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Abstract—The present paper aims to interpret multi-
layered neural networks by considering as many possible
internal representations as possible, which is called “collective
interpretation.” The interpretation is performed in a syntagmatic
and paradigmatic way. In the syntagmatic processing, all
representations created in each step of the learning processes
from the beginning to the final stage are considered. Then, in
the paradigmatic approach, we try to deal with all possible
representations by the syntagmatic processing. In addition, to
make this collective interpretation easier, we control collective
interpretation by the selective information, which is simplified to
control the cost in terms of the strength of connection weights.
The collective interpretation with the simplified selective
information augmentation by the cost control was applied to
three actual data sets: the traffic, facility for the elderly, and
wine data sets. With the first two data sets, we could observe
that the networks tried to extract simple and clear relations
between inputs and outputs. For the wine data set, because
the simple cost reduction could not be effective, the cost was
first augmented to reduce the selective information, and then
it was increased. The final compressed weights were also
simplified for clearer interpretation. The results showed that the
collective interpretation with the simple selective information
control by the cost control could flexibly deal with input and
output information for producing simple and interpretable
representations.

Keywords-collective interpretation; selective information;
cost; partial compression; generalization

I. INTRODUCTION

The present paper aims to propose a new interpretation
method composed of collective interpretation and selective
information control [1], [2]. We discuss here several problems
related to the conventional interpretation methods and then in-
troduce a concept of collective interpretation. This interpreta-
tion tries to take into account as many internal representations
as possible with a method of selective information to make
the collective interpretation clearer and easier.

A. Interpretation Problem

As has been well known, neural networks have been notori-
ous as one of the typical black-box models in machine learn-
ing, though there have been many attempts to interpret their
internal representations from the beginning of the research
[3]–[7]. Even if neural networks can show good performance
in generalization, they have not been accepted as reliable

models, because there have been serious risks we must face
in unexpected ways. In addition, neural networks have been
used to explain and understand human cognitive processes,
as was done in the name of connectionism [3], [8], [9]. In
this approach, the interpretation of internal representations
obtained by neural networks is the objective of the research,
and generalization performance, which is nowadays one of the
main objectives in neural networks, is only one aspect among
many to be explained.

Meanwhile, the massive invasion of neural networks as well
as other machine learning techniques into our daily life has
caused some concern about their use for our critical decision
making. Then, due to the urgent need to respond to the right
to explanation [10], there have been many different types of
interpretation, in the field of convolutional neural networks
(CNN) in particular. Those conventional interpretation meth-
ods can be classified into three types: conditional, individual,
and intuitive.

First, the interpretation has been based only on a specific
condition. Usually, we have tried to interpret an instance of
network behavior only when an initial condition is applied.
Actually, with a specific initial condition, for example, with a
specific set of initial weights, learning is performed, followed
by the interpretation of obtained representations. However, the
final internal representations are greatly variable, depending
on different initial conditions; it is almost impossible to give
fixed and stable meanings to those different representations,
and furthermore, some contradictory interpretations can be
obtained. In particular, when we have tried to apply logical and
linguistic rules to the interpretation [11]–[14], we have faced
much difficulty in interpreting the different rules. With those
formal methods for interpretation, we can produce a number of
different formal and logical rules for interpretation. Certainly,
we can determine a specific representation for interpretation.
For example, we should interpret a representation related to
the best generalization. Generalization is an important property
to be pursued, but we need to consider many other factors
for neural networks when we try to make them as close as
possible to human intelligence. Those types of interpretation
can be valid only under some specific conditions, such as
specific initial conditions, best generalization, and so on. In the
present paper, it is supposed that the interpretation should be
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as independent as possible of any specific conditions. Second,
the conventional methods tend to interpret network behav-
iors individually, which is closely related to the conditional
interpretation. This means that the interpretation has been
restricted to an interpretation responding to a specific input or
a specific output. In particular, in the convolutional neural net-
work (CNN), many individual interpretations or visualization
methods have been developed with much success, for example,
the activation maximization [15]–[20], the sensitivity detection
[21]–[25], the layer-wise relevance propagation (LRP) [26]–
[31], and so on. This is because the intuitive interpretation of
image data sets to be discussed immediately below, dealt with
by the CNN, has made it possible to understand an instance
of network behavior seemingly where the interpretation has
been replaced by the intuitive one for a specific image data
set. This individual interpretation seems to be successfully
applied to many data sets. However, one of the main problems
is that the individual interpretation can produce a number of
different types of interpretation on one data set, which can
be contradictory from each other in some cases. We can say
that the sum of individual interpretations cannot necessarily
lead us to the full understanding of data sets, because there
should be a number of cases in which some interpretations are
contradictory to others [32].

