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Abstract—Swarm Intelligence algorithms are inspired by ani-
mals living together in swarms. Those algorithms are applicable
to solve optimization problems like the Travelling Salesman
Problem. Furthermore, they can be extended for playing games,
e.g., board games. This paper proposes a novel approach for
playing the board game Halma by combining Swarm Intelligence
algorithms. It focuses on the implementation of a Swarm Intelli-
gence player for the Halma game by combining two state-of-the-
art algorithms, namely the Ant Colony Optimization, and the Bee
Colony Optimization. In addition, we propose a modular Model
View Controller software architecture for implementing the game
and its players. Moreover, this paper evaluates the performance
of the Swarm Intelligence agent for the single player and two
player cooperative version of Halma. The algorithm presented
in this paper is successful in learning the dynamics of the game
and provides a stable basis for further research in this area.
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I. INTRODUCTION

Animals like bees or ants live together in huge swarms.
Although the number of members in the swarm is large,
they are able to coordinate and divide tasks, e.g., splitting up
the food searching process. The tasks are optimized within
the swarm. Therefore, it is possible to derive algorithms,
called Swarm Intelligence (SI) algorithms, for optimization
problems, e.g., the Traveling Salesman Problem (TSP). Our
previous work, which compared and applied different SI
algorithms to the TSP problem [1], was published at ”The
Twelfth International Conference on Information, Process, and
Knowledge Management eKNOW 2020”. As SI algorithms are
well suited for optimization problems like the TSP, several
applications arise. SI approaches can be used for robotic
swarms to explore unknown environments, e.g., in space.
Another application for those algorithms are video or board
games. This paper extends a previously published paper [1] by
implementing and testing SI for a more complex application,
namely the board game Halma.

Halma is a traditional board game which can be played
using two different types of boards. Either on a square board
or, as in our case, on a star-shaped board. Halma on a star-
shaped board is also called ”Sternhalma” in Germany or
”Chinese Checkers” in the rest of the world, although it is not
a variant of Checkers [2]. This paper focuses on ”Sternhalma”,
but we will use the name Halma to refer to it. The main

similarity between the TSP and the board game Halma is the
structure of the problem. The Halma board, shown in Figure
1, is divided into nodes and edges, which is also the basis of
the TSP. For a TSP, nodes represent cities which are visited
by a salesman. He uses edges to travel from city to city. The
aim is to find the optimal solution, so the salesman visits all
nodes exactly once and reaches his starting point in the end.
For a game of Halma, a player tries to find an optimal solution
to get from its starting position to the goal position by using
the edges. Due to the similarities and successful tests of SI
algorithms for the TSP, it is promising to use SI approaches
to construct a player for the Halma game.

Figure 1. A Halma (”Sternhalma” or ”Chinese Checkers”) board for six
players

The rules of the game are simple. Yet, the game is still
challenging and interesting [3]. Its complexity is discussed in
Section IV. Halma is played by one to six players having ten
game characters each. A board with six players is shown in
Figure 1. The board is star-shaped and consists of nodes and
edges. Characters are allowed to stand on nodes and move
from node to node using the edges. Goal of the game is to
bring all game characters to the opposite side of the board.
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For example, blue needs to place all its characters on the
starting position of black and black needs to place all its game
characters on the starting position of blue. To reach this goal,
the player is allowed to move one game character at a time.
Each character has two possible types of moves which are
illustrated in Figure 2. It can either

• make a step move or
• make a jump move.

If it decides to make a step move (Figure 2(a)), the character
can be moved in any direction to the next node, requiring the
destination node to be unoccupied. If the player decides to
jump, a neighboring node needs to be occupied and the node
on a direct line behind this node needs to be unoccupied. It
is irrelevant if the neighboring node is occupied by an own
or an opponent’s piece. This move is shown in Figure 2(b).
If possible, the player is allowed to do multiple jumps in a
row with the same character. He is able to decide how many
jumps he wants to do as long as the move is valid.

(a) A character is allowed to make
one step in any direction

(b) A character is allowed to jump
over another character

Figure 2. The two different kinds of valid moves in Halma

The game ends if one player places all its game characters
on the opposite side of its starting position. As Halma is a
competitive game, it is a valid strategy to prevent other players
from winning.

In general, games are interesting problems in the fields of
Artificial Intelligence (AI). The complexity of games is often
high and there are several possible strategies. Solving them
needs a large amount of time and computational resources.
Different games provide different challenges for AI. Most of
all, board games are well suited to do research in the fields
of AI, as they have simple rules which lead to a simple
implementation. Additionally, experiments can be conducted
on hardware with less computational power [4].

An AI player can play a game to either win or to gain
experience out of it [4]. Halma, like most board games, is
a competitive game. It ends when one of the players wins.
Nevertheless, for the two player case, the shortest possible
solution to win the game can only be reached, if the two play-
ers cooperate with each other. Therefore, this paper presents a
strategy for a single player, forming a swarm of ten characters,
as well as a strategy for two cooperating players.

Additionally, we propose a Model View Controller (MVC)
architecture to realize the game. It is designed to easily
exchange the AI player with different algorithms.

For accomplishing this, the paper makes use of the results
gained in [1]. First, related work is presented. Second, two SI
algorithms, the Ant Colony Optimization (ACO) and the Bee
Colony Optimization (BCO), are presented. The complexity
of the game is discussed in Section IV. The combination of
the two SI algorithms to form a Halma player is presented
in Section V. Section VI focuses on the experimental setup,
our software architecture, and the results gained for a single
player game and a two player game. The last section (Section
VII) concludes the work and presents future work.

