
Utilizing Open Content for Higher-Layered Rich Client Applications

Monika Steinberg, Jürgen Brehm
Institute of Systems Engineering - System and Computer Architecture

Hannover, Germany
[steinberg, brehm]@sra.uni-hannover.de

Abstract - Accomplishing user interoperation and standardized
web techniques is a promising mixture to build a next
generation of web applications in the currently arising Social
Semantic Web. Increasing heterogeneous Open Content is an
ongoing trend. Generic concepts for higher-layered reuse of
the arbitrary information overload - mentioning the Internet of
Services - are not covered very well yet. For further, directed
use of distributed services and sources, inquiry, interlinking,
analysis, machine- and human-interpretable representation are
as essential as lightweight user-oriented interoperation and
competency in handling. In the following we introduce the
qKAI application framework (qualifying Knowledge Acquisition
and Inquiry) [1] - a service-oriented, generic and hybrid
approach combining knowledge related offers for convenient
reuse and tweaking them with interaction for improved access.
qKAI aims at closing some residual gaps between the
“sophisticated” Semantic Web and “hands-on” Web 2.0
enabling loose-coupled knowledge and information services
focused on knowledge life cycles, learning aspects and rich user
experience. Overall, in qKAI Open Content is boosted as an
inherent part of higher-layered, lightweight applications in
knowledge and information transfer via standard tasks of
knowledge engineering and augmented user interaction. We
introduce the qKAI hybrid data layer - a minimalistic data
model with maximized depth - implementation results and
some lessons learnt. We discuss the Semantic Web query
language SPARQL critically to enlighten its limitations in
current web application practice. Acquiring resources and
discovering the Web of Data is a massively multithreading part
of the qKAI hybrid data layer which serves as basis for further
knowledge based tasks. Built upon this data layer, social
educational gaming is instanced to simplify interoperation, to
spread knowledge in a handy way and to enhance users’
collaboration with Open Content. Attendance is increased
through game-based, incentive arrangements following Rich
Client paradigms. Long-term objective is to establish Open
Content in information and knowledge transfer as utilized
knowledge base.

Keywords: Open Content; Social Semantic Web; Knowledge
Engineering; Rich Clients.

I. INTRODUCTION

Currently the borders between Semantic Web and Web
2.0 become fluid more and more and let us create new
synergies in the Web 3.0 [2] or also called the Social
Semantic Web. The combination of social user involvement,
employing desktop-alike rich interfaces (RIA [3]), and the
Semantic Web with technologically oriented operability for
data representation and processing is a promising conceptual

basis to solve two pending problems. On the one side, there
is still a lack of lightweight user participation in Semantic
Web contexts because of handling hurdles and missing fancy
interoperation ability. On the other side, there are claims for
less trivial and more unitary content in Web 2.0 contexts.
Currently DBpedia [4] and Freebase [5] start bringing these
efforts together by offering collaborative content collection,
creation, refinement, or semantic interlinking to increase
Open Data that is well interpretable by humans and
machines. Twine [6] is another semantic knowledge-
enhancing platform, but does not offer its content with open
access yet.

Metadata is an important factor for analyzing and
categorizing content. In case of missing metadata, automated
and manual annotations are approved workarounds to get
information about the information while deriving useful
knowledge out of it. Conclusions about information quality
(e.g., provenance, reputation, timeliness, correctness) are
important for further deployment in knowledge transfer
scenarios and can be deduced out of metadata analyses and
further interactive assessment.

We have to develop enjoyable interoperation scenarios
that permit interactive knowledge transfer and learning. We
see facilitating access to Open Data by intuitive learning
interaction concepts as a promising combination to increase
Open Knowledge and to prepare it for further learning
purpose. Knowledge transfer is in contrast to learning a non-
linear process. Learners are able to move free in the created
environment and may decide on their own which learning
order to take. Further on users are embedded and actively
involved to influence learning sequences. Proved learning
concepts have to be active, self-controlled, constructive,
situative and social following successful didactic concerns
[7]. Systematically linear and non-linear learning scenarios
will be realized in the qKAI project [1] to allow different
interaction types like exploring, questioning, answering or
annotating.

Also fundamental are incentive and motivation of the
users to interoperation and collaboration. Next to common
methods for annotating and exploring data, using
questionnaires and data browsers, we see especially
knowledge games as motivating way to implicitly inquire,
analyze and annotate content while knowledge is interceded.
Well-designed gaming flows can impart handling of
suspenseful information in an easy understandable manner to
the user. Open Knowledge, that is well comprehensible for
its users and machine-readable, increases this way. Newly
developed learning interaction services and enriched content
should be tied up with conventional Learning Management

303

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



Systems (LMS) and learning standards (LOM, SCORM,
IMS/QTI [8]).

Obviously, there are many different tasks to perform, to
utilize arbitrary available Open Data for higher-level,
extensible and standardized applications with rich
interoperation for knowledge transfer and learning. Our
research showed that there are several knowledge bases,
services and software components available that are required
for sub tasks of qKAI. Therefore, the challenge is to merge
and expand existing APIs, frameworks, autonomous services
and distributed sources to perform our jobs here. According
to C. Schroth and T. Janner [9] we see the relation of our
needs to service-oriented software design (SOA): “The first
major analogy between product design in the fields of Web
2.0 and SOA is the notion of reusing and composing existing
resources. Both concepts let users reuse, remix, and enrich
existing resources and components to new and potentially
higher-level applications. The second commonness is the
affinity to collaboration and coupling of remote resources or
services. Both Web 2.0 and SOA applications enable the
loose coupling of distant and possibly heterogeneous
resources. A third apparent resemblance between Web 2.0
and SOA is the shared principle of agility and the support of
permanent structural change.” [9]

Long-term objective is to embed different types of
services (atomic, simple and composite services) in qKAI for
systematically utilizing Open Data and enhancing Open
Knowledge. Design concepts from service-oriented and
mediator-wrapper-based information systems [10] are
applied in the system specification of the qKAI framework.
We identified three main service categories and packaged
them in three service bundles as interaction, representation
and discovery manager in a mediation layer (see Figure 2).
To keep the system structure comprehensive and easy
extensible we take a 4-tier-layer concept paired with Rich
Client MVC2 paradigms to structure and model desired
service managers and types.

A. Structure of this contribution

First, we introduce some further background. In Section
2 follows what we see as prerequisite to utilize Open Content
for higher-layered applications. Section 3 gives an overview
of the qKAI application frameworks’ system design. Section
4 offers some more details concerning the qKAI hybrid data
layer as one system level of the 4-tier design. Section 5
shows further services and components, Section 6
exemplifies use cases and further application scenarios. At
least this contribution ends up with a conclusion and future
work in Section 7.

B. Resources and Open Content

Open Content is interpreted in qKAI following the Open
Knowledge specification “Defining the Open in Open Data,
Open Content and Open Information” by the Open
Knowledge Foundation [11]: "A piece of knowledge is open
if you are free to use, reuse, and redistribute it.” qKAI adds
processing differentiation between Open Data, as raw input
information and Open Knowledge, which represents
qualified information – checked or enriched yet. The

semantic Web of Data
(RDF stores and
ontologies) and User
Generated Content
(Wikis, communities,
Blogs) stand by and grow
up in structured,
unstructured and semi-
structured manner.
DBpedia offers an
extensive knowledge
base in RDF format [12]
(generated out of Wikipedia content), allows semantic
browsing and detailed thematic inquiring by applying
SPARQL [13] queries for refinishing and further assignment.

RDF aims at the unique description of entities, their
relations and properties on the internet [14] according to a
standardized schema. These are the resources or “things” if
we talk about the renewed “Internet of Things”. The access
to resources is always carried out using representations. One
resource can have several representations like HTML, RDF,
XML or JSON.

Open, shared databases like Freebase offer a free API to
reuse its content by its own Metaweb query language (MQL)
[5]. Relational databases can be easily converted into the
Web of Data embedding existing components like the D2R
server [15]. Additionally, many unstructured sources like
HTML sites or PDF files do not apply to machine-
interpretable web concepts yet. Serializing this data to
standardized formats with open access is a first step towards
enhanced machine and user interpretability. Aperture [16]
and Virtuoso Spongers [17], for example, enable
comprehensive solutions for these tasks. In case if more text
engineering is needed, there are comprehensive solutions for
standard Natural Language Processing (NLP) tasks (e.g., by
OpenNLP [18]) to perform sentence detection, NER (Named
Entity Recognition), POS (Part-Of-Speech) tagging or even
semantic chunking.