The third one is also close to the first and second one,
where the interpretation tends to be heavily dependent on
our intuitive knowledge of data sets, in particular, when the
method is applied to image data sets, as discussed above.
Intuition is naturally one of the most important techniques
in the explanation, because it is easy to persuade people how
neural networks can understand inputs and produce outputs.
However, this intuition has prevented us from understanding
the true inference mechanism of neural networks. The infer-
ence mechanism of neural networks should be different from
that of human beings, because the inference mechanism of
human beings should be severely constrained culturally and
physically so as to maintain their stability and existence [33].
Neural networks have been well known to produce unexpected
final outputs, which have been called “adversarial examples”
[34], [35]. The adversarial examples can be explained when we
can interpret the inference mechanism without human intuition
or human cultural bias toward or against the data sets. The
neural network can deal with the data sets from a viewpoint
that is different from that of human beings. More strongly,
the viewpoint cannot be accepted by human beings due to the
cultural and physical constraints on their inference mechanism
[33], [36]. It should be repeated that human beings are strictly
restricted by their physical or cultural conditions that might
threaten their existence. Their inference mechanism has been
acquired in those severe conditions, which naturally provides
strong bias for the interpretation. Thus, the human inference
can be only one of many different ways to deal with given
inputs appropriately. In short, the adversarial attacks may show
one truth about human intuition that the data sets cannot be
necessarily well suited to interpret by the inference mechanism
of neural networks.

Those limitations and conditions of interpretation seem to
be related to the severe shortcomings of neural networks.
However, when different types of explanations can be unified,
neural networks can be ironically well suited for dealing
with unstable and multiple interpretations, compared with
the conventional statistical methods. As mentioned above,
we have a problem of conditional interpretation, where one
of the main problems of neural networks is that they are
seriously dependent on initial conditions and where different
initial conditions can produce completely different internal
representations. Though this phenomenon seems to be one
of the main drawbacks of neural networks, it can also be
one of the merits of neural networks. This is because they
can explain many different aspects of given tasks and data
sets just by using different initial conditions. Conventional
statistical methods have tried to obtain a representation fixed
by a corresponding idealized model, while neural networks
try to produce as many different types of representations as
possible by using different initial conditions. At this point, all
we have to do is to propose a method to unify those different
types of representations created by neural networks.

B. Collective Interpretation

In this context, we present here a new type of interpretation
method called “collective interpretation,” aiming to consider
all possible internal representations generated by neural net-
works. On the contrary, the conventional interpretation method
in neural networks is an attempt to interpret only one in-
ternal representation. First, as mentioned above, we suppose
that different results by different initial conditions should be
considered one of the main merits of neural networks. The
different results can be produced by an effort to see a given
task or data set from a number of different viewpoints and
in a number of different ways. All results by different initial
conditions should have some meaning to explain the task.
Our hypothesis is that all representations by different initial
conditions should be taken into account to reach the full
understanding of the inference mechanism of neural networks.