II. RELATED WORK

Both, [5] and [6], give a good overview of the different SI
approaches and their analogue in nature. This paper focuses on
two out of several SI algorithms, the ACO [7] and the BCO [8].
Recent researches utilize those algorithms for a wide range of
applications. Approaches based on the ACO are used, among
others, for a routing protocol for Wireless Sensor Networks
(WSN) [9], to load balance peer-to-peer networks [10] or a
fuzzy logic controller [11]. Furthermore, the ACO has been
applied in swarm robotics, e.g., for Unmanned Aerial Vehicles
(UAVs) [12], or path planning on mobile robots in [13] and
[14]. Variants of the BCO have been employed, e.g., for a
swarm of autonomous drones [15] or path planning [16].

An extensive analysis of the game Halma can be found in
[17] studying the six-piece game and in [2] focusing on the
ten-piece game.

To the authors knowledge solving the Halma game with
AI, especially with SI, is not a widely researched area. In
[18], the authors design a Halma player based on deep rein-
forcement learning. Roschke and Sturtevant [19] use an Upper
Confidence Bounds (UCB) applied to trees (UCT) algorithm
to solve the Halma game. Both papers focus on the two-player
game reducing the star-shaped Halma board to the two player
square board. Additionally, both approaches are applied to a
Halma game with six game characters per player instead of
ten, which is the number of pieces used throughout this paper.

There are also only a few approaches using SI algorithms to
learn playing games. In [20], the authors use an SI approach
for a board game called ”Terra Mystica”. Kapi et al. [21]
consider SI as a method to solve path planning in video games.
In [22], the ACO has been used to for a video game called
”Lemmings”. Daylamani-Zad et al. [23] discuss a variant of
BCO and its applicability to strategy games.

Thus, we can see that this paper tackles two ill-researched
areas and presents a novel approach in playing Halma with SI
based methods.

III. SI ALGORITHMS

In the following, two state-of-the-art SI algorithms are
presented. In this paper, the application for SI algorithms is the



48

International Journal on Advances in Intelligent Systems, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/intelligent_systems/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

board game Halma. The Halma game, as well as the TSP, is
based on nodes connected by edges. Consequently, this chapter
focuses on the definition of both SI algorithms for discrete
problems. The introduction of the algorithms has been adapted
from our previous publication [1]. First, the ACO is presented.
Second, the BCO is summarized. Third, both algorithms are
compared for a TSP application and we evaluate their use for
the Halma board game.

A. Ant Colony Optimization (ACO)

When searching for food, ants leave pheromone trails on
their path. Other ants can sense the pheromones and plan
their path accordingly. This behavior is adapted for the ACO
algorithm [24]. Ants mediate information over the environment
and communicate therefore indirectly with the other members
of the swarm. This form of communication is known as
stigmergy communication [25]. Assume a simple example,
where an ant can choose between two possible ways to get
from the nest to the food source. One path is shorter than the
other as visualized in Figure 3.

Figure 3. A swarm of ants will choose the short path in favor of the long
path to get to the food source over time.

In the beginning, each individual ant chooses its way
randomly, i.e., both paths have the same probability to be
chosen. The members of the swarm that have chosen the short
path will reach the food source earlier than the ants that chose
the long path. When they arrive at the food source, they take
a piece of food and return to the nest. Now, they have to make
the decision once more, which way to chose. As ants leave
pheromones on the path, while they move, they sense those
pheromones on the short path. If the ants that took the long
path have not arrived at the food source yet, the ants sense less
pheromones on the long path. Ants choose the path where they
can sense more pheromones. Therefore, they will choose the
short way to get back to the nest.

To avoid a convergence of the swarm towards local minima,
the pheromones on the paths evaporate partly [26]. Neverthe-
less, the pheromone value on the shorter path is higher than
on the longer one. When the ants go to the food source and
back to the nest multiple times, the pheromone value on the
short path will grow over time. As a result, all ants decide to
take the short way in the end [24].

The ACO algorithm simulates this food searching process.
In the following, the algorithm is explained for a TSP applica-
tion. For this application, the path is represented by a sequence

of nodes, which are connected by edges. Table I summarizes
the symbols used in the equations throughout this section.

The procedure of the ACO is divided into four phases:

1) path planning depending on the pheromone values on
the path,

2) pheromone update on each ant’s path,
3) pheromone update of the global-best path,
4) pheromone evaporation on all edges.

All phases are iterated multiple times, which is visualized
in Figure 4. The next paragraphs focus on the explanation of
each phase.

1) Path Planning: Path planning of each individual ant is
based on the State Transition Rule

s =


arg maxu∈Jk(r){[τ(r, u)] · [η(r, u)]β},

if q ≤ q0 (exploitation)
S, otherwise (biased exploration)

, (1)

where r is the current node of the ant k, s is the next
node, and q is calculated randomly [27]. Equation (1) defines
the weighting between exploration and exploitation. If q is
smaller than or equal to q0, the ant chooses exploitation.
Otherwise it chooses exploration. When choosing exploitation,
path planning is based on the value of pheromones on the edge
τ(r, u) and the distance η(r, u) between the current node r and
a possible next node u. The parameter β regulates the balance
between distance and pheromone value. The maximum is
chosen from calculating [τ(r, u)] · [η(r, u)]β for all nodes that
have not been visited yet (for all u ∈ Jk(r)) [27].