C. Quality of content

Especially, if enabling User Generated Content (UGC)
that is not authored by experts yet for knowledge transfer
scenarios, the question of contents’ quality arises. Therefore,
we developed a three level model to handle different aspects
of quality. Metadata can be seen as a quality feature [19].
The more metadata we are snapping, the better we get to
know the content. There is no absolute quality, but we can
compare resources with each other (Open World
Assumption) and weight them based on the amount and
structure of metainformation. Enrichment of a resource
happens in a corresponding qKAI URI by semantic
interlinking. One example is a domain ranking visualized as
tag clouds to show from which domain we get the most
information right now. First level criteria contain metadata
directly included in a resource like format, timeliness,
author, provenance or language, which can be automatically
detected. Second level criteria are determined through user
interaction, which helps to enhance semantically correctness.
Regarding factual knowledge like “Berlin lies at the Spree”

Figure 1. qKAI conept scheme to
derive knowledge out of Open Data

304

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



or “Hanover is the capital of Lower Saxony”, we see user
rating and ranking following the established Web 2.0 manner
as an effective solution to mark wrong content and to rank
valuable or popular content systematically. Next to this
crowd sourcing community approach, we offer role- and
level-based quality control mechanisms. Lecturers earn
rewards while rating and creating educational resources out
of Open Content; students earn rewards while answering
questions, managing gaming tasks, exploring further content
or ranking their favorites. Gradually content can be qualified
this way. Resources are marked following their quality level
as reviewed, proofed or not yet qualified to enable
embedding in different levels of knowledge transfer and
learning. Third level criteria are inferred employing Natural
Language Processing to detect some more information
hidden inside a resource.

D. Interaction in the Social Semantic Web

We are looking for some innovative interaction to deploy
Open Content for further purpose. The state of the art shows
for example DBpedia mobile [20] that combines Wikipedia
entities with images and places them on a map. At Revyu
[21], we can rate and rank everything. For selection and
requesting Open Data in RDF format there are SPARQL
query tools available. Most of them are not very intuitive but
technical. Altogether, we currently can search, display,
group, edit and annotate content on the web. However,
there is little cumulative advantage and not much incentive
for the user to interact and to deduce new knowledge.

E. Games with a purpose, social and educational gaming

The idea of combining social networking, gaming and
rating is not new. As far as we know, there are no
applications available adding strong focus on knowledge and
learning to it. Available social games do not rely on
standardized Open Content or sustainable concepts. Gaming
content is explicitly and laboratory created manually for
every single game. Generic approaches to build an ongoing
social knowledge network based on available content are still
missing. Embedding gaming into superior learning structures
regarding learning management standards, e-learning
infrastructures and the Internet of services seems to be not
mentioned so far. Different to other gaming approaches
content creation in itself is part of our game-based learning
concept. Players get the ability to change the view of
relevant resources. For example, text and multimedia is
presented as extracted chunks of information or image
having knowledge-snack concepts on mind to enhance
understanding and portioning not to overburden the user.
Text sections out of articles are passed to the user and he has
to guess the context. Sights are presented in detailed zoom
view to let users guess them. Locations have to be placed at
the right position on a map.

Luis van Ahn introduced crowd sourcing to gaming with
ESP game or reCAPTCHA [22]. Guess-the-Google is a
term-guessing game based on Google search results or
images [23]. Scoyo [24] offers a game-based learning
platform for kids, but does not deal with Open Content or
Open Access. All over, there are no generic game-based

learning concepts available regarding web standards and
learning management based on Open Content. Additionally
there are some commercial, social gaming applications like
Playfish, MegaZebra or Zynga [25] with casual character.
They are often embedded into Web 2.0 platforms like
Facebook or MySpace [26] to increase participation.

Open Content is a huge knowledge base, but there are
missing augmented interaction abilities to confront users
with Open Knowledge bit by bit in enjoyable manner
(knowledge-snacks, casual games). We can read Wikipedia
articles or watch some educational videos at e.g., YouTube,
but knowledge-centered approaches reusing available
content in a standardized and generic manner (domain
independent) are still missing. We are looking for
mechanisms that bring more motivation and incentive to the
user while interoperating with Open Content. Therefore, we
chose a game-based learning approach embedding Open
Content in knowledge games. Assessment methods - e.g.,
self-assessment during lectures - to hold students’ attention
integrated in Learning Management Systems (LMS) like
ILIAS [27] showed good evaluation results among the
students and they asked for more quiz-like interaction [28].
About 70 percent of the students did the quizzes by
themselves at home again to repeat the material. Workload to
prepare and realize online assessment and quizzes is very
high – so we are searching for (semi)automated approaches
to generate e.g., question-answer-pairs. Furthermore, the web
offers a lot of information and knowledge available as Wikis,
semantic or geographic data and multimedia.

F. Social Semantic Web behind the scenes

RDF: The Semantic Web, increasingly transcribed as
„Linked Data“ [29] or “the Web of Data”, is supposed to
bring new quality to the internet: What was formerly known
in form of internet pages only to human beings, shall now be
applied to automatic processing. In order to achieve this, the
formerly in continuous text existent data will be classified,
its properties transformed into defined forms and, as their
aggregation, connected through labeled links. The schema of
the „Resource Description Framework“ (RDF) [12] -
developed for this purpose - follows a natural speaking
sentence structure. It consists out of the following
information carrier: The “subject”, “resource” or “node” is
presented as an URI (Unified Resource Identifier) just like
the “predicate” and the “object”. All of them might contain
properties following their description. Properties their self
are typed and if we imagine RDF as a tree, they represent the
leaves. Their type is normally declared like for example the
number 42 is of the type “integer”, but functionally
dependent from its predicate. The relation of the information
carriers is modeled implicitly, always directed and qualified
through the predicate. Instead of speaking about “subject”,
„predicate” and „object” (the object might be a subject as
well), it is more efficient to name them “properties” that are
assigned to resources. Resources are connected in three ways
over relations: As source, target and identifier.

SPARQL: With SPARQL (SPARQL Protocol and RDF
Query Language) [13] a search and query language for RDF
repositories is designed. SPARQL is a W3C specification

305

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



since the beginning of 2008. SPARQL’s syntax is similar to
SQL while columns can be defined to answer requests.
Filtering expressions are possible in SPARQL that are placed
in the WHERE clause in SQL for example. Actually, there is
no efficient functionality to implement full text search yet.
Next to ASK there are no aggregate functions available in
the SPARQL specification at this time. ASK allows only a
true/false statement about whether a request delivers a result
or not. Abandon the special case of an identity, regular
expressions should be used for full text search. Such
expressions do not fit properly to a large amount of data,
because up to now there are no database indices available to
speed up them upon text. That is why every expression has
to be evaluated for any RDF property and all of the
properties have to be fully loaded too. To get more aggregate
functionality next to ASK, many providers implement
additionally, proprietary extensions. This up to now not
standardized extensions use the strength of the traditional,
relational query language SQL and a combination of
SPARQL and SQL. For this reasons also qKAI does not use
SPARQL only. Temporary query results have to be stored
anyway, to allow acceptable performance while requesting
and combining distributed RDF resources. These results are
stored in a relational database – MySQL – and SQL is
utilized for effective, internal data processing (see Section 4).

REST: Representational State Transfer (REST) [30] [31]
is an architectural style - not tied to any particular technology
- although it is used as a guide for designing architectures
following four key constraints: identification of resources
handled by URIs, manipulation of resources through
representations using the HTTP's uniform protocol (GET,
PUT, POST, DELETE), self-descriptive messages and
hypermedia as the engine of application state. REST was
defined by Roy Fielding [30] in his dissertation as an
architectural style he used for foundational Web
specifications - in particular HTTP and URIs. REST offers
important architectural properties to improve reliability,
scalability or simplicity. These properties are often named as
superior to SOAP web services so that we can speak about
REST as a “thin” style SOA alternative. Especially in Web
2.0 applications, REST web services are very popular these
days.

