation times grows linearly with the number of

records to be classified. This is expected. Also expected is

a decrease of total running time for a fixed number of records

with an increasing degree of parallelization. Somewhat unex-

pected is that this speed-up is comparably small. We explain

this as follows. According to Ahmdal’s law the speedup is

determined by the serial fraction of the algorithm [49]. In our

case, this fraction is determined by the initialization of the

classifier and the merging of different results for partitions

of the device_readings table. Merging these results for

a total of one million data sets already takes 10 to 20 ms.

Although we tried to parallelize this merge, the increase from

eight to 32 processes even increases the execution time for

less than 200,000 values. The overhead in the merge is not

outrun by the smaller number of device readings which each

process has to analyze. Nevertheless, 32 cores still outperform

eight cores for more than 200,000 readings. With an increasing

number of readings, we expect the gain from executing the

computing expensive operations in parallel to increase further.

Table V
RESULTING PATTERNS FROM BULK PATTERN RECOGNITION.

Product Number of %
Occurences

cappucino 82 2
clean 409 7
single espresso 819 15
double espresso 491 9
single coffee 1719 31
double coffee 82 1
latte macchiato 1801 33
only milk 82 1

total 5485 100
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Figure 5. Comparison of execution times for bulk pattern recognition
depending on the number of reading for different number of CPU cores.

E. Accuracy of Short-Term Energy Consumption Pattern De-

tection

In this experiment, we test the accuracy of classifying

partial energy consumption patterns, i.e., classifying an energy

consumption pattern before it is completed. The motivation

for this experiment is as follows. If a pattern is detected,

subsequent values of patterns from the same class can be

used for predicting the future consumption of a device. The

earlier we correctly classify the energy pattern, the more

useful this classification becomes as the prediction period

becomes longer. However, it is also more difficult to correctly

classify patterns, the shorter they have been observed. This is

because early classification has to be performed on incomplete

energy consumption data and is therefore not as accurate as

classification after the complete consumption. Therefore, we

need to trade-off classification accuracy with point in time of

classification.

Figure 6 shows the accuracy of the knn and MCSVM

algorithm depending on the length of the patterns. If we pass

a pattern with length n, we cut all training patterns down to

that length and apply the algorithms.

We consider a classification rate of 0.5 to be sufficient in

order to speak of successful pattern recognition. There are

eight possible beverages, a success rate bigger than 50% would

be four times better than chance. As we can see, we break the

0.5 accuracy line at approximately 20 seconds. This means

that approximately one third of the pattern is sufficient for

pattern recognition. If we transfer that finding to industrial

manufacturing processes that take multiple hours, the moment

of classification is early enough for utility companies, as it

provides sufficient headroom for trading, e.g., at the EEX spot

market [50].

Since we can classify the energy consumption after twenty

seconds, we can predict the succeeding ten to seventy seconds

using the information from our trained patterns. We consider

this in the next experiment.
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Figure 6. Hit ratio depending on the length of the input vector.

F. Accuracy of Short-Term Energy Consumption Prediction

As a final use case of our pattern matching approach

for energy consumption, we measure prediction accuracy of

energy consumption. Apart from more obvious use cases

where an energy provider could try to buy capacities based

on her predictions, energy consumers could use predictions

for anomaly detection. Whenever we have detected a pattern

and its subsequent values differ considerably from the ones

predicted, this could either mean that we have a pattern that

we have not had in the training set or that something in the

device causing the pattern went abnormally. In both cases,

issuing a warning seems reasonable. Either the training set

needs to be updated or the machine needs to be checked.

We implemented two methods for predicting energy con-

sumption. The first method uses the knn algorithm from

Section III-C as follows. We choose the most closely related

pattern from our training set to the one having been partially

observed. We use this energy consumption pattern from the

training set as a prediction of future values for the current

pattern. The second method uses the MCSVM method from

Section III-B as follows. We start by classifying the observed

pattern using our MCSVM method. Next, we identify a

training pattern within this class with the least Euclidean

distance to our observed pattern. We finally use the values

of the training pattern for the prediction.