TABLE I. SYMBOLS USED IN THE FORMULAS EXPLAINED IN SECTION
III-A [1]

Symbol Used Meaning

s next node
r current node
u next possible node
k ant

Jk(r) all nodes that have not been visited yet by ant k
τ(r, u) pheromone value of an edge between r and u
η(r, u) inverse of distance between r and u
β parameter to manipulate the proportion between

distance and pheromone value (β > 0)
q random number between [0...1]
q0 proportion between exploration and exploitation

(0 ≤ q0 ≤ 1)
S random variable connected to the random-

proportional rule
pk(r, s) probability to choose node s as next node

ρ pheromone decay parameter for local update
(0 < ρ < 1)

τ0 initial pheromone value
α pheromone decay parameter for global update

(0 < α < 1)
δ evaporation parameter (0 < δ < 1)
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Figure 4. Steps of the ACO algorithm [1]

For biased exploration, the node selection is made with the
random-proportional rule

S = pk(r, s) =


τ(r,s)·η(r,s)β∑

u∈Jk(r)
τ(r,u)·η(r,u)β if s ∈ Jk(r)

0, otherwise
, (2)

where S represents the result of this random-proportional rule
[27]. Equation (2) calculates a probability for each node. It
is based on the length of an edge and its pheromone value.
The shorter the edge and the higher the pheromone value, the
more likely this node is chosen. As both, the pheromone value
and the length of an edge are considered, [τ(r, u)] · [η(r, u)]β

is calculated as well [27]. This results in a weighted value
and the exploration is referred to as biased exploration [7].
The term is divided by the sum of all [τ(r, u)] · [η(r, u)]β to
calculate the probability.

Each ant leaves a pheromone trail on its path. The trail is
updated after each ant has finished its tour and has returned
to the initial node. This pheromone update is called the local
update.

2) Local Update Rule: Real ants leave pheromones on their
trail. The pheromone values increase with the quality and the
quantity of the food at the food source [24]. In analogy to
real ants, the pheromone values on a path constructed by the
artificial ants are updated with

τ(r, s) = τ(r, s) + ρ ·∆τ(r, s) , (3)

where 0 ≤ ρ ≤ 1 [27]. The local update rule is influenced
by ∆τ(r, s). Depending on the implementation, you can
choose different approaches to set ∆τ(r, s) [27]. There are
implementations which use, e.g., reinforcement learning to
determine an appropriate ∆τ(r, s) [27]. For sake of simplicity,
we use a constant value

∆τ(r, s) = τ0 , (4)

where τ0 corresponds to the initial pheromone value.

3) Global Update Rule: After the local update has been
performed and all ants have returned to the nest, the global
update is conducted. All paths that have been found by the
individual ants are compared to the global best path. For the
TSP this is the path with the shortest length. For the Halma

game this can, e.g., be a move that brings the game character
closest to the goal positions or a move that uses many jumps.
If one of the ants found a better path, the global best path
is updated. No matter if it has been updated in the current
iteration or not, the pheromone values on the edges are updated
for the globally best path. Extra pheromones are added with

τ(r, s) = τ(r, s) + α ·∆τ(r, s) , (5)

where α is a predefined pheromone decay parameter between
0 and 1 [27].

By adding pheromones to the edges in each iteration, the
pheromone values on the edges increase over time. When a
good solution was found in, e.g., iteration 10 and the swarm
does not find a better solution during the following iterations,
the pheromone value on this path is high. If an ant finds a
better solution, it takes many iterations until the swarm will
use this solution, as the pheromone value on the old best path
is still high. Therefore, it is difficult to abandon old solutions.
Consequently, we have to introduce evaporation to overcome
this issue.

4) Evaporation: To avoid rapid convergence towards a non-
optimal solution, pheromone values evaporate partly when
they are updated. It offers the possibility to explore new areas
[24]. The evaporation is regulated with a parameter δ and
results in

τ(r, s) = δ · τ(r, s) . (6)

We can also combine the evaporation with the local and global
update rule [27]. The global update rule is now calculated with

τ(r, s) = (1− α) · τ(r, s) + α ·∆τ(r, s) , (7)

whereas the local update is computed with

τ(r, s) = (1− ρ) · τ(r, s) + ρ ·∆τ(r, s) . (8)

Combining all steps, we result in the ACO as summarized in
Figure 4.

The second algorithm, our SI Halma player is based on, is
the BCO, which is presented in the following section.
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B. Bee Colony Optimization (BCO)

Another state-of-the-art SI algorithm is the BCO. It is
derived from the foraging behavior of bees [28]. In con-
trast to ants, bees use a different kind of communication.
Ants communicate indirectly over the environment by leaving
pheromone trails. On the contrary, bees communicate directly
with the other swarm members by means of dancing. Bees
fan out the hive to search for food, return and dance to the
other bees to communicate the location of a food source. The
dance is a form of advertisement to convince the other bees
to choose the food source they are advertising [28].

The BCO was inspired by this behavior to solve optimiza-
tion problems, e.g., the TSP. The algorithm mainly consists
of two steps,

1) the forward pass,
2) and the backward pass.

The algorithm is visualized more detailed in Figure 5. Like
the ACO, the BCO uses multiple iterations to converge towards
a solution. In contrast to the ACO, which constructs a path at
once, the BCO is divided into several stages. During each
stage, a bee conducts the forward, as well as the backward
pass and builds a partial solution, i.e., a part of the path.
The number of stages for the TSP application depends on the
number of nodes m the path is appended by during each stage.
The two steps, conducted during each stage, are explained in
the following.