Rich Clients: Regarding today’s browser-based user
interfaces, Rich Clients using especially asynchronous
JavaScript and XML (AJAX) are a wide spread trend. The
aim of Rich Internet Applications (RIA) is to bring desktop-
alike and easy to use interoperation to the Web. Next to
AJAX, Adobe Flash/Flex [32] and Java based User
Interfaces (UI) are technical alternatives. The best technique
to choose depends on the main requirements that have to be
fulfilled [3]. Flash/Flex3 for example offers the advantage of
less scripting work and easier event handling to reach highly
interactive functionality, if the focus lies on multimedia and
design issues. All these Rich Clients can be seen as an
extended and enhanced view in the traditionally Model-
View-Controller (MVC2) concept. Advantages Rich Clients
offer are e.g., faster reaction to user requests with partially
reloads of site parts without refreshing the whole site, less
network traffic and server load as well as offline usage

possibility. A so-called Rich UI Engine delivers the General
User Interface and the presentation logic is divided from
visualization components. RIAs as standalone Web clients
that interact with the server side through web services are a
promising combination. One of the most important
advantages of the Client-Server model is the idea that the
User Interface should be developed independently of the
business logic and data persistence technology. Nevertheless,
to be honest, in today's Web programming practice before
RIA, the UI is in fact tightly coupled with the server-side
technology of choice. If we like to change our backend
functionality for example from Java to PHP we also have to
rework all the scripts generating the HTML UI from *.jsp to
*.php. To avoid this problem we can now choose a Rich
Client communicating over standardized interfaces like web
services only and put the most of the UI logic to client side
to get a real separated solution.

II. HOW TO UTILIZE OPEN CONTENT FOR HIGHER-
LAYERED APPLICATIONS?

In this section, we outline what we see as requisite to turn
Open Content into an organized, useful knowledge base for
higher-level applications. We are aiming at the establishment
of powerful, but by the user easy to handle mechanisms for
acquisition and inquiry of relevant data out of heterogeneous
sources. We have to serialize formats for unitary,
comprehensive analysis and mediation of distributed,
inconsistent content. Mediation means here to utilize input
data for higher layered applications by offering personalized
query plans, transformation, annotation and interoperation.
Open access to knowledge and data in e.g.,
RDF representation brings advantages in interlinking and
easily accessing distributed data on the Web. Data
processing concepts allowing machine- and human-
interpretable staging without storing redundant data
permanently become possible by semantic interlinking.

Information chunking for easy to digest knowledge bits
without losing context information is needed for better
understanding and human-capable representation during
interaction. In qKAI (semi-)automatic extracted information
units represent a piece of information that can be qualified by
annotation and interaction to a knowledge unit – always
aware of its context not to lose information and to allow
effective change management (actuality).

Knowledge life cycle concerns have to be matched with
content cycles of the Read-Write-Web. Acquiring (inquire,
discover, categorize, index) maintaining and mediating
(manage, analyze, enrich, transform) and particularly reusing
(interoperation for information, learning, knowledge
transfer) services have to be established.

The more we know about a source, the better we can
reuse it. Therefore, metadata and its annotation are essential
for accurate thematic, semantic analysis and quality
determination. Determining the quality of content enables us
to rearrange according to source criterions like provenance,
timeliness or correctness. Emerging qualitative valence of
information units and sources raises information to valid
knowledge. To get the emerging qKAI knowledge base
applicable, interaction services for learning, rating, ranking,

306

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



inquiring, exploring and annotating are needed. Motivation
and user involvement are important aspects and learning
games are proficient for easily accessible, intuitive forms of
interactivity. Synergy effects between learning, gaming and
annotating content arise. Content enrichment by the user is
seen as an implicit, positive side effect in qKAI application
services.

Learning scenarios in qKAI enable self-controlled and
directed concepts embedded as interaction services. We are
starting with the scenarios shortly outlined in Section 6, but
extension is kept simple by architectural division of
presentation, its logic and managing interaction services.
Learning targets deal with competency in information
handling and learning in joyable manner with the Internet of
Services.

RESTful SOA (Service Oriented Architecture)
paradigms harmonize with Web 2.0 concerns. They support
Semantic Web technologies as scalable, reusable and unified
software concept, while retaining application autonomy and
put the resource in the center.

III. STATE OF THE ART AND RELATED WORK

Currently some novel Social Semantic Web applications
(e.g., Twine [6], Freebase [5], Knol [33]) arise that regroup
existing knowledge, allow manual annotation and creation.
There is still a lack in all-embracing, standardized
frameworks, integration practice and reusing interoperation
scenarios. A few examples for game-based interaction with
Open Data like Quizzer [34] are available - embedding User
Generated Content or annotating the Web of Data.
Interaction and learning applications that combine arbitrary
sources in an extensible SOA way are not available yet, as
far as we know. DBpedia mobile [20] is an ideal example for
browsable linked data combined out of different sources on
mobile devices, but interactive learning scenarios, change
management and further web service integration have still to
be applied. SOA concepts find more and more their way into
university and campus management systems. New qKAI
services can be loosely coupled and integrated. Frameworks
helpful for the GUI side use Asynchronous JavaScript and
XML (AJAX: Prototype [35], Dojo [36], YUI [37] ) or
Adobe Flash/Flex [32] (e.g., FlowUI Open Source RIA
Enterprise Mashup Framework). The OpenRDF Sesame
framework [38] brings comprehensive JAVA functionality
for semantic data discovery, querying and transformation.
The Semantic Web Application Framework [39] enables
further semantic tasks.

Semantic search engines like Swoogle [40], Sindice
[41] or Watson [42] deal with searching, exploitation and
large scale access to the Semantic Web of Data and can be
used as gateway to find further relevant input resources for
the qKAI hybrid data store. Nevertheless, beyond getting to
know where to find these resources, qKAI wants to
transform and embed the resources’ content after mediation
in own application scenarios. Therefore, we have to add its
own open and transparent data processing, storage concept,
representation and change management that is outlined in
Section 4. To crawl the Web of Data we can use available
solutions, but for effective storage, recombination and real

time access of the resources’ content during user interaction
we developed the qKAI hybrid data layer. Additionally,
existing crawlers are pluggable into the qKAI data layer.

IV. QKAI APPLICATION FRAMEWORK AND SYSTEM LAYER

The system design of the qKAI application framework is
organized in four main layers as a combination of mediator-
wrapper-concepts [10], service oriented approaches (Internet
of Services) and conventional web application N-tier design.
In this section, we explain the components and tasks of the
applied layers as shown in Figure 2.

The presentation layer implements the General User
Interfaces and its necessary logic. To fulfill extended MVC2
separation, the mediation layer presents the business logic
and controller functionality. Regarded in a SOAP style,
service-oriented way we would place the Enterprise Service
Bus (ESB) here and the service broker belonging to the
discovery manager. The mediation layer acts as middleware
that connects available services (service mediation) and other
technical components. The definition of “mediation” in
qKAI is also interpreted according to Wiederhold [10]: „A
mediator is a software module that exploits encoded
knowledge about certain sets or subsets of data to create
information for a higher layer of applications.“

The data layer meets the model level in the Model View
Controller pattern and extends it with wrapper services at the

Figure 2. qKAI application framework: System layers as
conceptual design and development basis

307

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



Figure 3. qKAI and the LOD cloud

wrapper layer to embed various distributed sources. The data
layer has to manage hybrid data processing enabling RDF
and XML related data as well as relational database content.
Existing data sources are temporarily retained for mediation
purpose. qKAI processes provide new generated knowledge
as open RDF or serialized JSON representation after
mediation.

V. THE QKAI HYBRID DATA LAYER: SOME DETAILS

The qKAI knowledge representation consists for
example of RDF graphs and superior metadata about them.
Existing graphs outside of qKAI are first stored as link to the
origin source in the qKAI service and source repository e.g.,
using the URI of a SPARQL endpoint like
http://DBpedia.org/sparql. New generated information is
stored separately and sustainable at the qKAI data layer. The
data processing concept contains a persistent, relational
database component, flexible representation (RDF, N3,
JSON) and temporary fetching of working data during
discovery and enrichment. To allow persistent storage and to
handle relational data with only a small set of classes in an
effective way we deployed the Java persistence API (JPA)
with the EclipseLink implementation [43] and Builder
patterns.

