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Abstract— Semantic nets are a universal information structure 

that can be used for representing nearly any kind of 

information. This is why the semantic web has also chosen to 

use them as the universal format for representing data, usually 

using RDF (Resource Description Framework) as the syntax. 

Semantic nets are also suitable for sharing information 

between different domains, organizations, manufacturers etc. 

In this paper, we describe how a semantic net and agent-based 

shared storage called Smart-M3 has been implemented and 

can be used for such information sharing. The particular 

application domain studied is building automation, where 

interoperability between equipment made by different 

manufacturers is rare. This is a great challenge for 

implementing "ubiquitously smart buildings", where building 

automation systems, user interfaces and services could 

interact. The paper describes how the Smart-M3 concept can 

be used as an enabler of interoperability, where an ecosystem 

of supplementary services is created through manufacturer-

agnostic agents. 

Keywords - Smart Buildings, Smart-M3, semantic net, 

ontologies, software agents. 

I.  INTRODUCTION 

Creating smart buildings and smart environments in 
general has been a topic of research and development for a 
long time. However, such environments are still largely 
found only in experimental or pilot environments despite 
their potential to make people's lives easier, reduce energy 
consumption and environmental footprint, as well as 
improve the quality of life in general. In this paper, we 
describe a distributed information architecture that makes it 
possible to implement such smart environments on a large 
scale by integrating information access to and control of 
different building automation systems. We also show how 

smart buildings can be created as parts of smart 
environments. 

Building automation is a domain where interoperability is 
a challenge due to conflicting interface and communication 
standards, e.g. KNX, LON, Modbus etc., in addition to a 
great number of prorietary solutions. Solutions to these 
interoperability challenges have been developed e.g. in the 
ongoing DIEM project (Devices and Interoperability 
Ecosystem, http://www.diem.fi) using device and protocol 
adapters that enable unified information access to them all on 
the Internet Protocol level and notably through Service 
Oriented Architecture (SOA) solutions. Such SOA-based 
solutions are good in the case where standards (real or de-
facto) exist for the semantic representation of the 
information. In practice, there is a lack of universal 
standards. Meanwhile there tends to be many potential 
interfaces available developed by different organisations and 
projects, which are not interoperable. This lack of 
compatibility is a major obstacle for creating Smart Spaces 
where humans and devices could interact smoothly [1].  

The Smart Spaces notation is heavily overloaded and has 
been used for describing a wide variety of things. In this 
paper, we use it to signify a geographical space where 
information is available about the space itself, the devices 
and services available in it, the people present in it and about 
other potentially useful information or services. Such a 
Smart Space concept has been initially proposed in [2] as a 
solution to enabling interoperability. As no standards exist 
that would cover the information representation needs of 
such Smart Spaces, we believe an incremental process will 
occur [3]. In the first phase, devices and systems will publish 
their available information and services using their current 
semantic notations (standardized or not). When the 
information becomes available, that makes it possible to 
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create new services that use the information, while 
augmenting it with information about the services 
themselves and information produced by them.  

In the Sedvice/M3 architecture, information is expressed 
as subject-relation-object Triples that build up labeled, 
directed multi-graphs (one or more). In the rest of this paper 
we will call such graphs semantic nets even though graph 
theory and semantic net theory use partially different 
vocabularies and present other potential incompatibilities due 
to their background and history. The Triples are represented 
using Resource Description Framework (RDF) notations. 
Triples are stored and managed by the Semantic Information 
Broker (SIB), which can be distributed over many devices. 
The Smart Space Access Protocol (SSAP) is used for 
performing operations on the semantic net.  

After this introduction, the paper gives a state of the art 
overview of building automation systems, semantic nets and 
Smart Spaces. In Section III we describe the whole system 
architecture and in Section IV we show the current level of 
implementation, followed by conclusions. 

II. BACKGROUND 

Building automation systems and Smart Spaces are 
currently two distinct domains with different technological 
and scientific backgrounds, which is the reason for splitting 
this section. We will provide an overview of the state-of-the-
art for both domains, as well as some background for the 
work reported in this paper. 

A. Building Automation Systems 

Systems integration in buildings has traditionally been 
about physical dimensions, voltage, plug dimensions etc. 
Control mechanisms usually control either one device only 
(e.g. a lamp, a refrigerator etc.) or power supply for security 
reasons (e.g. fuses, main switch etc.). Implementing 
integrated functions such as switching the power off from 
certain appliances, cutting off water supply and activating 
the burglar alarm with one single "leaving home" command 
has required a lot of dedicated cabling and custom devices, 
installed by professionals.  