In collective interpretation, there are two components: net-
work compression and selective information control. First,
we introduce the network compression to simplify multi-
layered neural networks. Our method of compression lies
in compressing as many representations as possible into the
simplest form for explaining the core knowledge obtained
by neural networks. Model compression has received due
attention recently to simplify multi-layered neural networks
[37]–[44]. Those conventional methods have aimed to replace
complicated multi-layered networks with simpler ones, keep-
ing the same generalization performance as much as possible.
Thus, the internal representations obtained by those methods
cannot inherit the original representations of complex multi-
layered neural networks. On the contrary, we have proposed
a method to compress multi-layered neural networks [45],
keeping information stored in weights in multi-layered neural
networks as much as possible.
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In addition to different types of internal representations,
we consider connection weights in syntagmatic and paradig-
matic ways. First, by restricting learning individually and
conditionally, we train neural networks with a specific set of
initial conditions and input patterns, and all representations
in the course of learning are collected. This process is called
“syntagmatic processing,” where all representations, obtained
in each learning step, are taken into account to produce
collected representations. This syntagmatic processing should
be performed for different initial conditions and input patterns,
producing a number of different types of representations. Then,
we should collect all those different compressed representa-
tions, which is called “paradigmatic processing.” Collective
interpretation is composed of the network compression where
syntagmatic processing is first applied, followed by paradig-
matic processing to deal with all possible representations.

An ideal collective interpretation should consider all in-
stances obtained in neural learning, and it should extract some
core structure by which all instances can be generated. The
present paper uses a kind of partial conditional collective
interpretation, where one condition is assumed for the col-
lective interpretation. The condition is that information per
cost should be maximized for simplification. Information-
theoretic methods have been introduced from the beginning
of research into neural networks, producing many principles
affecting studies on neural information processing. For exam-
ple, Linsker’s maximum information preservation principle has
had much influence on neural computing [46]–[49], in which
some visual processing can be explained by the maximum
information principle. Intuitively, we humans try to collect
surrounding information to secure our existence and to keep
it as secure as possible. Thus, though the principle should
play more important roles in extracting some principles in
neural computing, there have been few attempts made to
use information-theoretic principles following important past
studies [50]–[55]. In this context, we try to show how neural
networks are transformed under the condition that information
per cost is maximized. Then, we try to show that we can
disentangle complicated representations into the simplest ones
when the information per cost is maximized. For this, we
introduce a method to increase the selective information for
connection weights, expecting that those weights will be
selected to be disentangled from each other.

However, when the information is formulated in the classi-
cal form of information measures such as entropy and mutual
information, it is not so easy to understand how those measures
are concretely related to the disentanglement of representation.
This is because the abstract and ambiguous property of in-
formation, accompanied by the need for much computational
resources, has prevented us from using them appropriately for
the actual formulation. The present paper proposes a more
simplified method to compute the selective information, which
is not the abstract measure of information but which has
the actual meaning of the number of important connection
weights. Thus, the selective information can be applied to
neural networks and to understanding how information can

be stored in terms of the number of connection weights.
The selectivity has played important roles in neural net-

works, in particular, in generalization [56]–[61]. We should
choose a small number of important connection weights,
based on some criteria on the importance. However, it is
impossible to know the importance of connection weights,
and it has been stressed that the selectivity is of no use in
generalization [56], [59], [61]. For coping with this problem
of selectivity, we use the passive method to extract important
ones. We use the concept of cost [62] in terms of strength
of connection weights. We consider a connection weight
important only when this weight remains strong by introducing
the cost reduction method. This method is closely related to the
conventional weights decay, but the fundamental difference is
that the cost reduction is performed independently of error
minimization. This simple and independent cost reduction
method can eventually produce a small number of important
weights.

Selective information can be maximized to simplify neural
networks, but this simplification is not necessarily successful.
The information on the given data set should be naturally
obtained through inputs. However, those inputs are artificially
prepared by our knowledge on the data set. When these inputs
cannot be used to transmit information on inputs, simplified
networks cannot necessarily represent information on relations
between inputs and outputs. In this case, we must decrease
information on inputs as much as possible. Thus, we first try to
increase the selective information to simplify networks. Then,
if it is impossible to simplify them, we try to decrease selective
information in the first place and then increase selective
information.