Linked Data concepts [29] enable persistent, resource-
related storage, change management and non redundant,
context-aware data processing by interlinking identifiable
distributed resources. By qKAI services generated
knowledge about available sources is stored additionally in
MySQL and can be represented as Linked Data on demand.
Figure 3 illustrates, how the qKAI data layer embeds Linked
Open Data resources and represents its data store as another
node in the Linked Open Data cloud. Following the Linked
Data keynote and overall desire of next generation web
applications, to combine different, distributed RDF stores on
demand in real time without buffering, our first trials to
embed content while querying exemplary the DBpedia
endpoint, failed. Without fetching a copy of relevant data,
results showed that bad response times that we had to
develop a more practically solution. Main reason for the bad
response times is the SPARQL endpoints performance as
outlined in the following (see Section “Fetching and
indexing”). Now the qKAI data layer buffers relevant
resources in a traditional, relational database structure to
allow adequate
performance to users’
requests and ability to
further processing and
annotation of the acquired
content. Further on,
affordable hardware can
be used to reach good
performance results
without the need to
investigate in high-end
enterprise server
technology.

This section gives an
introduction into the qKAI

data management based on the concept that every RDF
resource is portable into a relational database structure and
vice versa. DBpedia is used as an exemplary knowledge base
accessed via its SPARQL endpoint to demonstrate first
results while building the hybrid qKAI data store out of
distributed web resources. Main criteria for the qKAI data
store are easy, affordable, scalable reusability, possibility to
mediation and representation of acquired resources of
different kinds and varying provenance. Points of Interest
(POI) are deployed to give a starting point into the
knowledge base by users or further applications and to
update the qKAI store partially on demand in an effective
way.

A. Discovering Linked Data by setting Points of Interest

Because of the wide web discovery space (open world
assumption), conceivable performance problems answering,
and updating comprehensive queries in real-time, among
others we are integrating POI (Point of Interest) setting
functionality in qKAI. Further applications and the users
need an interface to define points of interest and to limit
inquiry space and knowledge base according to own
interests. Setting and storing several POIs according to
different domains and themes becomes possible. Once set,
POIs are stored for reuse and are interlinked with each other.
The POIs enable defined entry points to the large RDF
knowledge base and enable huge databases to update
temporary redundant stored data to be efficient synchronized
with their provenance source on demand when requested.
Interesting parts of domains and knowledge bases will be
updated even often then irrelevant ones and weighting is set
this way implicitly for further statistically tasks. We
implemented a thin, asynchronous updatable and practicable
data layer this way. Browsing Linked Data stores requires
semantic browsing functionality for different devices like
web browsers or mobile devices. Representational Web
services are designed to fulfill device specific representation
requests of the qKAI knowledge base.

A single geographically and/or thematically oriented
Point of Interest (POI) is now using the qKAI
implementation completely reproducible by the qKAI data
layer through a single and effective SQL query. In the
current implementation, it is assumed that the topic the user
is interested in is a part of the knowledge base yet – now
DBpedia for testing purposes. DBpedia contains all
thematically categories out of Wikipedia – so we know
approximately, what we got up to now. Under this condition
a thematically search space limitation is representable
through the following SQL statement:

-- POI for persons
SELECT DISTINCT r.resource, r.resourceURI
FROM resources r
JOIN relations l ON (r.resource=l.resource)
WHERE l.predicate
= ANY (SELECT resource FROM resources WHERE
resourceURI="…/22-rdf-syntax-ns#type")
AND l.target = ANY (SELECT resource FROM
resources

308

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



WHERE
resourceURI="http://DBpedia.org/ontology/Person");

POIs can be combined without limitation. In SQL, this
means an implementation as follows („NATURAL JOIN“ is
a substitute for „INTERSECT“ which is not supported by
MySQL):

SELECT resource FROM
(/* SELECT from POIa */)
NATURAL JOIN
(/* SELECT from POIb */)
NATURAL JOIN … -- for further POI

The derivation of this high-performance, multithreading
solution to embed distributed Linked Open Data in higher-
layered web applications is exemplary enlightened in the
following. A minimalistic data model with maximized
depth is applied, because the implementation is suitable for
several semantic data purposes on a Quadcore hardware
platform that is available for about 500 € (May 2009).
Because every table can be mapped to RDF and vice versa,
there is no need for further extension. Further on, relational
data storage brings the advantage of flexible, independent
representation and delivery on demand e.g., in JSON next to
RDF/XML or N3 Turtle.

B. SQL replaces SPARQL

Considering the current infirmity of SPARQL shown in
the introduction and regarding the fact that popular SPARQL
implementations are still a facade for relational databases, it
seems to be consequent at this time to abstain from the broad
adoption of SPARQL. Significantly, even DBpedia uses
Virtuoso for a SPARQL endpoint with proprietary
extensions, but MySQL is used for query processing in the
background. Thus, we decided to choose MySQL directly for
the qKAI data layer and reduced the data processing bulk to
SQL that most developers are more familiar with up to now.
On the one side, we can resort to a broad pool of proofed
SQL solutions – enabling hierarchical queries for example –
on the other side following developers save incorporation
time to get started with the qKAI data layer.

SPARQL is used only to acquire DBpedia content or
other RDF stores using hybrid indexing. Our first approach,
sending complex SPARQL requests without SQL
background support to the endpoint, failed. Even for a tree
out of more than two nodes, results often could not be
returned and the endpoint timed out. Under these conditions,
we discarded this approach. Present practice showed that too
many dependencies on distributed resources constrain further
work that relies on the qKAI data layer, because the
reliability of reaching SPARQL endpoints is not well
calculable this times.

C. Hybrid knowledge index

An initial qKAI knowledge base e.g., out of DBpedia can
be easily imported using the qKAI dump reader. This initial
knowledge base is complemented on demand by the proper
connected resources via SPARQL. The dump reader accepts

requests and queries the buffered qKAI data layer instead of
the distant resource. A hybrid knowledge index arises this
way by and by.

D. Change management

The in MySQL buffered qKAI knowledge base will
become obsolete earlier or later. Thereby the qKAI data store
might be soon as large that synchronizing all entries with
their provenance resource is not possible anymore all at
once. The hybrid knowledge index allows updating the
buffered data store partially at runtime. If a user or an
application signalizes that more elements out of e.g.,
DBpedia are needed while setting Points of Interest, they can
be additionally loaded and their content can be updated on
demand. If the update amount and interval is set properly,
“fluent” actualization of the whole qKAI knowledge base is
possible. Only small and relevant amounts of data have to be
fetched out of the provenance source this way and they can
be parallel processed in the qKAI data layer. Data can be
provided reliable at any time this way.

E. Reusability and extensibility

All database connectivity of the qKAI data layer is
implemented autonomic and persistent without relying on
other qKAI components. To embed further SPARQL
endpoints we only have to deploy the new endpoint’s
address. The implementation of generic classes allows using
even different protocols – what we showed exemplary with
the qKAI dump reader. New sets of POIS can be integrated
the same easy way. At this time, we offer POI setter for
thematically, geographically and full text POIs. Full text
POIs search like traditional search engines for matching
phrases.

F. Multithreading

Without to beware of it, most developers of web
applications work with multithreading on multicores. In case
of Java, the Container manager treats every request as a
separate thread. Most of the time there are no negative side
effects, if the result is not especially tweaked for this
purpose. A different case we got with the qKAI data layer
that is forced to be driven parallel to reach practicably
performance. In addition, blockades while querying to slow
answering resources had to be avoided.

G. Fetching and indexing

A first, not yet thread optimized version of the qKAI data
layer claimed over 30 seconds to fetch some test data and all
of their properties. Most of the time was wasted with the one
thread of the application waiting for DBpedia answers.