Different communication standards have been defined in 
order to provide more feasible solutions, such as LON 
(http://www.lonmark.org/), KNX (http://www.knx.org/) and 
ModBus (http://www.modbus.org/). However, none of these 
has become a global standard that all manufacturers would 
support. Many solutions based on these protocols also tend 
to be expensive to install, maintain and upgrade. 
Furthermore, they are not conceived in a way that would 
allow for easy integration between them; in fact, they may 
even on purpose be designed in a way that makes 
interoperability more difficult due to commercial reasons.  

Meanwhile, remote monitoring and control of buildings 
has become a common functionality at least for bigger 
buildings such as shopping centers, office buildings, libraries 
etc. Remote monitoring services are becoming an 
increasingly important part of the business of traditional 
building companies as well as other companies. These 
systems tend to use internet as the information channel 
because it is cheap to set up and use. As people become 

increasingly connected to the internet from their homes, 
internet and the communication protocols associated with it 
have become an interesting option also for building 
automation solutions. The fact that many multimedia devices  
(including mobile phones) integrate internet connectivity by 
default, makes it possible to take systems integration and 
usability to levels that are not possible with "classical" 
building automation systems.  

Figure 1 illustrates how different devices can be 
connected to a "protocol converter" that makes device 
information available through internet protocols. The 
"protocol converter" can be an ordinary computer or a 
cheaper and more energy-efficient solution, such as the 
Home Control Center 
(http://smarthomepartnering.com/cms/) initially proposed by 
Nokia. Device connectivity is implemented through adapters 
that convert the underlying protocols into a generic internet 
interface.  

In practice, a generic internet interface nowadays 
signifies a browser-compatible format (HTML and others) 
for user interfaces and XML messages for machine-readable 
information. For successful machine-to-machine 
communication, the semantics of the XML messages have to 
be understood in the same way by both parties. The currently 
most used method for describing message semantics is XML 
Schemas. In building automation, the oBIX (Open Building 
Information Xchange, http://www.obix.org/) is an example 
of such a protocol. Devices Profile for Web Services 
(DPWS) is another initiative with similar goals. In addition 
to these, more generic messaging protocols exist that are 
intended for communication with any kind of devices (not 
only related to building automation). The PROMISE 
Messaging Interface (PMI) [4] is an example of such an 
interface. The IP for Smart Objects (IPSO) alliance 
(www.ipso-alliance.org) has similar objectives but it is 
unclear whether they have yet specified any messaging 
protocols. In practice, none of these has obtained global 
acceptance.  

There are still technical and functional differences 
between the protocols. Currently, oBIX and PMI are the 
easiest protocols to compare because their specifications are 
readily available. For the moment, oBIX does not support 
real-time events due to the lack of callback functionality, 
which is included in PMI. On the other hand, oBIX is more 
well-known. oBIX is also REST-compliant [5], whereas PMI 
currently lacks the functionality of accessing resources (e.g. 
devices, sensor values etc.) directly via a URL. The lacking 
features would be easy to add both for oBIX and PMI but for 
the moment especially the lacking features in oBIX make it 
hard or impossible to implement some functionality that is 
essential in real-life applications. As a conclusion, no 
universal standard currently exists for representing 
information neither about smart objects in general, nor about 
building automation systems.  
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Figure 1.  Connecting devices to the Internet. 

B. Semantic nets for describing Thing-related information 

Buildings are per definition complex products for which 
an extensive amount of documentation is produced both 
during the design and the manufacturing phases. CAD 
models and other technical information produced during the 
design phase are some of the most essential parts of the 
product information available when the building is taken into 
use. CAD models are a form of semantic networks that 
explicitly model "part-of", "depends-on" and similar 
relationships. The bill-of-materials (BOM) used during 
manufacturing is another important piece of product 
information that can be represented as a semantic network. 
However, the BOM is usually representing product 
information on a product-type or product-variant level rather 
than on a product-item level. The classical BOM is not 
sufficient for managing building product information, where 
each building is an individual product-item, where even the 
parts of the building have individual properties and where 
parts can be changed during the product lifecycle [6].  

Semantic networks represent sets of named relationships 
between different nodes (or objects) in a network. Using a 
collection of pair-wise relations between nodes, where every 
relation may also have an associated "strength", can 
represent a semantic network. Relation strengths are 
particularly useful when semantic networks are used for 
reasoning, e.g. for diagnostic or prognostic purposes as those 
needed in many middle-of-life (MOL), i.e. in-usage 
applications of product items [7].  

Solutions for managing semantic networks in a multi-
organizational context are being developed under the name 
"semantic web".  RDF and Web Ontology Language (OWL) 
are examples of standards being developed for the semantic 
web. Software frameworks also exist that use these 
standards, e.g. Jena (http://jena.sourceforge.net/), OpenRDF 

(http://openrdf.org/) and the Redland RDF Application 
Framework (http://librdf.org/).  