C. The Purpose of the Present Study

Considering the above problems, the present paper aims to
propose a new interpretation method with three properties.
First, connection weights produced by neural networks are
exhaustively considered in syntagmatic and pragmatic ways.
This tries to take into account all possible representations
by the neural network. Second, the network simplification
is performed not by the selective information maximization
directly but by the corresponding cost minimization. Thus,
the learning procedures are greatly simplified. Third, when the
selective information maximization cannot give acceptable re-
sults, we first minimize the selective information by increasing
the cost. Then, the ordinary selective information minimization
is applied. This can be used to eliminate harmful information
obtained through inputs.

D. Paper Organization

The paper has been organized as follows. In Section 2,
after briefly explaining the concept of collective interpretation,
we try to explain full compression with syntagmatic and
paradigmatic compression. In addition, to see the intermediate
states of learning, we introduce partial compression and how to
partially compress intermediate layers. Then, we introduce the
potentiality and corresponding selective information, followed
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by the computational methods of cost reduction and augmen-
tation. We applied the method to three data sets, namely,
the traffic, facility for the elderly, and wine data sets. In all
cases, we first tried to show that syntagmatic and paradigmatic
compression could produce compressed weights close to the
correlation coefficients between inputs and targets. In the first
two data sets, by the cost reduction, we could increase the ratio
of selective information to its cost. By the partial compression,
we could see that the present method tried to deal with inputs
from the lower hidden layers, while the other conventional
methods could not consider inputs well. Because the wine data
set could not produce reasonably good interpretation results,
we first decreased the selective information by increasing
the corresponding cost, and then, the selective information
was increased by decreasing the cost. In all experimental
results, the final collective interpretation showed that the main
characteristics were based on the correlation coefficients be-
tween inputs and targets. The differences between compressed
weights and correlation could be used to detect the effects of
non-linear relations between inputs and outputs.

II. THEORY AND COMPUTATIONAL METHODS

We explain here the concept of collective interpretation,
taking into account all internal representations by the syntag-
matic and paradigmatic compression. In addition to the full
network compression, we introduce the partial compression
to see the states of intermediate layers. Then, we introduce
the simplified information-theoretic method by the selective
information, representing how many connection weights are
combined with neurons. After formulating the potentiality
and selective information, we introduce a practical method to
control selective information, where instead of direct control
of selective information, we try to control the cost in terms
of strength of weights. Finally, we present a two-step learning
method in which the cost is first increased, and then decreased
when the simple cost reduction could not be applied.

A. Compression

1) Collective Interpretation: We introduce here a concept
of collective interpretation in which we try to take into account
all possible internal representations, assumed to have equal
importance, created by the neural network. One of the main
shortcomings of neural networks is that their learning behav-
iors are sometimes completely different when different initial
conditions and different subsets of a data set are given, as
shown on the left-hand side of Figure 1. However, we suppose
here that this shortcoming of different learning behaviors
should be one of the most important merits of neural networks.
This means that a neural network tries to see a target object
from many different points of view, corresponding to different
initial conditions and different subsets of a data set. Then, we
suppose that all representations created by the neural network
should have some meaning related to the properties of the
target objects. We more strongly assume that all possible
representations should have the same importance, at least, in
terms of interpretation, dealt with in this paper. As shown in

Figure 1, a neural network can produce many different final
representations by different initial conditions and different
subsets of a data set. Then, we should interpret how a neural
network tries to produce outputs, based on the corresponding
inputs, considering all possible internal representations they
create. The interpretation, taking into account all possible in-
ternal representations, can be called “collective interpretation”
in this paper.

Fig. 1. Collective interpretation aiming to consider all possible internal
representations created by a neural network.

2) Full Compression: For interpreting multi-layered neural
networks, we first compress them into the simplest ones, as
shown in Figure 2. We try here to trace all routes from inputs
to the corresponding outputs by multiplying and summing all
corresponding connection weights.