To understand the underlying processes and their
problems to infer a more reactive solution, we analyzed the
tasks to do while fetching our test data from a SPARQL
endpoint:

1. For a given word the URI has to be found.
2. All properties and relations of the constant URI and

their neighborhood are fetched. This happens

309

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



gradually because SPARQL does not allow binding
constants to variables.

3. Step 2 has to be repeated for every fund.

H. DBpedia Search example with the term „Nietzsche“

Now we take the famous search term „Nietzsche“ ,
looking it up in DBpedia using SPARQL only and we get the
following results:

TABLE I. NECESSARY REQUESTS SEARCHING FOR

“NIETZSCHE” IN DBPEDIA

Step Document count Requests

1 444 hits for search term „Nietzsche“ 1

2 8458 properties
41804 outgoing links
2068 mutual properties among

444

Table 1 shows the necessary steps, document count and
requests searching for the example term “Nietzsche” in
DBpedia using SPARQL only. In general, all hits have to be
loaded, because SPARQL does not know any word
quantifier ordering and the wanted term might be at the end
of the result list. We get a serial waiting time for 445 query
results with 50.000 new created documents or even markers.
This result can be constructed much shorter enabling qKAI
buffering DBpedia and then applying the following SQL
queries to the qKAI data layer:

SELECT resource
FROM properties_fulltext
WHERE q="Nietzsche"

Repeated for table „properties“:

SELECT COUNT(*)
FROM (
SELECT resource FROM properties_fulltext
WHERE q="Nietzsche"
) sub JOIN relations p ON (sub.resource=p.resource);

Also for “relations”:

SELECT p.property, COUNT(*) amount
FROM (
SELECT resource
FROM properties_fulltext
WHERE q="Nietzsche"
) sub JOIN properties p ON (sub.resource=p.resource)
GROUP BY p.property HAVING amount > 1;

We noticed that a trivial DBpedia request is answered in
2 seconds at its best. Thus, without synchronous loading we
have to wait 14 minutes at least. To solve this problem, we
divided the process in a pipeline of five steps to identify
especially working and waiting intensive tasks. Finally, we
matched these tasks to a suitable number of threads and
processor cores. In our implementation, the Java classes do
not communicate directly. Instead, they use the

„FetchingMediator” as broker. For every step represented
through a class, a predefined amount of
„ThreadPoolExecutors“ is started. Class instances are lined
in a queue. Every started thread will work constantly and
multiple threads accomplish tasks parallelized. With four
concurrent „RelatedResourceProducern“ the waiting time of
the above mentioned example theoretically increases to a
quarter. Practically DBpedia answers slower with increasing
concurrent number of request. Next to qKAI there are
several other applications querying DBpedia what makes the
answering times unforeseeable. Waiting times of several
minutes cannot be foreclosed.

The parallelized approach prevents the bottleneck in
qKAI: Following requests might be answered faster allowing
queued search terms to be processed further on despite of
small blockades.

I. Evaluation of the qKAI hybrid data layer

Initial search space creation without preselected data
dumps: If data is fetched only by requesting a SPARQL
endpoint like DBpedia without buffering, the used time until
the whole search space is available, depends on its
connection. qKAI itself uses only very simple SPARQL
expressions and - if implemented in the endpoint - the
Virtuoso extension ”bif:contains” [17] to allow faster full
text search. According to our samples it takes about 20
seconds until 10 results are available: To be presentable, a
result has to be found and must be fully loaded as well.
Resulting out of this unacceptable response times while only
using SPARQL requests on distant resources, qKAI uses a
prepared data store as copy of the provenance resource to
utilize distributed data for further application scenarios in
real time. Therefore we currently dissuade from deploying
“SPARQL only” installations in productive environments –
even if this approach is desirable regarding the long term, it
is not realizable in an affordable way up to now. Instead, a
minimal data store - with at best domain or application
customized data - should be prepared like explained in the
following using the example of the qKAI data layer.

Initial search space creation with preselected data
dumps: A “dump” is a view of a database written down in a
file. In case of DBpedia, we speak of 40 compressed files
that reach decompressed 25 GB. The decompressing time
took about half an hour on test system 2 (see Table 3). This
data has to be transformed from N-Triples format into a
relational data base structure to allow more effective
processing and to optimize further queries. N-Triples are a
rather redundant data structure because e.g., a RDF subject is
repeated for each of its properties. Directly transferring of N-
Triples into the qKAI data store is a quite ineffective task. It
would mean to get tables with over 200 million lines and
expensive JOINs with more than one property concurrently.
The up to now fastest known SPARQL implementation
Virtuoso [17] uses just like qKAI OpenRDF Sesame [38] to
parse data into a more effective representation. After
cleaning up, the data are transformed into the qKAI data
model. Therefore we turned off the database indices in
MySQL because it is a rather time intensive task too.

310

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



Figure 4. Count of read triples per second and amount of processors per
second, measured over 80h, while reading in DBpedia dumps.

Figure 4 visualizes reading in the DBpedia dumps on test
system 2 (see Table 3). The peak lies at five by qKAI used
processors because there is an optimal balance reached
between 5 cores for qKAI resources and 3 cores for MySQL.
In average, even 4 cores fit well.

J. Result concerning the qKAI hybrid data layer

If a distant RDF store like DBpedia is mapped to the
qKAI data layer as relational structure, efficient search space
limitation and processing of the content is realizable with
good performance using internal SQL selection. Requesting
and combining distributed RDF resources using SPARQL
only currently turned out to be not practicable. Therefore, we
implemented the transformation into an own, efficient
relational data structure. At this time, the qKAI data store
consists out of DBpedia. We will enhance it with further
resources by and by. The qKAI data layer can be used to
embed available semantic search services to build a hybrid
knowledge index for the Semantic Web - and in future work
for further Open Content resources.

Embedding e.g., the Sindice and Watson crawling
functionality is under development. Sindice offers a large
RDF data index; qKAI is able to mediate with to acquire
further resources next to DBpedia. The algorithm for change
management introduced in Section 4 can be used for periodic
and on demand synchronization with provenance sources.
Relying on a modular architecture, qKAI can be easily
extended by further Points of Interest e.g., for multimedia
content.

K. Test systems

The implementation of the qKAI data layer is tested on
two different systems to determine the ideal distribution
strategy:

TABLE II. BENCHMARK DATA FOR TEST SYSTEM 1

Processor AMD Phenom 9550, Quadcore, 4x 2,2 GHz

RAM 8 GB DDR2 667MHz RAM

Internet
connection

14 MBit

Storage
Four Western Digital WD6400AAKS SATA 2 hard
disks, Adaptec 3805 RAID Controller in RAID 5

Throughput
storage

380 MB/s read, 300 MB/s write

TABLE III. BENCHMARK DATA FOR TEST SYSTEM 2 (AMAZON

ELASTIC COMPUTING CLOUD 2)

Processor 2x Intel XEON, Quadcore, 8x 2,33 MHz

RAM 7 GB, unknown

Internet
connection

1 GBit

Storage
Amazon EBS Storage, Western Digital

WD6400AAHS

Throughput
storage

60 MB/s read, 50 MB/s write

VI. SERVICES AND COMPONENTS IN QKAI

To keep the qKAI application structure flexible,
extensible and autonomic, we decided to encapsulate
functional subtasks in small web services. Web service
interaction will follow RESTful Web 2.0 paradigms. Self-
descriptive messaging is the most important constraint of
REST. It means that every message needs to include all the
information necessary in order to understand the message
itself. We do not see a web service description language like
WSDL as mandatory for REST – also it is possible to
describe RESTful web services using WSDL 2. The
fundamental advance of REST over the styles of e.g., SOAP
or CORBA is that all service interfaces are the same. There
are no differences with the need for explicit description.
After registering all available services and resources in the
qKAI data store according to a broker, we are looking
towards embedding structured databases by converting them
to RDF. The last challenge is to enhance unstructured
content for qKAI integration developing more complex
wrapper services.

We are dividing qKAI functionality into two main developer
levels:

1. RESTful backend web services for acquiring,
selecting and representing textual and multimedia
data. Read and write access to resources is
performed over the HTTP protocol by the GET and
POST method. Working at this level means
extensive use of the Java Jersey API (JAX-RS
specification) to build atomic web services for
several subtasks in effective manner.