However, RDF and OWL are mainly focused on 
describing web content rather than on describing product 
information. Furthermore, the related software tools are not, 
as such, designed to be used for implementing distributed 
applications. Therefore agent frameworks could be more 
suitable for this purpose. Examples of such agent 
frameworks are ABLE 
(http://www.alphaworks.ibm.com/tech/able) and JADE 
(\http://jade.tilab.com/) that integrate inter-organizational 
communication. In a multi-agent framework, agent 
references correspond to links between nodes of a semantic 
network. Therefore agent frameworks could be used as 
building blocks for a distributed implementation of semantic 
networks for describing product information.   

When using an agent framework with support for data 
analysis and decision support, the nodes themselves can also 
be "intelligent". Especially the data analysis methods 
included in the ABLE framework could be applicable as 
decision support systems. ABLE data analysis and decision 
support agents provide support for many different data 
analysis methods, e.g. naïve Bayes, decision trees and neural 
networks. In addition to these, ABLE agents exist for both 
crisp and fuzzy rules that are useful for explicitly expressing 
expert knowledge.  This portfolio of methods is particularly 
interesting for MOL scenarios that include diagnostics, 
prognostics and condition-based maintenance. ABLE agents 
can be trained both on- and offline and included in different 
software components to perform filtering or decision-making 
on different levels.  

The Design Pattern [8] concept developed in the context 
of Object-Oriented Programming is an example of how 
object relationships, which are conceptually quite identical to 
semantic relations, can be combined with processing in well-
documented ways that are known to be "good" from a 
program design point of view. In the DIALOG software 
platform [9], semantic relations have been used as a way of 
storing product-related information structures, while agents 
implemented the needed information processing in order to 
apply some major Design Patterns to the domain of product 
lifecycle information management [10].  

DIALOG has been used for real-life applications in many 
application domains, such as shipment tracking (inventory 
management, detecting delays, project management), 
building automation (intelligent refrigerator, remote 
monitoring, condition-based maintenance), automotive 
(online tracking and collection of sensor and other data, 
condition-based maintenance) and telecommunications 
(configuration management). There are also ongoing projects 
in the same and new domains. Semantic nets have proven 
their value for storing Thing-related information, while the 
agent concept is a flexible and efficient paradigm for the 
processing of that information. However, DIALOG is 
implemented using "traditional" database and networking 
technologies, which are not initially conceived for semantic 
net and agent-based information processing. Smart-M3 is a 
paradigm and platform developed to overcome those 
limitations. 
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Figure 2.  High-level system architecture and connectivity to external systems. 

C. Semantic Net and Agent-based information processing 

with Smart-M3 

The Smart-M3 system [2][11] consists of a space based 
communication mechanism [12][13] for independent agents. 
The agents communicate implicitly by inserting information 
to the space and querying the information in the space. The 
space is represented by one or more Semantic Information 
Brokers (SIBs), which store the information as an RDF 
graph. The agents can access the space by connecting to any 
of the SIBs making up the space by whatever connectivity 
mechanisms the SIBs offer. Usually, the connection will be 
over some network, and the agents will be running on 
various devices. The information in the space is the union of 
the information contained in the participating SIBs. Thus, the 
agent sees the same information content regardless of the 
SIB to which it is connected. The high-level system 
architecture is shown in Figure 2, which includes the 
distribution routing between SIBs and external interfaces to 
protocols such as NoTA and UPnP from the agents. 

The agents may use five different operations to access the 
information stored in the space: 
Insert: Insert information in the space 
Remove: Remove information from the space 
Update: Atomically update the information, i.e. a 

combination of insert and remove executed 
atomically 

Query: Query for information in the space 
Subscribe: Set up a persistent query in the space; changes 

to the query results are reported to the 
subscriber 

In addition to these access operations there are Join and 
Leave operations. An agent must have joined the space in 
order to access the information in the space. The join and 
leave operations can thus be used to provide access control 
and encrypted sessions, though the exact mechanisms for 
these are still undefined. 

In its basic form the M3 space does not restrict the 
structure or semantics of the information in any way. Thus, 
we do not enforce nor guarantee adherence to any specific 
ontologies, neither do we provide any complex reasoning

1
 

[14][15]. Furthermore, information consistency is not 
guaranteed. The agents accessing the space are free to 
interpret the information in whatever way they want. 

We are planning to provide, though, a mechanism to 
attach agents directly to the SIBs. These agents have a more 
powerful interface to access the information and can be e.g. 
guaranteed exclusive access to the information for series of 
operations. Such agents may perform more complex 
reasoning, for example ontology repair or translation 
between different ontologies. However, they may not join 
any other spaces but are fixed to a single SIB and thus a 
single space.  