1) Forward Pass: The forward pass is the step of building
a partial solution. Each bee fans out the hive and appends its
path by its own partial solution. This represents exploration,
as the partial solutions are calculated randomly. For the TSP
the bees append their current path by m nodes they have not
visited yet [8]. After appending the path and returning to the
hive, the bees perform the backward pass.

2) Backward Pass: The backward pass is the phase, where
the bees perform the waggle dance. Each bee has two options
to either

• abandon its partial solution (exploitation) or
• dance and advertise its solution to the other bees (explo-

ration) [28].

By abandoning its solution, the bee will exploit another bee’s
solution (one of the bees that dances) or the global best
solution (the best solution that has been found so far). For the
TSP application, the shorter the path length of another bee’s
partial solution, the more likely the bee will choose it. After
choosing a partial solution the bee will add this partial solution
to its path that has been constructed during the previous stages.
It basically exchanges its partial solution constructed during
the forward pass with another partial solution [8]. For the TSP,
cities are visited only once. Consequently, it is crucial to check
whether the chosen partial solution does contain cities that
have already been added to the path. If that is the case, for
our implementation, the honeybee returns to its own partial
solution constructed during the forward pass.

A solution for the problem has been found if the forward
and the backward pass have been finished for all stages.
Subsequently, the global best solution is updated [28] and one
iteration has been finished.

The following section focuses on the comparison of the two
algorithms and their application for the TSP as well as for the
Halma game.

C. Comparison of the Algorithms

In order to decide which of the algorithms to use for the
Halma board game, we first tested them for the TSP. The
TSP was simulated by placing ten nodes, representing the
cities, randomly on a grid. The edges, connecting all nodes,
have different length. The algorithms are supposed to find a
path which connects all nodes while traveling a minimum
distance. Each algorithm performed 200 iterations per test
and 1000 tests have been conducted. The results shown in
Figure 6 give an idea of the performance of the algorithms.
As the TSP is only an exemplary application to compare the
algorithms, the implementations are not optimized with respect
to time efficiency and performance. Additionally, this paper
focuses on a board game application and the goal is to play
against a human player, so time efficiency can be neglected.
For the evaluation of performance of each algorithm, the
interested reader is referred to [29]. Figure 6 visualizes the
average path length for each iteration. The ACO is visualized
in blue, whereas the BCO is shown in red. The parameter
configurations used for the experiments visualized in Figure 6
are summarized in Table II.

TABLE II. PARAMETERS USED FOR EXPERIMENTS [1]

ACO BCO

parameter value

iterations 200
population 100
β 0.7
q0 0.8
ρ 0.7
τ0 10.0
α 0.9

parameter value

iterations 200
population 100
m 3

The ACO converges towards the optimal solution, which is
shown on the bottom in black, whereas the BCO converges
quickly but towards a non-optimal path. Consequently, the
ACO has a better balance between exploration and exploitation
than the BCO. For the BCO, exploitation predominates over
exploration. From Table II we can see that the BCO needs less
parameters than the ACO that need to be tuned. Nevertheless,
the balance between exploration and exploitation is much
better for the ACO.

The ACO is well suited for the TSP problem, as the swarm
contributes from all solutions of all other ants and does not
only consider the global best solution found at some point in
the past. Distributing pheromones on the edges makes an easy
planning possible. If we decide to us the ACO on its own for
a Halma player, the algorithm outputs us 10 different paths
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Figure 5. Steps of the BCO algorithm [1]

for 10 different characters. Then, we have to decide which
game character executes its path, as the rules only allow one
move of one game character at a time. With its abandoning
and advertising scheme, the BCO is well suited to find the best
solution within a swarm and to decide for one game character
to move. Therefore, the ACO and the BCO are combined for
the board game Halma. All game characters first plan a path
with the ACO algorithm and then the BCO is used to decide
which character will make the move. The implementation and
combination of the two algorithms is further explained in
Section V.

Figure 6. Average length of path by solving the TSP with the ACO (blue),
the BCO (red) and the optimal solution (black) [1]

IV. COMPLEXITY OF HALMA

Even though its rules are simple, the board game Halma
offers a high complexity. In [17], Sturtevant mentions that
there are 1.73 · 1024 states referring to a game with six game
characters per player. The number of states is even higher for
the ten-piece version of the game.

Due to the different possible moves, i.e., steps and jumps,
and a varying number of players per game, and therefore also
a varying number of game characters per game, there are
usually a lot of different options per turn a player can choose
from. Furthermore, players are allowed to perform multiple
jumps in one turn with the same figure, if possible. Successive

jumps do not necessarily have to follow the same direction.
This contributes to even more different turns one can perform.
As players are allowed to jump over the characters of other
players, more players in a game allow a higher number of
possible moves. In general, it is advantageous to jump as often
as possible as this allows extra moves per turn. To reach this,
the player needs to build ladders which transport characters
quickly from one side to the other [2].

When playing Halma with only one player, the shortest
solutions are often palindromic. This means, that the second
half of moves is symmetric to the first half. According to [2]
the shortest solution possible for one player has 27 moves and
no shorter solution is possible.

For a game of two players the shortest game consists of 30
moves, that is 15 moves per player [2]. However, this only
works if both players cooperate. In this scenario, two ladders
are built. The first one is built by both players whereas the
second one is only built by the player that is going to lose.

The following chapter considers this information and
presents an implementation for a SI player for Halma using
the algorithms introduced in Section III.

V. COMBINATION OF SI ALGORITHMS FOR HALMA

To use Swarm Intelligence for playing a game of Halma,
the algorithms mentioned in Section III are combined. Figure
7 gives an overview of the implementation of an SI player
for Halma. Table III includes the symbols used in equations
throughout this chapter that have not been already introduced
in Table I.