2. Rich User Interface components let the user interact
with different kinds of activities. Frontend
components are built with AJAX and/or Flash/Flex
according to their type of interactivity.

A. RESTful knowledge engineering

We deploy RESTful web services (atomic and
composite) to handle standard tasks: acquire, represent,
transform and annotate resources. Loosely coupling of
remote resources and services becomes possible; stateless
services and server communicate over the http protocol.

311

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



B. Modular rich frontend

According to Rich Internet Application (RIA) concepts,
user interfaces are executed at a stateful, client side Flash
runtime. Desktop-alike applications offer advantages like
faster reaction to user requests, less network traffic, less
server load and offline usage possibility. We decided for a
Rich Thin Client using Adobe Flash and Flex - so business
logic remains at server side. The Flash player acts as rich UI
engine and delivers the GUI. The presentation logic is
divided from visualization components. Flash is opening up
its format with the Open Screen Project [44]. The Flash
format and Flex SDK are not that proprietary anymore like
some years ago. Nowadays the Flash plug-in is spread over
90 percent around browsers. Flash also is promoted through
spreading its new FLV format in online video communities
like YouTube. So Flash obtained enormous ubiquity and lost
a lot of its proprietary nature these days. Browser, platform
and device independent developing interactivity is the big
advantage of Flash/Flex applications compared to Ajax.
Flash is predestinated to design gaming content because of
its effective possibilities with high design issues and focus
on usability.

C. Interaction and game-based activity

As Ahn’s reCAPTCHA, ESP game [22] or Amazon
Mechanical Turk established gaming as a well-suited
instrument to solve several tasks in knowledge engineering.
However, they do not mention any learning or knowledge
concerns while gaming. On the one hand, users can enrich
content; on the other hand, users can learn and share
knowledge through gaming with Open Content in a social
incentive and challenging way. We are aggregating existing
information and enriching it while interacting with Open
Content. Even statements about contents’ quality can be
deduced out of users’ content and activity. Especially fact-
related knowledge can be transferred and learned, if
resources are presented in rule-based manner to the user and
he has to solve predefined learning tasks earning rewards.

Creating and editing: We support authors to create and
combine content. For example, false answers are
automatically generated by wrong-answerizer services, if a
question is generated by a user. qKAI offers proposals for
new learning games out of given domain knowledge and
concepts. Matching between available content and suitable
gaming types is described in ontology-based concepts. At the
same time, the user enhances underlying ontologies while
deploying game types and rating gaming content. We want
to create self-organized ontologies that adaptively grow with
ongoing user interaction.

Interlinking and grouping: Grouping of existing
resources and interlinking with missing ones is rewarded
e.g., with in-game incentives.

Rating and ranking: Instead of simple questionnaires,
rewarding concepts are deployed to get user feedback.

D. Educational aspects and suitable domains

Gaming is not overall suitable to learn every skill in any
domain. Some educational tasks or topics are learnable and
transferrable more effectively utilizing certain gaming types

then others. Furthermore, content has to be divided into
different difficulty levels and tasks for distinct audiences.
Our game-based learning concept is not limited to a certain
audience. For example, undergraduates can learn with
gaming content of lower difficulty level and other topics then
students in higher education. Game creation is a gaming and
learning challenge by itself – so lecturers can choose suitable
content out of the gaming pool and add own missing material
or further web resources, where necessary. We identified the
following domains so far as most suitable to embed for
further evaluation purposes: Geography, architecture,
history, events, persons, medicine and health. Overall, every
domain seems to be suitable for our social educational
gaming approach, if learning aims can be fulfilled while
creating, answering and querying factual knowledge and
predefined learning tasks (especially recall and rearranging
of factual content). Popular examples are multiple-choice
questions, text-text assignment, image-text assignment or
ordering questions. These question types have the advantage,
that they are also available as learning standards in Learning
Management Systems. They can be easily converted into
IMS/QTI after in-game creation. Embedding multimedia like
zoom parts out of images or video/audio sequences is also
possible. Next to knowledge unit gaming types, we are
implementing and researching location-based gaming types
relying on geocoded information and correct geographically
placement. Here, we can visualize information in a very
handsome and effective manner using Yahoo! Maps and
their Flash/Flex API to interact on map-based interfaces.

E. Further techniques and libraries

To perform backend and frontend tasks, there are some
available and proofed libraries merged up and extended. We
are developing qKAI as a Java web application with Servlets
and Java Server Pages deployed in a Tomcat Servlet
Container [45]. The frontend is next to AJAX designed using
Adobe Flex and Flash components for highly interactive
tasks with extended design issues (e.g., learning game
sequences). Most of the qKAI service and component offer
is reusable in nearly any information and knowledge transfer
scenario. Additionally some gaming services and
components allow specialized functionality for social
educational gaming.

F. Project management and build automation

qKAI is using the build and management tool Apache
Maven [46] with support of Subversion to automate working
tasks. qKAI offers fast start up and good documentation
facility of all working processes to reuse them as much as
possible this way. Interface classes can be used without
knowing about the classes’ Weaving. In addition, the
standard for (JUnit) tests has been adopted with deploying
Maven. The programmers get hints about code snippets
where better handling of the framework and its language is
suggested. Maven dissolves all dependencies among
packages and downloads them automatically in the right
version. Developers can use their IDE of choice. Adjusting
qKAI to e.g., Netbeans or Eclipse is done through one

312

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



Maven command. The server and the database qKAI are
currently deployed on, can be changed very easy, too.

VII. FURTHER QKAI USE CASES AND APPLICATION

SCENARIOS

qKAI services enable embedding, querying and enriching
distributed web sources for any kind of higher-level
application that likes to integrate a broad, structured
knowledge base with interoperation ability based on a
suitable tools and services collection. We are focusing on
process plans suitable for learning - realized by composite
services. In the following, we give a few precise examples
for use cases that are currently under development using a
first prototype of the qKAI framework.

qKAI will publish services in a service broker way for
reuse in other web applications like Learning or Content
Management Systems.

A qKAI user for instance places a question like “Which
authors are influenced by Stanislav Lem?” using the
SPARQLizer, gets five automatically generated Multiple-
Choice answers presented with relational author images from
Flickr [47] and he has to choose the right ones out of it.
Currently we are developing question-answer-learning-
game-types generated out of well suitable Open Data in RDF
format. We see two main modes as most interesting for
creating first learning game scenarios out of Open Data:
Players assign questions to (semi-)automatically extracted
information units. Players create questions and get automated
answers, which are transformed, into playable answers.

A. qMATCH

This is a prototype of an image-term assignment gaming
type. First, the user enters a term he likes to get images
about. Then qMATCH presents randomized terms and
images out of Flickr and the player has to assign the right
term to the right image via Drag & Drop assignment. Here
we need a service called wrong-answerizer to assign wrong,
but not stupid answers. Wrong-answerizer is deployed in
further gaming types. qMATCH is useful to enhance e.g.,,
language skills, geographically, architectural or historical
knowledge. A conceptual gaming sequence is visualized in

Figure 5. If we use term-term assignment, a lot of
vocabulary out of various domains can be assessed:
assigning English to German translations, assigning
buildings to right historical epochs or assigning cities to the
right countries.

B. qCHUNK

This is a prototype for a text chunk guessing game based
on e.g. Wikipedia articles. qCHUNK presents small textual
chunks and the player has to guess the quested term with as
less chunks as possible. A conceptual gaming sequence is
visualized in Figure 6. Multimedia chunks like zoom parts
out of images are conceivable too. The chunks are extracted
deploying the SentenceDetector of OpenNLP [18]. The
guessable term is exchanged with a placeholder like “?” and
is displayed to the user. The user gets 20 seconds to solve or
to switch to the next chunk related to the guessable term.
qCHUNK is also suitable to integrate multimedia e.g.,,
images, sounds or videos.

Example:
 Chunk: ?? is the capital of Lower Saxony founded in

1942.
 Answer: Hanover.
 Next chunk: ?? is located at the Leine.
 Next chunk: image of Hanover city.
Often chunks imply indirect questions like “Is ?? the

capital of Lower Saxony”. The user will get the ability to
create a question out of the content that is displayed. While
storing and processing hypermedia, it is mandatory that
chunks do not lose their origin context and provenance.