                                                           
1
 The current implementation of the concept understands 

the owl:sameAs concept 
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The M3 spaces are of local and dynamic nature, in 
contrast to semantic web which embodies Tim Berners-Lee's 
idea of semantic web [16] as a "giant global graph". We 
envision that the spaces will store very dynamic context 
information, which poses different challenges than the 
internet-wide semantic web. For example, in order to provide 
a true interoperability for local ubiquitous agents, the space 
(i.e. SIBs) will have to provide a multitude of connectivity 
options in addition to http: plain TCP/IP, NoTA [17], 
Bluetooth, RFID [18]. Furthermore, the space should be 
fairly responsive. While we do not aim for real-time or near 
real-time systems, we think response times need to remain 
within seconds in order to be acceptable.  

The responsiveness is one of the factors behind the 
fundamental decision to not enforce any specific ontologies 
and allowing the agents to interpret the information freely, as 
it lessens the computational burden of the infrastructure. 
Another, and more important reason is that we explicitly 
want to allow mashing up information from different 
domains in whatever way the agents see best. Strict ontology 
enforcement would make this kind of activity extremely 
difficult as all new ways of mashing up the information 
would require approval from some ontology governance 
committee. However, we still plan to provide means for 
ontology enforcement for cases where the space provider 
explicitly wishes to restrict the ways the information is. Such 
situations will occur in reality where such enforcement is the 
best approach. 

The information content in a M3 space may be 
distributed over several SIBs. The distribution mechanism 
assumes that the set of SIBs forming a M3 space are totally 
routable but not necessarily totally connected. The 
information content that the agents see is the same regardless 
of the SIB where they are connected [19]. Distribution may 
also occur between first order space interaction as described 
in [20]. 

Security is provided firstly as an effect of the localised 
nature of spaces coupled with the agent-join mechanisms. 
Within the space there is need for a more sophisticated 
policy mechanism to regulate access, update and the trust of 
the information at both individual triple and larger RDF 
graph structure levels [21]. 

D. Applications in M3 Spaces 

The notion of application in M3 space differs radically 
from the traditional notion of a monolithic application. 
Rather, as a long term vision, we see the applications as 
possible scenarios which are enabled by certain sets of 
agents [22][23][24]. Thus, we do not see an email 
application running in M3 space, but we could have a 
collection of distributed agents present which allow for 
sending, receiving, composing and reading email. Figure 3 
pictorially depicts the relationship between the user, her 
agents and, in this case, one space, while Figure 4 shows the 
user (via agents) interacting with many spaces. 

 

 
Figure 3.  A User's Agents, Devices, Spaces and Information. 

 
Figure 4.  A User and Multiple Spaces 

For this kind of scenario based notion of application, we 
also would like to know whether the available agents can 
successfully execute the scenario. The envisioned model of 
using this system is that the user has a set of agents which 
are capable of executing certain scenarios. If a user needs to 
perform a new scenario that the current set of agents are not 
capable of executing, she could go and find a suitable agent 
from some directory by describing the desired scenario and 
the agents she already has.  

Thus, we need some formal or semi-formal way of 
describing agent behavior both with respect to the M3 space 
and to the environment. While there exists research 
addressing behavior in multi-agent systems, for example by 
Herlea, Jonker, Treur and Wijngaards [25], this kind of ad-
hoc assembly of agents in order to execute a certain scenario 
seems to be quite unaddressed in current research. However, 
slightly similar problems have been addressed in e.g. web 
service orchestration research [26], but these still seem to 
concentrate on design-time analysis rather than run-time 
analysis.  As for shorter term, our vision is that sets of 
existing applications would be enhanced by being able to 
interoperate and thus allow execution of (automatic) 
scenarios that would have been impossible or required 
extensive work to implement without the M3 approach. 

III. BULDING SPACE AND SERVICES IT CAN PROVIDE 

Despite the lack of universally accepted ontologies for 
representing information related to buildings and the systems 
found in them, the application domain still presents some 
advantages [27]. It is possible to identify a common name for 
some key concepts, such as "temperature" and "humidity".  
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Figure 5.  Example of an Ontology (Schema). 