The ACO algorithm is well suited for the local path planning
of each character. A single character is able to plan a path
based on the pheromone values on the edges between the
nodes. It decides whether to choose exploration or exploitation.
The path is planned accordingly. In Figure 7 this process
is marked in orange. The implementation of the BCO is
illustrated in green. Originally, the forward pass of the BCO is
used to make a local decision for each member of the swarm.
In our algorithm, this decision is based on the ACO, so the
forward pass is neglected, whereas the backward pass plays a
major role. It is used to make the decision which character is
going to make a move. The characters can either abandon their
choice or advertise their solution to the others. This decision
making process is further discussed in Subsection V-C.
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Figure 7. Process of choosing a character and path to make a move

TABLE III. SYMBOLS USED IN THE FORMULAS EXPLAINED IN SECTION
V THAT ARE NOT CONTAINED IN TABLE I.

Symbol Used Meaning

τ0goals initial pheromone value for the two edges con-
nected to the first row

j jumping factor to reward moves with many
jumps

g in goal factor to increase the pheromones on
edges that lead to the goal

e evaporation rate
wd weight of distance to the first row
wl weight of the length of the path
wp weight of the pheromone values of the path
fg fitness value for characters that already reached

the goal area
b influence of best game played so far on the initial

pheromone distribution
c pheromone update value added during coopera-

tive games
to threshold to update the pheromone value during

cooperative games

In the beginning, the pheromone values are distributed
on all edges. This initialization is described in Subsection
V-A. Subsection V-B discusses how the ACO can be applied
to Halma. The global backward pass and the update rule,

including evaporation, are further explained in Subsection
V-C and V-D, respectively. Subsection V-E introduces some
limitations for the pieces. The last subsection of this section
focuses on the two-player cooperation.

A. Initial Distribution of Pheromones

The Halma board is divided into nodes and edges. The
game characters need to move from node to node by using
the edges. All edges are bidirectional and it is possible to use
the same edge to move from node A to node B and from B
to A. Therefore, it is necessary to distinguish which direction
of the edge the agent moves along in order to judge if it is
approaching the goal. As a consequence, it is necessary to
double all edges for the implementation of the ACO. As a
result, there are two edges connecting two nodes A and B,
one to move from A to B and one to move from B to A.
Each of the doubled edges has its own pheromone value. This
value differs if the edge between A and B or the edge between
B and A is examined. As each edge is doubled to have both
directions, in Figure 8, one direction is marked in blue and
the other in red.
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(a) Pheromone distribution if all
edges have the same starting
pheromone value

(b) Pheromone distribution if the
best solution found in a previous
game is considered

Figure 8. Different pheromone distribution modes

Tests have shown that distributing the pheromones equally
on all edges with

τ(r, s) = τ0 , (9)

as visualized in Figure 8(a), the swarm needs a lot of time to
reach the goal. Therefore, we introduced a second pheromone
initialization mode. The pheromone values are initialized de-
pending on their distance to the goal with

τ(r, s) =
1

d
· τ0goals + τ0 , (10)

where d is the distance to the last goal position (the first
row in Figure 9(a)), and τ0goals is a parameter for the initial
pheromone value for the two edges connected to the first row.
Edges connecting goal nodes have a higher initial pheromone
value than edges connecting the start nodes. As a result, the
swarm knows the direction where to go from the beginning.
Additionally, we gave the swarm the ability to remember
pheromone values of previous games. The pheromone distribu-
tion of the best game with the lowest number of moves played
so far is stored. Its influence on the initial distribution of the
pheromones can be weighted with the parameter b. Figure 8(b)
illustrates the pheromone distribution for considering the best
solution found so far. It can be exploited by the characters in
the beginning of the new game.

After distributing the pheromones on all edges, the charac-
ters start planning their path by using the ACO algorithm.

B. Implementation of the ACO for Halma

Each game character needs to choose between exploration
or exploitation. The parameter q0 defines the probability
to choose either of them. In the following exploration and
exploitation are examined separately.

1) Exploitation: The character chooses exploitation if the
randomly generated variable q < q0. Exploitation means that
the path is generated by using the trail with the highest
pheromone value. Therefore, a character calculates all its valid
moves. For each neighboring node of the character’s position,
all valid step and jump moves are calculated. To choose one
of those paths, each path is evaluated with

p = l ·
k∑
e

τ(r, s), (11)

where l is the length of the path, τ(r, s) the pheromone value
of an edge, and k the number of edges in the path. In contrast
to the TSP application, for Halma we prefer longer paths over
short moves. Long paths mean that we found several characters
to jump over. Making several jump moves at once is crucial to
find a efficient way to approach the goal. We therefore choose
the path with the highest p. The chosen path is then considered
for the global decision, which character is going to move.

2) Exploration: If the character chooses exploration, the
general procedure is similar to exploitation. In contrast to the
standard ACO the random-proportional rule was replaced, so
the edges are chosen completely random without any bias. The
edges of the character’s path are chosen randomly from all
neighboring edges that enable a valid move. The exploration
procedure also implements both, jump moves and step moves.

In contrast to exploitation, exploration only produces one
path and no decision is needed to choose between potential
paths.

3) Balance Between Exploration and Exploitation: The
balance between exploration and exploitation is important to
generate new solutions as well as to exploit good solutions.
For exploration, choosing edges randomly leads to new paths
to visit nodes and edges which have not been part of a
path so far. With exploration it is possible to find paths to
the goal which lead to fewer draws than the already found
solutions. Those paths found by exploration can be used by
other game characters throughout exploitation. They follow
the paths that have already been chosen by other characters.
The more characters follow a path the higher is the pheromone
value on these paths. This results in the exploitation of good
explored solutions.