First, we compress connection weights from the first to the
second layer, denoted by (1,2), and from the second to the
third layer (2,3) for an initial condition and a subset of a data
set. Then, we have the compressed weights between the first
and the third layer, denoted by (1,3).

w
(1,3)
ik =

n2∑
j=1

w
(1,2)
ij w

(2,3)
jk (1)

Those compressed weights are further combined with weights
from the third to the fourth layer (3,4), and we have the
compressed weights between the first and the fourth layer
(1,4).

w
(1,4)
ik =

n3∑
k=1

w
(1,3)
ik w

(3,4)
kl (2)

By repeating these processes, we have the compressed weights
between the first and sixth layer, denoted by w

(1,6)
iq . Using

those connection weights, we have the final and fully com-
pressed weights (1,7).

w
(1,7)
ir =

n6∑
q=1

w
(1,6)
iq w(6,7)

qr (3)

Because we consider all routes from the inputs to the outputs,
the final connection weights should represent the overall
characteristics of connection weights of the original multi-
layered neural networks.
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(a) Initial state

(b) Compressed weights

(1)i

(1)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2)j (3)k (4)l (6)

(7)

(7)

q

r

Fig. 2. Full compression for an initial condition and a subset of a data set
from a seven-layered to a two-layered network without hidden layers.

3) Syntagmatic and Paradigmatic Compression: The full
compression actually is composed of syntagmatic and paradig-
matic compression in Figure 3. With an initial condition and
a set of input patterns, we train a neural network, taking into
account all internal representations by all possible conditions
and subsets of a data set. For simplicity’s sake, we suppose
that only initial conditions are changed, but actually, the subset
of the data set can be changed. Then, we average obtained
connection weights over all weights obtained in a process of
learning for the initial condition. Let us take an example of
connection weights from the sixth to the seventh layer only
and the maximum number of training steps for the sth initial
condition in Figure 3(a4). Then, we can average all possible
weights for all training epochs. For the weights from the sixth
to the seventh weights (6, 7; t) for the tth learning epoch, we
can average all possible weights

w̄(6,7)
qr =

1

ts

ts∑
t=1

w
(6,7;t)
ir (4)

where ts denotes the maximum number of learning steps for
the sth initial condition. All other connection weights are
averaged in the same way. Then, we compress those average
weights in full compression.

w̄
(1,7)
ir =

n6∑
q=1

w̄
(1,6)
iq w̄(6,7)

qr (5)

where w̄(1,6)
iq denote the compressed averaged weights up to

the sixth layer. This compression can be called “syntagmatic
compression” in Figure 3, because it tries to compress all
connection weights obtained for all learning steps.

Finally, the syntagmatically compressed weights are av-
eraged over all initial conditions and subsets of the data

sets. For simplicity’s sake, we restrict the compression for an
initial condition, and we have the paradigmatic compression
in Figure 3(b).

¯̄wir =
1

sm

sm∑
s=1

w̄
(1,7)
ir (6)

where sm denotes the maximum number of initial conditions.
We should repeat that we try to consider all possible represen-
tations created by neural networks. Thus, we can deal with all
connection weights for all learning steps and by all different
initial conditions and input patterns.

(1)

(1)
(1)

(2) j (3) k (4) l (2) j (3) k (4) l (2) j (3) k (4) l

(2) j (3) k (4) l (2) j (3) k (4) l (2) j (3) k (4) l

(2) j (3) k (4) l (2) j (3) k (4) l

(2) j (3) k (4) l (2) j (3) k (4) l(2) j (3) k (4) l

(2) j (3) k (4) l

(1) (1) (1)

(1) (1) (1)

(1) (1)

(1) (1)(1)

(1)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

(6)(5)

(7)

Fig. 3. Collective compression composed of syntagmatic (a) and paradigmatic
(b) compression for collective interpretation (c).

4) Partial Compression : In addition to the full compres-
sion, we need to examine the outputs from the intermediate
layers. For this purpose, we introduce the partial compression,
in which compression is applied up to a specific layer. As
shown in Figure 4, we illustrate the partial compression up
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to the fourth layer. Now, let us assume that we have already
compressed weights up to the fourth layer, denoted by w(1,4)

il .
In addition, the number of neurons in all hidden layers is
supposed to be the same. The partially compressed weights
up to the fourth layer can be computed by

w
(1,4,7)
ir =

n6∑
q=1

w
(1,4)
iq w(6,7)

qr (7)

where w
(1,4)
iq denote connection weights, compressed up to

the fourth layer. For the other intermediate layers, we can
compute the same partially compressed weights. The partial
compression aims to examine to what degree the intermediate
layers contain information on inputs as well as outputs.