C. qMAP

With qMAP a map-based geocoding frontend is under
development. Questions, answers and their combination
(knowledge units) will be placed and enriched with geocodes
at the qMAP. qMAP acts as a kind of gaming board for
placing, exploring and editing stored question-answer-pairs.
The qMAP will interact with SPARQLizer (see Section D)
and represents submitted questions and related answers.Figure 5. qMATCH gaming sequence

Figure 6. qCHUNK gaming sequence

313

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



qMAP offers placement of locations, events, buildings,
photos or persons. We provide interaction like filtering,
searching, editing and adding knowledge. OpenStreetMap
[48] or Yahoo! Maps [49] are good alternatives to Google
Maps [50]. Map symbols are connected with different
gaming interactions and information units.

D. SPARQLizer

With the SPARQLizer a visual query interface is under
design, that allows intuitive question to query plan
transformation on distributed RDF stores deploying
SPARQL endpoints and dynamic graph interlinking. User-
generated SPARQL queries are stored as graphs enlarging
the qKAI knowledge base and ready to query against in
further query plans.

E. Annotating and qualifying services

Joker option services for annotating, rating and
qualifying are currently under development belonging to the
interaction manager of the mediation layer. qKAI jokers
allow game-based functionality to add additional sources and

to qualify metainformation by rating and ranking input to the
qKAI knowledge base. Playing the “Know-it-all-Joker”
bounds the player to add a source (or information) that
proves contrary statements. The “Nonsense-Joker” marks an
information unit as semantically wrong or inconsistent and
defers it to review mode by other qKAI users. The “Hint-
Joker” allows looking up related sources or other users’
answers as solution suggestion. The “Explorer-Joker” allows
exploring the right answer on the web outside of qKAI
during a predefined time. The “History-Joker” enables
lookups in played answers, ratings of other users by logged
interaction and transaction protocols. Statistical protocol
analysis is suitable to infer further metainformation.

F. Social knowledge profiles

Personal profiles and self-reputation are a popular,
ongoing web trend. There are useful Single-Sign-On
solutions like OpenID [51] or FOAF [52] files to avoid
redundant profile storage in different web communities.
Knowledge and learning related properties are enlightened
less. qFOAF aims at building personalized, transparent
knowledge profiles to connect users additionally thematically
and semantically. qFOAF profiles are visible to other users
and list a statistical overview of the own knowledge activity.
Categories applied contain domain interest and expert level
with detailed scores and ranking. This profile serves allied
and alienated players as a hint for further activity as known
in common games. qFOAF builds a qKAI resource in RDF
at the beginning of a game as extended FOAF file with
unique URI for every user. It connects the user with topics,
knowledge units or other players systematically while
gaming. The qFOAF file can be enriched (semi)automated
with given information by the user. Existing FOAF files,
geocodes or interests, can be included while gaming and
interacting with game points and content. Examples for
gaming content are created questions, answers, knowledge
units, ratings, resources, domains, locations or friends.

G. Global point and level system

A global point system is provided to document learning
progress, personal interests and to implement incentive and
reputation ability. Every kind of interaction is rewarded with
qPoints according to its grade of interoperation.

Incentive for user participation is implemented as
globally rewarding system of any interaction (qPOINT,
qRANK). “Knowledge is power” is the simple conceptual
slogan on top of qKAI gaming. The more users interact and
adapt knowledge, the more they will be rewarded. Adapting
knowledge is possible while solving learning tasks on your
own or in alliances. Single player and alliances can challenge
with each other offering knowledge battles of certain topics.
A look into qFOAF user or alliance profiles allows to
estimate the own chance to win a challenge or battle. We will
enable to steal knowledge from others. Knowledge will
become conquerable this way. Alliances and single player
will be able to own others knowledge by solving game tasks.
An underlying point based rewarding system can be
converted into avatar items and further awards. In the future,
gaming with qualified content might bring gaming pointsFigure 8. SPARQLizer concept

Figure 7. qMAP concept

314

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



into reality by allocating them with test examinations to offer
further incentive to students. The global point and level
system documents learning progress and personal
knowledge. qRANK services allow game-based rating and
ranking of resources by levels and in-game joker options.
After users have played jokers, ranking, annotation and even
semantic correction becomes possible.

VIII. CONCLUSION AND FUTURE WORK

We introduced the qKAI application framework for
utilizing arbitrary Open Data sources and services in a
standardized, RESTful manner aiming at highly interactive
scenarios in information and knowledge transfer. To keep
qKAI easy extensible with reusable, autonomous service
design, we added next to a slim, RESTful SOA a 4-layered
mediator-wrapper-schema to the system specification. qKAI
combines Web 2.0, Semantic Web and SOA paradigms to
apply and enable the Internet of Services for higher level,
user-oriented applications with open access.

We are implementing first educational gaming prototypes
and we are gaining at further features to utilize current web
trends like social interaction for learning purpose and
sustainable, knowledge-related interoperation on Open
Content. Current focus lies on implementing use cases like
the SPARQLizer and qMAP based on the qKAI data layer.
SPARQLizer needs a dynamic, adaptive GUI, template and
ontology structure to support users in (semi)automated
question and answering generation out of SPARQL requests.
Chunking information into capable knowledge units is work
in progress. The specification of qKAI information units is
done and exemplary implemented based on live Wikipedia
content. Requirements are derived to utilize Open Content
for social educational gaming and standard tasks in
knowledge engineering. Atomic services and frontend
components allow rearrangement and are suitable for any
other purpose in information and knowledge transfer – not
only for game-based learning. Services are adaptable to
several domains.

Reusing and composing is a precept at all levels in
qKAI, the challenge is to merge and to expand: Resources,
ontologies, web services or available frameworks. We are
aiming at standardized, machine- and human readable
staging of Open Content with lightweight interoperation to
develop incentive, web-based knowledge transfer and
learning scenarios. Therefore, we deploy Linked Data, Rich
Clients and REST. The qKAI application framework serves
as conceptual basis and system specification for further work
exemplary highlighted in this contribution. We want to offer
learning scenarios based on user-oriented web services with
lightweight interaction grounded on Open Content.
Therefore, we have to implement standard tasks of
knowledge engineering for extended interaction as a generic
application framework. qKAI combines and respectively
extends available Java APIs for subtasks to a scalable,
reusable and unifying software concept.

Overall, our research focus lies on three main aspects:

 Provide standard tasks of knowledge engineering
(acquisition, formalization, representation,
visualization).

 Determine and enhance quality of content (analyzes
and enrichment of metainformation. User’s opinion
and knowledge serves to annotate, rate and rank
content).

 Tackle extended interaction and incentive for user's
attendance while interoperating with Open Content.

We implemented an aware compact and hybrid data layer
that serves as basis for further knowledge-processing
applications and as interface to semantic search engines and
RDF stores. The up to now missing possibilities of the
therefore designed query language SPARQL are substituted
by the transformation into a relational database schema.
Resulting models are flexible and reusable, because any
relational data structure can be mapped onto. The chosen
approach of parallel data fetching and processing was not
that easy to implement concerning thread safe programming,
but it is very profitable regarding sustainable deployment -
independent of external, at this time still unsecure
circumstances:

 Time intensive requests will not block following
queries in qKAI.

 Only this way data can be loaded additionally with
adequate response times, if a request is not
answerable through the pre-buffered data store.

Our research showed that up to now the power of
SPARQL is not yet applicable to the efforts of the qKAI data
layer. Even if suggested extensions like OpenLink [17] are
integrated into the final specification, it is not obvious up to
now, whether SPARQL alone will be properly suited for
large, distributed data requests soon. Currently we noticed an
ongoing trend to deploy relational database concepts because
of their majority and performance – like nearly all SPARQL
endpoint and RDF repository implementations do [53].
Future work in qKAI is to implement available algorithms
and APIs to crawl distributed resources and to amplify the
optimization of the qKAI data layer. Some MySQL
optimizations like the Sphinx full text indexer [54] are
implemented yet to allow faster search. For geographically
search space, a GIS extension is ready to use for periphery
searches.