With the ACO each character plans the path it would take
if it is going to move. As only one character is allowed to
move at a time, the global backward pass of the BCO is used
to make this decision.

C. Global Backward Pass

For performing the backward pass, each character calculates
a fitness for its path. This fitness is calculated with

f = wd ·
1

d
+ wl · l + wp · p . (12)

To calculate the fitness, three components are taken into
account:

• the distance d between the end node of the path and the
first row (farthest goal position)

• the length of the path (l)
• the sum of all pheromone values on all edges of the path

(p)



54

International Journal on Advances in Intelligent Systems, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/intelligent_systems/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each component has its own weighting factor wd, wl, wp
respectively. Those weighting factors are given as parameters.
If a character is already at one of the goal positions the
equation for calculating the fitness is changed to

f = wd ·
1

fg
+ wl · lp + wp · p . (13)

This avoids draws inside the goal, although there are still
characters at the starting position or in the middle of the
field. Here, the distance d was replaced by a factor fg that
is associated with a parameter.

After calculating the fitness of each character, the sum of
all fitness values is calculated. Then, the decision is made if
a piece abandons its path or if it presents its solution to the
others. The decision is based on a probability τ(r, s) for a
character i which is calculated with the roulette wheel rule
according to

τ(r, s) =
fi∑

c ∈ C

fc
. (14)

The fitness fi of the character i is divided by the sum of all
fitness values of all characters C.

The probability τ(r, s) defines if the character abandons or
advertises its solution. Is τ(r, s) > 1

|C| , the character advertises
its path. Otherwise, it abandons it.

Each character that decides to abandon its solution, needs
to choose one of the solutions advertised by another character.
Therefore, a similar equation to Equation (14) is used, but only
the fitness values of characters are summed up that advertise
their path.

One character is chosen from all characters that advertise
their solution by an Equation similar to (14) and makes a
move.

D. Update Rule

After a character has been chosen to make a move, the
edges of its path are updated. In contrast to the original ACO
algorithm, the update rule is only used on a global level and
the local update rule has been neglected. We use only the best
result of the paths proposed by our ten characters. The paths of
the other nine characters may be worse and would negatively
influence the pheromone distribution. Therefore, when testing
the local update rule, their results have been worse and we
decided to neglect it. The pheromone update is illustrated with

τ(r, s) = τ(r, s)+α·l·τ0·


2 · j, jump moves and l > 2

1 · j, jump moves
1, else

.

(15)
A pheromone value, depending on the properties of the path,
is added to the pheromone value of an edge τ(r, s). If the
character makes a move without jumping, a pheromone value
of α · l · τ0 is added, where l is the length of the path. If the
character’s move includes one or more jumps, a jumping factor
j, given as a parameter, is taken into account. If the character

jumps more than once, this factor is multiplied by two. This
has the effect that a long path raises the pheromone value of
the edges significantly and other characters might consider this
path as well in the next iteration.

If a character reaches one of the goal positions, the
pheromone values on all edges the character has been vis-
iting throughout the game are updated. This increases the
pheromone values on edges which lead to the goal. Other char-
acters are able to plan their path accordingly. Consequently,
after one character reaches a goal position, the probability for
the other characters increases to get to the goal faster. The
edges are updated with

τ(r, s) = τ(r, s) + ρ · τ0 · g . (16)

The initial pheromone value τ0 is multiplied by an in goal
factor g and by ρ which are both given as a parameter. The
result is then added to the edge’s pheromone value.

To avoid the algorithm to get stuck into a local minimum
the pheromone values on all edges evaporate partly. The
pheromones only evaporate after a predefined number of
moves (e), to avoid an evaporation of the pheromones on long
paths too quickly. The updated pheromone value of an edge
is calculated with

τ(r, s) = (1− α) · τ(r, s) . (17)

E. Limitations for the Characters

The characters plan their path autonomously. After doing
first tests a few problems were detected that needed to be
restricted. First of all, the characters are supposed to stay in
the goal area once they arrive there. Figure 9(a) illustrates the
goal positions of one player in red. If a character reaches one
of the red points, it is in the goal region.

To avoid that the characters do small moves in front and
inside the goal, they need to fill the goal from the end. This
is shown in Figure 9(b). If a character reaches the first row, it
is not allowed to move anymore. The second row needs then
to be filled next. The character on the left of the two nodes
is not able to move. For the characters that are not allowed to
move, no local path is calculated and they are not part of the
decision making process. If the character in the Figure 9(b)
moves to the node where the arrow is pointing to, it is not
allowed to move in future moves. The list of nodes that will
be filled next is updated so the third row is filled during the
next draws.

F. Cooperative Game

As mentioned in [2], an optimal solution for the two-
player case can only be reached if the two players cooperate.
Consequently, we implemented an option to start a cooperative
two-player game. After each move, the two players exchange
their pheromone distribution. As both players start at the
opposite of each other, the pheromone distributions are then
inverted and compared to the own distribution. The pheromone
values are then updated according to
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τ(r, s) = τ(r, s) +

{
c, ifτ(s, r)o > to

0, otherwise
, (18)

where τ(s, r)o is the pheromone value of the other agent
matching τ(r, s) and c and to are given as a parameter.