When it comes to the CO2 level it already becomes more 
difficult to agree on a common name. There may also be 
several different sensors of the same type. For instance, a 
ventilation machine with heat recovery would normally have 
at least four temperature sensors that need to be named. Still, 
the number of manufacturers of such machines is typically 
not too big (less than ten in Finland) so even though all 
manufacturers would choose their own names for those 
sensors, it could still remain manageable. We also believe 
that as equipment manufacturers start publishing information 
in the smart space and there are services built upon that 
information, there may also be more incentive for the 
manufacturers to start using common ontologies such as the 
simple example in Figure 5 written in a UML or Entity-
Relationship style notation. Another approach could be to 
use "forced semantics" [28] implemented by "translation 
agents" that would automatically translate information from 
one ontology to another [29].  

Figure 6 shows an example of a small semantic net [30] 
expressed as an RDF graph for representing sensor values 
from three different temperature sensors, of which two are 
located in the same room. This graph satisfies the ontology 
given in Figure 5, where the reader should be able to figure 
out the names of relationships (other than object typing) 
which are not shown for clarity.  

This limited net also illustrates some basic processing 
needs, implemented by agents. In Figure 6, sensor ts3 has 
produced three temperature readings, which is the beginning 
of a reading history. With an increasing number of sensors 
that may store historical information in the space, it becomes 
necessary to at least implement cleaning agents who take 
care of removing expired information or removing the "least 
useful" information if memory is filling up. To avoid losing 
too much information when cleaning, summarization agents 
become essential. Summarization agents will keep track of 
minimum, maximum, running average etc. values even after 
the cleaning agents have removed the original values.  

 

 
Figure 6.  Example of partial semantic net for a home with several 

temperature sensors. 

Using Figure 6 we can write queries across this graph to 
obtain readings such as those described above. We nominally 
use here a graph traversal language such as WQL [31] or 
XPath - M3 specifically supports WQL at this time and a 
SPARQL parser is being developed. 

Given a specific temperature sensor (ts2), the query to 
obtain the current temperature would take the pseudo-code 
form: 

ts2 | readings.filter( 

 latest(timestamp). 

 temperature 

Given a specfic room, the average temperature would 
take the form: 

Room | ( location-1.readings. 

temperature.asBag() )  

/ size(location-1.readings) 

where the suffix -1 denotes inverse traversal of a link and 

the functions latest(), asBag(), and size() take 
their common sense meanings when working with sets (or 
bags) of values. 

Figure 6 also shows the alarm event alarm_nn in the 
space as an example of how to handle anomaly detection. A 
sensor consistency check agent notices an abnormally great 
value difference for sensors ts1 and ts2 that are in the same 
room. The presence of a new alarm event can be detected by 
a user notification agent that takes care of notifying the user 
about the situation. The user can then take the appropriate 
action, after which the alarm event is removed manually or 
automatically when the anomaly is no longer present. 

It is quite easy to imagine a great number of other 
functionality that agents could implement based on the 
information in the space. Such functionality could be 
deciding on the target temperature in a room based on some 
"voting" rule, automatically telling the coffee and tea making 
machines how many people prefer which one, automatic 
agreement of the next appointment based on the calendar 
information available from participants in a meeting etc. 
However, the implementation of such functionality is more 
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complex than the anomaly detection described previously. It 
is also much less certain to what degree users want to have or 
even accept such functionality. However, the purpose of this 
paper is not to claim that some specific service or 
functionality is useful as such, the objective is rather to show 
that Smart-M3 significantly simplify the creation of such 
services.  

Finally, Smart Spaces as described here are not 
constrained to buildings. They can also cover greater 
geographical areas and be dedicated for other application 
domains. One example of such a domain would be 
publishing weather information collected from private 
weather stations, ventilation machines etc. for improved 
local weather forecasts, thereby improved control of heating 
and cooling in buildings and, as a consequence, improved 
energy-efficiency as a whole. 

IV. IMPLEMENTATION 

The Electrical Building Services Centre of Posintra Oy in 
Porvoo, Finland, develops demonstration solutions as well as 
commercially applicable components for integrated building 
automation. The developed systems should be low-cost, easy 
to use and easy to integrate with existing and new building 
automation systems. Current systems installed both in the 
Centre's demonstration facility  and in real buildings make it 
possible to bridge between the Internet, and a number of 
building automation protocols and proprietary device 
protocols. The software platform is based upon OpenWRT 
(http://www.openwrt.org), a Linux software distribution for 
embedded systems. The platform makes it possible to 
communicate with proprietary building automation 
protocols, and translate the messages to a common format, 
namely oBIX. This makes it possible to network the devices 
together, which previously were isolated from each other 
because of the lack of an universal protocol. The platform 
itself is running on inexpensive consumer grade hardware (a 
wireless router with Universal Serial Bus). Currently 
supported systems include real-time energy metering, data 
collection and control of air handling units, a control unit for 
electrical systems of small buildings, wireless power outlets, 
a consumer-end weather station etc. 