(2)j (3)k (4)l

(7)r

(6)q

(a) Initial state

(b) (1,4) (c) (6,7)

(d) (1,4,7) Partially compressed

                weights up to the fourth layer

(1)

Fig. 4. An example of partial compression where only weights up to the
fourth layer are compressed.

B. Reduction and Augmentation of Selective Information

1) Selective Information and Its Cost: The selective infor-
mation can be defined by using the selective potentiality of
connection weights. When the selective information increases,
a small number of connection weights tends to be connected
with some specific neurons. The individual potentiality of
connection weights can be defined by the absolute values
of weights, for example, from the second to the third layer,
represented by (2,3), which is computed by

u
(2,3)
jk =| w(2,3)

jk | (8)

Then, we normalize these values by their maximum ones.

h
(2,3)
jk =

u
(2,3)
jk

maxj′k′u
(2,3)
j′k′

(9)

where the maximum operation is over all connection weights
between two layers. Then, summing all these normalized
values, the selective potentiality can be defined by

H(2,3) = β1

n2∑
j=1

n3∑
k=1

[
u
(2,3)
jk

maxj′k′u
(2,3)
j′k′

]
(10)

where n2 and n3 denote the number of neurons in the second
and the third layer, and β1 is a parameter to control the
strength. It should be larger than zero. Then, the complemen-
tary potentiality is defined by

g
(2,3)
jk = 1−

u
(2,3)
jk

maxj′k′u
(2,3)
j′k′

(11)

Summing all these normalized values, the selective informa-
tion can be defined by

G(2,3) = β2

n2∑
j=1

n3∑
k=1

[
1−

u
(2,3)
jk

maxj′k′u
(2,3)
j′k′

]
(12)

In addition, we need to define the corresponding cost to
represent the potentiality and information. In this paper, the
cost is simply the sum of all the absolute weights.

C(2,3) =

n2∑
j=1

n3∑
k=1

u
(2,3)
jk (13)

We suppose that the cost representing the information should
be as small as possible, and then the final function to be
controlled for the selective potentiality is

R(2,3) =
H(2,3)

C(2,3)
(14)

Then, for the selective information, the function to be con-
trolled is

R(2,3) =
G(2,3)

C(2,3)
(15)

2) Cost Control for Sensitive Selective Information: The
selective information should be augmented and the corre-
sponding cost should be reduced in the majority of data sets.
When we try to control the ratio of selective information to its
cost, we have two possible ways to do so: selective information
control or cost control. Because it is sometimes difficult to
directly control the selective information, we focus on the cost
and try to control it. In addition, when we try to increase the
selective information, one of the major problems is that we
cannot identify important connection weights or see whether
a weight plays a major role in interpretation or generalization.
Thus, we pay attention to the corresponding cost, and we try
to reduce the cost as much as possible, which is expected
to increase the selective information eventually. For this case,
the connection weights at the t+ 1th learning step are simply
computed by

w
(2,3)
jk (t+ 1) = β1 w

(2,3)
jk (t) (16)

where β1 should range between zero and one, because we
try to reduce the cost or the strength of connection weights.
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However, for some data sets, we have found that the se-
lective information augmentation and the corresponding cost
reduction cannot be accompanied by disentangling connection
weights into simplified ones for better interpretation. In those
cases, we first reduce the selectivity at the expense of higher
cost. Then, we try to increase the selective information and to
decrease the corresponding cost. Figure 5 shows the process
of a two-step method of selective information reduction and
augmentation. In the initial state in Figure 5(a), connection
weights are randomly initialized with the intermediate selec-
tivity. Then, we try to decrease the selectivity at the expense
of larger connection weights or higher cost in Figure 5(b).
Finally, we try to decrease the cost and at the same time
increase the selective information in Figure 5(c). In this case,
for the initial learning steps, we have

w
(2,3)
jk (t+ 1) = β2 w

(2,3)
jk (t) (17)

The parameter β2 should be larger than one. We try to increase
the strength of connection weights. This leads us to the
augmentation of selective potentiality at the expense of cost.
We use this method because it is easy to decrease the selective
information. Then, for the remaining learning steps, we have
the same assimilation rule

w
(2,3)
jk (t+ 1) = β1 w

(2,3)
jk (t) (18)

However, the parameter β1 should be between zero and one to
reduce the cost and correspondingly to increase the selective
information.