(a) Visualization of the different rows in the goal
positions

(b) The goal is filled from the end

Figure 9. Goal positions of one player

The implementation proposed throughout this section has
been tested for playing Halma games with SI. The experi-
mental results are presented in the following chapter.

VI. EXPERIMENTS

This section focuses on the experiments conducted for the
SI player. First, the experimental setup is defined and the
architecture of our implementation is proposed. Second, the
experimental results for single as well as two-player games
are presented.

A. Experimental Design

In order to optimize the algorithm designed for Halma we
implemented a framework for Halma. As depicted in Fig. 10
the application is based on a Model View Controller (MVC).

Due to the modularization of the different components, we
can connect both, an agent based on the presented SI algorithm
but also an agent that uses any other algorithm. This has the
following advantages:

• It allows future research with algorithms of different
archetypes. We could, e.g., include agents based on
reinforcement learning by solely exchanging the agent.

• A learning algorithm can play against a human player
and learn from their strategy.

• It allows the initialization of the presented SI algorithm
with different hyperparameters. This can lead to one algo-
rithm playing ”defensive”, i.e., building up a ladder and
the other algorithm playing ”offensive”, i.e., making use
of the ladder to reach the other side more quickly. This
could greatly benefit the optimization of our solutions.

Figure 10. Component Diagram of the Halma framework

To test the SI player for a Halma game, we conducted
experiments for the single player and two-player game. For
both setups, the parameter configurations are the same and
summarized in Table IV.

TABLE IV. PARAMETERS USED FOR PLAYING HALMA WITH SI

Parameter Value

τ0 5
τ0goals 10
q0 0.8
β 2.7
α 0.1
ρ 0.5
j 5000
g 10
e 11
wd 2
wl 50
wp 5
fg 50
b 2.5
c 5
to 20

We want to force the players to favor jump moves over
step moves because they contribute to less draws. Therefore,
the parameter value for j and wl are high. Additionally, the
large value for fg reduces the number of draws within the goal
region. If a game has not been finished after 500 moves, the
game has been stopped and restarted.
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Goal of the experiment with one agent is the comparison of
number of moves a single SI player needs to win the game,
in comparison to the best possible solution as discussed in
Section IV. Additionally, we want to evaluate the effect of
the initial distribution of pheromones on the number of moves
needed to finish a game. Moreover, we conducted two-player
experiments to evaluate the cooperation between two agents.

B. Experimental Results

In the following, we present the results gained for single,
as well as two-player experiments. All configurations and the
evaluation of number of moves are summarized in Table V
and Figure 11.

1) Single player experiments: Figure 12 shows the number
of moves of three test scenarios for 1000 games each. The
more bold a point, the more often this number of draws has
been achieved. The blue points on the bottom represent the
number of moves without using the best solution found so
far in a previous game (Id 1). Nevertheless, it uses an initial
distribution of the pheromones introducing the direction where
the swarm has to go. The orange points in the model represent
the number of moves when using the best solution found so
far with 68 moves (Id 2). The game with 68 moves has been
the game with the smallest number of draws found when
doing experiments. It has been achieved in a previous game.
The pheromone distribution at the end of this game has been
used to initialize the pheromones. The green points on the top
represent the total number of moves when starting without
the best solution found so far and updating it throughout the
game, i.e., the first game of the 1000 played games was the
best solution in the beginning and was updated during the
experiment (Id 3). Figure 12 shows that using the best solution
that was found by the swarm in the past has an effect on
the number of draws. Using the best solution found so far
reduces the median of the number of moves. Without using
best result of the past, the median is 133. In comparison, when
starting without a best solution and updating it throughout
the experiment, the median is 120. When initializing the
pheromone values considering the best solution with 68 moves,
the median of total moves is 113. Furthermore, from Table V,
the mean, as well as the standard deviation is lowest when
using the best result found so far with 68 moves.

As a consequence, the initial distribution of pheromones has
a large effect on the number of moves needed by the swarm.
Without a hint in which direction to move, the swarm needs
more moves to win the game.

Furthermore, we tested the SI player for different balance
values between exploration and exploitation shown in Figure
13. In the aforementioned experiments, the parameter q0
balancing between exploration and exploitation is 0.8. For the
following test, we choose an initial pheromone distribution
exploiting the best solution of 68 moves. The experiment
has been conducted for 1000 games each by varying the q0
parameter. Three values for q0 have been tested, namely 0.6

(blue on the bottom), 0.8 (orange in the middle), and 1.0 (green
on the top).

As 68 moves was the best result that has been reached so far
with the algorithm, exploiting this solution more, results in a
lower total number of moves than when increasing exploration.
The SI player can exploit the pheromone values of the 68-
moves solution, because they lead to a good result in the
past. As seen in Figure 8(b), when using the best solution
for pheromone initialization, the pheromones are mostly dis-
tributed on the area directly connecting the start and the goal.
More exploring will therefore lead to worse results, as no new
faster ways besides the direct paths to the goal can be found.
Consequently, choosing q0 = 1.0 leads to better results than
q0 = 0.6. As stated in [2], the 68 draws solution is still far from
optimal. In order to improve this, we need exploration and
therefore, we chose for the following experiments q0 = 0.8.

2) Two-player Experiments: As mentioned in [2], the per-
fect game with two players consists of less moves per player
than single player games. In order to validate if that is also
the case for our SI Halma player, we present the results of
several experiments in the following.

First, we directly compare a single player game with a two-
player game using the same parameters. For this experiment,
the players do not cooperate while playing. The results are
presented in Figure 14. 1000 tests have been conducted for the
single player scenario on the bottom (blue, Id 2), whereas the
two-player scenario on the top (orange, Id 5) has been repeated
500 times. Comparing the median of the number of moves
for both experiments, the two-player scenario outperforms the
single player setup with 104 compared to 113 moves.