The difference of this approach compared to earlier 
attempts to create a common building automation protocol, is 
that we have a protocol-agnostic approach. Any building 
automation protocol can be integrated to the platform by 
means of adapter software and hardware, and thus we can 
enable any protocol for Internet connectivity. By connecting 
together various building automation protocols, we make it 
possible to combine the functionalities of various 
subsystems, and create new services that would not be 
possible without seamless integration of the subsystems. 
Currently, the subsystems are combined together by the 
oBIX protocol, which makes it possible to build hierarchal 
systems by interconnecting the devices on a local level and 
export the combined information to upper-level systems via 
oBIX as illustrated in Figure 7.  

 

BA 

integration 

platform

Measurement 

information in 

oBIX format Control and data 

acquisition

Sensors
Actuators

User interface

 
Figure 7.  Integration platform makes it possible to control and acquire 

data from building automation systems, and export the data to back-end 

systems. 

Converting data from proprietary protocols to oBIX 
simplifies the creation of traditional Supervisory Control and 
Data Acquistion (SCADA) applications, because the 
SCADA application now needs to understand only one 
protocol, instead of a myriad of protocols. 

However, optimal control of a building's automation 
system also needs information from other sources than the 
various systems located in the building. A simple example is 
to use weather forecast information from a meteorological 
website so that the control system can decide to start heating 
the house during the night (when electricity is cheaper) if the 
weather forecast says the next day will be colder. Including 
this type of information from outside the domain of building 
automation is difficult, if we have to use a building 
automation specific data format like oBIX.  

The Smart-M3 architecture is being integrated to the 
demonstration platform to make it possible to combine 
information from various data sources, and to do automated 
reasoning over it as illustrated in Figure 8. Reasoning agents 
might change over time, or be only temporarily available, 
e.g. if they are located in a visitor's mobile phone, PDA or 
similar. 

 

SIB

Building 

automation 

systems

Reasoning agent

Web services

”’Meetingroom

temperature is 20 C”

”Weather tomorrow: cold”

”Meeting at 0900 hrs”

User1: ”My preferred room 

temperature is 24 C”

”Action: start heating at 0400 hrs,

setpoint 22 C”

User2: ”My preferred room 

temperature is 20 C”

User3: ”My preferred room 

temperature is 22 C”   
Figure 8.      The SIB is an implementation of a data store supporting 

reasoning over cross-domain information. 
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Figure 9.  Case study overview showing an interoperability solution for a simple building automation problem. 

The integration to the SIB is not intended to replace the 
control logic embedded in building automation systems, but 
rather to facilitate using the information from the building 
automation systems together with other information. 

A. Smart-M3 Implemented for Building Automation 

In building automation there are several different 
automated devices which benefit from the knowledge of 
three simple states. These states are "Home", "Away" and 
"Vacation". This state data can be modified by status 
changes in several different system, and this data could be 
requested by any device compatible with the Smart-M3 
stack, running an agent built for this purpose. This simple 
case study was expanded to be configurable to demonstrate 
an additional benefit which could be added by the Smart 
Space approach. Our demonstration scenario requires a home 
state switch, reflecting the global state (i.e. "Home", "Away" 
and "Vacation"), and a heating system. In addition to these 
devices there are two additional parts for enabling 
interoperability: a controller and a configuration tool. In 
addition to the required interoperating components there is 
also a temperature display, and a temperature slider which 
can be configured to correspond to or set the different 
temperatures available from the heater appliance. The 
demonstration application consists of several agents

2
 

representing the functionality of the devices and a user 
interface. A conceptual model is shown in Figure 9. 

All these components contain a proprietary solution, and 
provide only a limited set of services through their agents. 
Additional services could be added to the model, and 
published to the SIB in order for the configuration tool to 
make new rules of interaction. The demonstration 
implementation contains a temperature service concept in 

                                                           
2
 Smart-M3 agents are also called Knowledge Processors. 

addition to the house state concept shown in Figure 9. The 
temperature data service is contained in the Heater, 
Temperature Slider and the display. An example 
configuration is to set the display to show the active 
temperature setting in the heater, but if there was an 
independent temperature sensor it could be configured to 
display its value as well.  

The configuration tool can add and remove 
dependencies, rules and connections by querying the SIB. In 
our scenario the heater and air-conditioning agents can be 
configured to request changes in the State switch value, or 
remove their dependency. The state is indicated by an integer 
value. When configuration has been set up, the configuration 
tool agent can leave the Smart Space, as all the necessary 
data is contained within the ontology in the SIB. 