(1) i
(2) i (4) (5) (6) q

(7) r

(3) k
(1) i

(2) i (4) (5) (6) q

(7) r

(3) k

(c) Low cost selectivity augmentation(b) High cost selectivity reduction(a) Initial state

Fig. 5. Selective information augmentation (c) through higher cost selective
information reduction (b).

3) Assimilation: Depending on their strength, weights are
controlled to be smaller or larger. However, when the weights
are controlled by the parameter β, we need to re-train a neural
network to assimilate learning processes. We try to repeat this
process of assimilation many times. One of the possible ways
to do so is to use the dth sub-epoch td of the tth learning step,
and it can be computed by

td = θ1

(
t

tmax

)θ2
+ θ3 (19)

where d is the dth sub-epoch of step of the tth learning step
and tmax is the maximum number of learning steps with three
parameters, θ1, θ2, θ3, to control the effect of assimilation.

Figure 6 shows a process of assimilation for a learning step.
First, weights in an initial state in Figure 6(a) are multiplied by
the parameter β (for example, smaller values) in Figure 6(b),
and the strength of weights is reduced in proportion to the
parameter β in Figure 6(c). Then, we repeat the assimilation
steps for the learning step several times in Figure 6. Because

the effect of the parameter β is weakened in this process of
assimilation to reduce training errors, we must have weakened
weights less than those at the initial stage of assimilation due
to the effect of error minimization in Figure 6. Then, we
repeat this process of assimilation for each learning step to
obtain the final reduced weights. One of the important features
of this assimilation method is that the assimilation (error
minimization) and potentiality assignment (application of the
parameter β) are performed separately. First, the strength of
weights is reduced, and then, the effect of the parameter
is assimilated (error minimization). This method, thus, can
resolve the contradiction between error minimization and
regularization, which are usually simultaneously performed.

(1) i
(2) i (4) (5) (6) q

(7) r

(3) k
(1) i

(2) i (4) (5) (6) q

(7) r

(3) k

(b) Potentility assignment

(c) Assigned state (e) Assimilated state(a) Initial state

(d) Potentiality and cost assimiliation

Repeated assimilation

Fig. 6. A computational method to assimilate the effect of cost reduction.

III. RESULTS AND DISCUSSION

We present here experimental results on three data sets:
traffic, facility for the elderly, and wine. In the first two data
sets, we used the simple cost reduction method to increase
the selective information. For the third data set, the simple
cost reduction could not produce reasonable results, so we
first augmented the cost, and the usual cost reduction to
increase the selective information was applied. With those
three methods, we tried to show that we could compress
networks syntagmatically and paradigmatically with the aid
of cost or selective information control into simpler and
clearer networks, whose connection weights could be closer to
the correlation coefficients between inputs and targets of the
original data sets. In addition, we could extract some properties
due to the non-linear processing of neural networks.

A. Traffic Data Set

1) Experimental Outline: The database was created with
records of behavior in urban traffic in the city of Sao Paulo in
Brazil [63]. The number of inputs was 17, and the number
of patterns was 135. Seventy percent of the data set was
used for training, and the remainder was for testing. To make
the reproduction of the present results easier, we tried to
use the scikit-learning package with all default values except
for the tangent-hyperbolic activation function and the number
of epochs, which was changed according to the equation
described above. Table I shows the parameter values for
the experiments. In the following sections on experimental
results, we used the same parameter values for the easy
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TABLE I
SUMMARY OF PARAMETER VALUES FOR THE TRAFFIC DATA SET.