All over, the interface to Open Data resources over
SPARQL endpoints offers new ways to combine, enrich and
explore the data web as an open, semantically connected
graph. Data sources are presented in a standardized, machine
interpretable and extensible manner deploying RDF
repositories. They offer many advantages like open Linked
Data ability and annotation compared to traditional relational
databases under closed world assumption. Further SPARQL
functionality is under development and will be part of its
specification soon. We decided to mix up proven and new
concepts to get a nowadays practically data layer
implementation while buffering preselected data dumps in a
relational database and acquiring Open Content out of RDF

315

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



repositories using SPARQL. Additionally we developed with
POI setting for applications and users a practically solution
to update pre buffered resources partially on demand when
they are requested.

ACKNOWLEDGMENT

The BMBF (Bundesministerium für Bildung und
Forschung) co-funded this work under the HELCA
(Hannover E-Learning Campus) project. We thank especially
Mark Kubacki and Jan Hein for their support in
implementing and advancing the qKAI application
framework.

REFERENCES

[1] M. Steinberg, J. Brehm, “Towards utilizing Open Data for interactive
knowledge transfer”. Proc. DigitalWorld 2009, International
Conference on Mobile, Hybrid, and On-line Learning (IARIA’s
eLmL), IEEE Press, 2009, pp.61-66, doi:10.1109/ eLmL.2009.13.

[2] T. Berners-Lee, “Web 2.0 and Semantic Web”,
http://www.w3.org/2006/Talks/1108-swui-tbl/#(1), W3C, visited
10.04.2009.

[3] M. Domenig, “Rich Internet Applications und AJAX”, Entwickler-
Magazin, http://www.canoo.com/news/entwickler.pdf, 2006, visited
15.05.2009.

[4] DBpedia, http://dbpedia.org/About, visited 20.05.2009.

[5] Freebase, http://www.freebase.com, visited 25.05.2009.

[6] Twine, http://www.twine.com/, visited 27.05.2009.

[7] H. Mandl, G. Reinmann-Rothmeier, “Unterrichten und
Lernumgebungen gestalten”, Forschungsbericht Nr. 60, Instituts für
Pädagogische Psychologie und Empirische Pädagogik, München,
Ludwig-Maximilians-Universität, 1995.

[8] IMS/QTI, http://www.imsglobal.org/question/, IMS Global Learning
Consortium, Inc., visited 25.05.2009.

[9] C. Schroth, T. Janner, “Web 2.0 and SOA: Converging Concepts
Enabling the Internet of Services”, IT Professional, Volume 9, Issue
3, 2007, pp 36 – 41.

[10] G. Wiederhold, “Mediators in the Architecture of Future Information
Systems, IEEE Computer, Journal, 25(3), 38-49, 1992.

[11] Open Knowledge Foundation, The Open Knowledge Definition,
http://opendefinition.org/, visited 25.05.2009.

[12] RDF, http://www.w3.org/RDF/, W3C, last update: 2008.

[13] SPARQL, http://www.w3.org/TR/rdf-sparql-query/, W3C, visited
25.05.2009.

[14] J. H. Dieter Fensel, H. Lieberman, and W. Wahlster, “Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential”,
The Mit Press, Massachusetts, 2005.

[15] C. Bizer, R. Cyganiak, “D2R server: Publishing Relational Databases
on the Semantic Web”, http://www4.wiwiss.fu-berlin.de/bizer/d2r-
server/, visited 27.05.2009.

[16] Aperture, http://aperture.sourceforge.net/, Aduna, DFKI, visited
27.05.2009.

[17] Openlink Virtuoso, http://virtuoso.openlinksw.com/, visited
27.05.2009.

[18] OpenNLP, http://opennlp.sourceforge.net/, visited 27.05.2009.

[19] F. Naumann, “Quality-Driven Query Answering for Integrated
Information Systems”, Lecture Notes in Computer Science Vol.
2261, Springer, 2002.

[20] C. Becker, C. Bizer, “DBpedia Mobile: A Location Enabled Linked
Data Browser”, 17th International World Wide Web Conference
WWW2008, China, 2008.

[21] T. Heath, E. Motta, “Revyu.com: a Reviewing and Rating Site for the
Web of Data”, Proc. ISWC 2007, International Semantic Web
Conference, Lecture Notes in Computer Science 4825 Springer 2007,
pp. 895-902.

[22] L. Ahn, S. Ginosar, M. Kedia, R. Liu, and Manuel Blum, “Improving
Accessibility of the Web with a Computer Game”, International
conference for human-computer interaction, CHI 2006, Canada.

[23] GuessTheGoogle, http://grant.robinson.name/projects/guess-the-
google/, visited 27.05.2009.

[24] Scoyo, www.scoyo.de, visited 27.05.2009.

[25] Playfish, www.playfish.com, Megazebra, www.megazebra.com,
Zynga, www.zynga.com, visited 27.05.2009.

[26] Facebook, www.facebook.com, MySpace, www.myspace.com,
visited 27.05.2009.

[27] ILIAS, http://www.ilias.de, visited 27.05.2009.

[28] J. Brehm, M. Steinberg, "Eine Arbeitsumgebung für elektronisch
unterstützte interaktive Lehre", 36. GI-Jahrestagung 2006 -
Informatik für Menschen, Workshop Pervasive University.

[29] C. Bizer, T. Heath, T. Berners-Lee, “Linked Data: Principles and
State of the Art”, 17th International World Wide Web Conference,
WWW2008, China, 2008.

[30] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, Dissertation, Irvine, 2000.

[31] E. Wilde, R. J. Glushko, “Document design matters”, Commun. ACM
51, 10, 2008, pp. 43-49, doi:
http://doi.acm.org/10.1145/1400181.1400195.

[32] Adobe Flash/Flex, http://www.adobe.com/products/flex/, visited
27.05.2009.

[33] Knol, http://knol.google.com/k, visited 27.05.2009.

[34] C. Kiefer, Quizzer, http://www.d-
elina.de/2008/index.php?option=com_content&task=view&id=97&It
emid=64, last update: 2008.

[35] Prototype, http://www.prototypejs.org/, visited 27.05.2009.

[36] Dojo, http://dojotoolkit.org/, visited 27.05.2009.

[37] YUI, http://developer.yahoo.com/yui, visited 27.05.2009.

[38] OpenRDF Sesame, http://www.openrdf.org/, visited 27.05.2009.

[39] Semantic Web Application Framework,
http://doi.ieeecomputersociety.org/10.1109/MS.2007.126, visited
27.05.2009.

[40] Swoogle, http://swoogle.umbc.edu/, visited 27.05.2009.

[41] Sindice, http://www.sindice.com, visited 27.05.2009.

[42] Watson, http://watson.kmi.open.ac.uk/WatsonWUI/, visited
27.05.2009.

[43] JPA, EclipseLink, http://www.eclipse.org/proposals/eclipselink/,
visited: 13.05.09.

[44] OpenScreen Project, http://www.openscreenproject.org/, visited
27.05.2009.

[45] Apache Tomcat, http://tomcat.apache.org/, visited 27.05.2009.

[46] M. Loukides, „Maven - The Definitive Guide“, O´Reilly Media, Inc.,
Sebastopol, 2008.

[47] Flickr, http://www.flickr.com/, visited 27.05.2009.

[48] OpenStreetMap, www.openstreetmap.de/, visited 27.05.2009.

[49] Yahoo! Maps, http://maps.yahoo.com/, visited 27.05.2009.

[50] Google Maps, www.maps.google.com, visited 27.05.2009.

[51] OpenID, http://openid.net/, visited 10.04.2009.

[52] FOAF, http://xmlns.com/foaf/spec/#term_name, visited 27.05.2009.

[53] M. Völkel, SparQL Implementations, ESW Wiki, 2008,
http://esw.w3.org/topic/SparqlImplementations, visited 27.05.2009.

[54] J. Kumar, “Benchmarking results of mysql, lucene and sphinx”, 2006,
http://jayant7k.blogspot.com/2006/06/benchmarking-results-of-
mysql-lucene.htm, visited 27.05.2009.

316

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/