The following experiment focuses on the two-player setup.
Four scenarios with 500 games each have been compared and
are shown in Figure 15. If the best solution found so far has
been used, the 68 moves solution already used for previous
experiments has been chosen. The results for using the best
solution and having a cooperation between the two players (Id
4) is shown in blue on the bottom. Using the best solution,
but not having a cooperation is shown in orange (second from
bottom, Id 5). For the other two results, no best solution has
been used. For the green results (second from top, Id 6), the
players have cooperated, wheres for the tests resulting in the
red dots (top, Id 7), no cooperation has been introduced.

Both using the best result and the cooperation affect the
median of the number of moves as visualized in Figure 11.
The median of the number of moves when using both is
102, whereas it is 121.5 when not using both. Introducing a
cooperation when not using the best solution improves the
median from 121.5 to 114. When using the best solution
found so far, the cooperation slightly improves the median of
moves from 104 to 102. As visible in Figure 15, the standard
deviation when not using the best solution is much higher
than when relying on it. This is also proven by the standard
deviations shown in Table V. Despite the fact, when using the
best solution, the median of moves for cooperation is lower,
the standard deviation is higher. Although cooperation can
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TABLE V. RESULTS FOR THE NUMBER OF MOVES FOR DIFFERENT EXPERIMENTAL SCENARIOS.

ID Players Tests Best Solution Cooperation Median Mean Standard Deviation

1 1 1000 x - 133 153.46 63.27

2 1 1000 X - 113 116.82 33.42

3 1 1000 construct - 120 132.81 39.2

4 2 500 X X 102 118.35 58.45

5 2 500 X x 104 121.75 54.96

6 2 500 x X 114 142 73.32

7 2 500 x x 121.5 152.91 81.4

Figure 11. Distribution of draws until a player wins the game for the scenarios in Table V identified by the ID.

improve the number of moves, the solutions are far from the
optimal solution of 15 moves per player specified in [2].

In general we can see from Table V and Figure 11 that
we were able to improve the performance of the algorithm by
remembering the best solution found so far. In the single, as
well as the two-player scenarios, the number of total draws is
less when using the best solution found so far than when the
initial pheromone distribution is only based on the distance
to the goal. Additionally with this approach, it was possible
to reduce the standard deviation significantly. We can see that
our algorithm is able to solve the game and our modifications
including a ”memory” increased its performance. Although,
the results for the single as well as the two-player case are far
from optimal, further modifications and optimization can help
to reach the optimal solutions.

VII. CONCLUSION AND FUTURE WORK

This paper presented an application for using a combination
of SI algorithms. The ACO algorithm and the BCO algorithm
have been combined to realize a nonhuman player for the
board game Halma. Experiments have shown that the initial
distribution of pheromones has a big influence on the perfor-
mance of the SI player.

Nevertheless, the number of moves resulting from the
experiments is still high in comparison to the optimal solution.
Future work will therefore focus on decreasing the number of
moves needed to win a game with one and multiple players.
Furthermore, it is possible to compare the SI player to a human
player. Most humans will not find the optimal solution when
playing Halma. Therefore, it is interesting to do experiments
by comparing human players and SI players.

In future work, we want to make use of this architecture to
find out about the performance of other algorithms searching
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Figure 12. Number of moves for 1000 games. Blue (bottom) without using
the best solution found in other games (Id 1). Orange (middle) using the best
solution found so far with 68 moves (Id 2). Green (top) starting without a

best solution and updating it whenever a better result has been found (Id 3).

Figure 13. Number of moves for 1000 games. Blue (bottom) with q0 = 0.6.
Orange (middle) with q0 = 0.8. Green (top) with q0 = 1.0.

for the shortest game possible. Furthermore, the architecture
allows the initialization of the presented SI algorithm with
different hyperparameters. This can lead to one algorithm
building up a ladder and another exploiting the ladder to reach
the other side more quickly. This could greatly benefit the
optimization of our solutions.

This paper focuses only on one board game. SI can also be
used for other board games with multiple characters. Another
possible application would be Chess. In contrast to Halma,
where all characters are equal, in Chess the members of the
swarm have different roles. The decisions of the swarm need to
consider the inequality of its members. SI can not only be used

Figure 14. Number of moves for one player using the best solution found so
far with 68 moves. 1000 games for a single player game (blue bottom, Id

2). 500 tests for two players without cooperation (orange top, Id 5).

Figure 15. 500 Tests per experiment. Blue (bottom, Id 4) using the best
solution (68 moves) and cooperation of the agents. Orange (second from

bottom, Id 5) using the best solution (68 moves) and no cooperation. Green
(second from top, Id 6) not using the best solution, but having a cooperation
of the agents. Red (top, Id 7) no using the best solution and not cooperating.

for board games, but for every game were multiple characters
play together and need to make decisions. In video games, the
human player often needs to play against other players and
characters. If the game involves armies of opposing players,
they can also act like a swarm. They need to find solutions
themselves by making decisions which consider the solution
of every single member of the swarm. Video games are more
complex than board games and the effort for implementing an
SI algorithm for a video game is higher than for a board game,
but it enables a swarm-like behavior of the opposing player.

Not only simulated swarms in games can be optimized,



59

International Journal on Advances in Intelligent Systems, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/intelligent_systems/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but the approaches can also be expanded for path planning
in multi-agent systems and robotic swarms.
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