When we predict the subsequent consumption of a pattern,

we have to balance prediction accuracy with time of prediction

similar to Section V-E. It is clear that the longer we wait

after a pattern has started, the more accurate we can predict

the rest of the pattern. However, the longer we wait, the

less valuable the prediction becomes. Managing this trade-off

depends highly on the setting, e.g., on an economic cost model,

and must be decided for the concrete use-case. This is shown in

Figure 7. It shows the average prediction accuracy depending

on the time the prediction is made. We measure accuracy

as the absolute difference of the predicted consumption and

the true consumption. This difference is divided by the true
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Figure 7. Accuracy of prediction over length of pattern.

consumption.

Our motivation for using this error measure comes from the

use case of short term energy forecasting by energy providers.

These energy providers could use the total energy consumption

of the short term forecast to decide how much energy they

would need to provide in the next space of time.

Figure 7 shows that after 20 seconds, i.e., after less than

one third of the pattern, we have an average deviation of 25%

between prediction and actual consumption. For other predic-

tion use cases, this value seems to be quite acceptable [23].

After 40 seconds, i.e., less than half of the duration of the

pattern, the deviation falls even below 20%.

Considering that the consumption values of the coffee

machine even under load ranges between 0.1 and 0.8 watt

seconds, a predicted value that only differs by .01 watt

seconds may lead to a deviation of 10%. Therefore we would

have to predict three decimal places correctly to fall below

that number. Recall that the accuracy of the PDU is only

around ±10% which further complicates predictions. In more

advanced scenarios, e.g., for high performance industrial ma-

chines, the consumption is higher than for the coffee machine.

We expect the precision in measuring energy consumption

for industrial use cases to be higher. This may lead to more

accurate predictions because the training set may be better.

VI. CONCLUSION AND FUTURE WORK

In this article, we presented a case study that suggests that

leveraging real-world mass energy consumption data for smart

analytics is computationally feasible. An essential component

for the success of our case study is the deployment of in-

memory technology as implemented in [15]. This in-memory

database handles in-coming, live energy consumption data,

while, at the same time, allowing analytics on the collected

mass data with rapid response times.

As part of the contribution of this article, we make the

energy consumption data that we used in our experiments

public [16]. We think that the following general conclusions

are possible based on the experimental evaluation on our data:
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◦ Our experiments reveal that a number of use cases for

energy consumption data analytics can be handled effec-

tively with in-memory technology. Short-term prediction

of energy consumption based on short-term classification

of energy consumption traces into corresponding patterns

is feasible. This opens up many opportunities both for

energy providers and energy consumers. Energy providers

could use short-term predictions for better trading and

classification for better pricing. Energy consumers could

use short-term predictions for early warning systems and

classification for timing energy consumption better, for

example, in order to reduce maximum energy consumption

levels.

◦ While the length of the pattern is rather short in our

data, our experiments suggest that after about 20 to 30%

of any sufficiently distinct energy consumption trace, it

may be recognized and predicted with sufficient accuracy

independent of its absolute length. We believe that other

energy consumption data sets could be easier to classify

into different patterns since the patterns in our data are

comparably similar.

◦ Classification of large real-world sized data sets is compu-

tationally feasible with in-memory technology. Such clas-

sification allows energy consumers and providers to deeply

analyze and understand existing energy consumption data.

Future work may include evaluating the results on other data

sets. For example, on energy consumption data from different

types of manufacturing machines that produce different and

more diverse energy usage footprints. A further possibility for

future work would be unsupervised machine learning meth-

ods; in particular, benchmarking such unsupervised methods

with the presented supervised methods in terms of accuracy

and computational speed. Such unsupervised methods would

provide useful insights in scenarios where no training data is

available.

Finally, our experiments reveal that the speed of in-memory

technology-based energy consumption pattern detection is

such that machine-human interaction is possible, thus allowing

a combination of human insight with machine learning algo-

rithms. Enabling this human-machine interaction for energy

consumption classification and prediction would be a most

interesting avenue for future work.
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