1) Example Scenario 
All devices in the home connect to the SIB, through their 

respective SIB interfaces, and insert information about 
themselves. This information consists of a user friendly 
name, a list of services it provides and the data which 
describes its state. No automatic configuration about how 
they interact exists at this time. When the configuration tool 
is run, the user is presented with devices registered in the 
SIB, and can then configure rules.  

Rules are interpreted by a controller agent. The controller 
subscribes to changes in the data of the devices. In order to 
catch changes in state of the switch the controller listens to 

new instances of the Event class. This instance contains 
information about what has occurred. When the controller 

receives a new instance of an Event it parses through the 
list of rules, and if there is a matching rule, it will execute the 
rule. In this simple implementation a matching rule will 

create a new instance of the class Invoke and add 
properties to it according to the configured rules. 
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Figure 10.  Overview of the ontology used in the implementation of the 

case study. 

The new Invoke instance is subscribed to by the agent 
representing the service invoked, and can then be used to 
alter the internal state accordingly. 

2) Ontology 
In this use-case we created an ontology containing rules 

for automation, and concepts for expressing house state, and 
temperature. The house state is mapped to an integer value, 
but should more correctly be defined as an enumerated class 
consisting of the three states as individuals 'Home", "Away", 
"Vacation". An overview of the ontology is shown in Figure 
10. In this way the configuration tool could suggest 
potentially interesting counterparts for creating connections 
or rules. The ontology does not contain a complete set of 
concepts for building automation, but merely the concepts 
needed for this specific automation task and demonstration. 
The ontology is expressed in OWL-DL and contains classes, 
data properties and object properties. 

3) Code Generation 
The Python Code Generator was used to generate the 

agent ontology API. We recognized several features which 
would be required in order to create a practical 
implementation of the initial plan of the building automation 
ontology. Updating data in the SIB requires a delete and 
insert query. There is no support for subscribing to changes 
in properties, and thus the implementation uses classes of 

Event and Invoke to register changes. This approach adds 
significant overhead to network utilization. The generated 
API also populates all instance properties depending on 
which class it is loaded from, which could also be changed to 
a populate on demand approach in order to reduce 
unnecessary queries to the SIB, or alternatively it could make 
use of a better query receiving all properties in one message. 
At the moment all properties are queried separately. 

4) Building Automation Configuration Tool 
The tool for creating rules for the controller is a 

command line tool. The configuration tool inserts or removes 

instances of Connection. Typing "?" or "help" provides 
the list of commands and a brief explanation. There are three 

main commands; list, connect and disconnect.  
With the list command a list of registered devices are 

shown. The list also shows rules for the controller, as shown 
in the following listing of configuration tool output: 

 
HomeStateSwitch (addr=17) 

 0 State 

 This three state switch 

  corresponds to the Home, Away,  

  Vacation modes used in  

  heaters etc. 

 Connected to:  

  Heater => State 

 

5) Running the demonstration 
The source code is available from SourceForge 

(www.sourceforge.net), under the name "smart-m3". The 
demonstration is tested only for specific versions of the 
components, but may well work with other versions as well. 
If you are having trouble running the demonstration, please 
consider installing the following versions; Python 2.6.x, 
PyQt v.4.5.4 for Python 2.6 and Nokia SIB revision 98. 
Python is needed because this generated API and the Smart-
M3 Mediator

3
 are written in Python. The Qt library is used 

for the message pump of the persistent agent. The Nokia SIB 
provides the database back-end and connection library for 
the Smart-M3 Mediator. The SIB is also available from 
SourceForge, with installation instructions. To the best of our 
knowledge it does not compile on Windows. 

The agents in the building automation demonstration try 
to connect to a smart space named "x" on 127.0.0.1 at port 
10010 by default, but this can be changed for all agents in 

the file SmartSpaceConf.py. Port 10010 is the default 
for the SIB, but the smart space name must be provided. 

Running python SIB.py x starts a SIB running locally 

at port 10010 with the smart space name x. 
The simplest use-case to run is the HomeStateSwitch and 

the Heater. They have pre-configured addresses of 17 and 7 
respectively. These can be connected by the configuration 
tool using the  following commands: 

 
Command] list 

  HomeStateSwitch (addr=17) 

    0 State 

        Connected to:  

          - 

Command] connect 

Source address: 17 

Source feature: 0 

Destination address: 7 

Destination feature: 0 (State might have 

another number) 

Rule name: TestRule 

 
If these commands have executed correctly the heater 

will output its changing state following the home state 
switch. 

The agents can be started in any order, but the 
configuration tool agent does not find any devices until they 
are started. The suggested order is to run the controller and 
the configuration tool, and then any of the service providing 
devices/agents. Observe that subscriptions to the SIB result 

                                                           
3
 A caching middleware for accessing the SIB. 
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in a TCP timeout if no subscribed data is sent by the SIB 
within a quite short period of time depending on network 
configuration. The Python platform cannot independently set 
TCP keep-alive messages. It is therefore recommended to 
run the demonstration locally. There are some subscriptions 
which are not required after running the configuration tool, 
thus the example might work even after this timeout error. 

The SIB does not clear all data when running the clear 
command, and thus it is recommended to remove the smart 

space file if problems occur. This is done by running quit 

in the SIB command line interface, and then rm x, where x 
is the smart space name, and then running the SIB again 

python SIB.py x. 

6) Lessons learned 
Tool-chain: We used the Application Development Kit, 

ADK, available from SourceForge. The ADK was able to 
generate the Python API from the use-case's OWL ontology 
without problems. It was found that there are several features 
to be implemented into the ADK which would improve this 
building automation use-case. The ADK does not support 
subscriptions to changes in properties. This lead to 
modifications in the ontology in order to use subscription to 
instances instead. An improved ontology API would reduce 

overhead of creating new instances of Event for changes in 
values of the devices and sensors, instead of updating one 
property. 

Smart-M3: The architecture of the interoperability 
package as described is not, in its current form, very well 
suited for building automation. However, it raises interesting 
points about potential cross domain interoperability 
scenarios, which are much easier to implement as a result of 
access to data in a well structured form. By revealing an 
interface to the smart space for programmatically accessing 
features in devices, normally accessed by infrared remote 
controls and proprietary systems, the possibility of 
interoperating between the virtual and the physical world is 
realized. Cross domain implementations can be aided by the 
ADK, by loading several ontologies for a single agent and 
using input data from one domain and translate it into 
another. 

There is significant overhead in communication and 
application size. To the best of our knowledge the current 
SIB implementation does not scale beyond a very modest 
number of devices in a building automation scenario, and 
cannot automatically be distributed over multiple SIBs. The 
workaround to a distributed environment would be to 
implement an agent which moves data between two SIBs. 
We recognize that the overhead is partially due to the ADK 
generated ontology API and this specific implementation. 

Improvement proposals: The implementation could be 
further improved by removing the addressing scheme used 
here. It should not be needed as long as the instances are 
uniquely identifiable. The solution used here is for 
convenience when querying for a specific device, we need 
only an integer value instead of the UUID. The current 
implementation is still inadequate for real building 
automation applications, but demonstrates a working concept 
of connecting features together via the SIB. 

V. CONCLUSIONS 

Buildings are a major context for creating smart 
environments and achieving the goals of Ubiquitous 
Computing, where people could interact seamlessly with 
their everyday environment and where the various devices in 
the environment co-operate in order to achieve some "smart" 
behavior. However, there are still great interoperability 
challenges between systems in the domain of building  
automation due to several competing bus standards and 
proprietary solutions. The paper shows how such issues can 
be solved using device adapters and protocol conversion in 
so called home gateways as illustrated in Fig. 1.  

However, the question of semantic interoperability is not 
solved by home gateways. Semantic interoperability can be 
partially achieved by standards based on e.g. XML Schema 
such as oBIX and PMI but it does not seem probable that 
such standards will achieve a similar global acceptance as 
HTTP and HTML in any near future. Furthermore, those 
standards do not define device-specific semantics, such as 
the names of devices, sensors, alarms etc. In order to 
overcome such limitations, this paper describes an 
information publishing mechanism that does not require any 
pre-defined standard for making the information visible, 
discoverable and usable to others. That also signifies that it 
becomes possible for third-party solution providers, who are 
not themselves manufacturers of building material or 
building automation, to create Smart Space applications. 
Such solution providers can provide agents or agent 
frameworks that implement new functionality. Therefore, 
our goal is to provide an easy to use basic mechanism that 
makes it possible to create an open ecosystem where the set 
of potential applications is open and impossible to predict in 
advance.  

The home gateway solutions described in the paper are 
currently in use in many real buildings and are expected to 
become commercial-level volume products within a year. 
The Smart-M3 implementation described in the paper is 
implemented on a demonstration laboratory level and will 
eventually be tested in real pilot targets. Earlier experiences 
using semantic nets and agents with "classical" tools such as 
the DIALOG platform have shown their power in several 
domains such as shipment tracking, product lifecycle 
management etc. The technical, conceptual and business 
feasibility of Smart-M3 as an enabler of semantic nets and 
agents in the building automation domain still remains to be 
proven. However, the ad hoc data and processing distribution 
mechanisms of Smart-M3 that are conceived also for 
embedded devices, and notably mobile phones, are expected 
to be key enablers of future smart environments where 
buildings, vehicles, public spaces etc. can be accessed and 
used in a uniform way. 
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