Parameters Values
β1 0.85
θ1 5
θ2 1
θ3 5

reproduction of all results except for the third results, where
a new parameter β2 = 1.3 for augmentation of potentiality or
information minimization was introduced.

2) Syntagmatic and Paradigmatic Compression : We com-
pared compressed weights with correlation coefficients be-
tween inputs and targets of the original data set, supposing
that the correlation coefficients were meaningful for describing
the relations between inputs and outputs. The results show
that the present method could produce syntagmatically and
paradigmatically compressed weights close to the correlation
coefficients between inputs and targets of the original data
set. Though the weight decay and conventional method could
produce reasonably high correlations, they were still lower and
behind the correlations by the present method.

Figure 7 shows the syntagmatic (left) and paradigmatic
(right) compression for the traffic data set for 100 different
initial conditions and 100 different subsets of the data set. One
of the main characteristics is that, when the parameter β1 was
0.85 for the cost reduction, correlation coefficients between
syntagmatically compressed weights and original correlations
between inputs and targets of the original data set were
much higher than those by any other method, and close to
one (perfect correlation) in the box on the left-hand side
of Figure 7(a). The box on the right-hand side of Figure 7
(a) shows the results of paradigmatic compression, and we
could see that when the number of different initial conditions
and different subsets of the data set increased, the correlation
coefficients became close to the maximum of one. When the
parameter α for the weight decay was set to 0.1 in Figure 7(b),
the correlation coefficients for the syntagmatic compression
became lower than those by the cost reduction in Figure 7(left,
a). For the paradigmatic compression in Figure 7(right, b), the
correlations became larger gradually, but the final correlations
were lower than those by the present method in Figure 7(a).
Finally, even without weight decay, the final results were quite
similar to those with the weight decay in Figure 7(c).

The results confirmed that the collective interpretation could
extract relations between inputs and outputs that were close
to the original correlation coefficients between inputs and
targets. Thus, neural networks, in particular, with the cost
reduction, could disentangle connection weights that could be
compressed to represent simple relations between inputs and
outputs.

3) Selective Information, Cost, and Ratio: The results show
that, though the new method could not increase selective
information in the later stages of learning, the cost was reduced
sufficiently to increase the ratio of information to its cost. On

(a) 0.85

(b) 0.1

(c) Conventional

Fig. 7. Correlation coefficients between weights and original correlation
coefficients by the syntagmatic compression (left) and by the paradigmatic
compression (right), when the parameter β1 was 0.85 (a), α was 0.1 for
weight decay (b), and by the conventional method without weight decay (c)
for the traffic data set.

the contrary, the weight decay and conventional method could
not increase the ratio of information to its cost.

Figure 8 shows selective information (left), cost (middle),
and the ratio of information to its cost (right). When the
parameter for the cost reduction was 0.85 in Figure 8(a), the
information first increased gradually, and then it decreased.
On the other hand, the cost decreased gradually, and remained
almost a constant in the later stages of learning. Naturally, the
ratio of information to its cost increased and then decreased
slightly in the end. When the weight decay was used and the
parameter α was set to 0.1 in Figure 8(b), the information
constantly increased, and the cost gradually decreased, though
it did not decrease to the lower point attained by the present
method. The ratio was much lower than that by the present
method in Figure 8(right, b). Finally, when we used the
conventional method without the weight decay in Figure 8(c),
the information did not change, the cost remained higher, and
finally, the ratio remained lower.

The results confirmed that the cost reduction could inhibit
the generation of supposedly important connection weights.
On the contrary, the weight decay constantly increased the
selectivity of connection weights.

4) Weights: The results showed that the present method
could produce weights where a small number of them became
stronger, and we could also see that some groups of connection
weights were identified. On the contrary, the weight decay and
conventional method could not produce a similar result.

Figure 9(a) shows connection weights (1) and their in-
dividual potentiality (2). As can be seen in the figure, a
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Fig. 8. Information (left), cost (middle), and ratio (right) when the parameter
β1 was 0.85 (a), α was 0.1 (b), and by the conventional method (c) for the
traffic data set

small number of connection weights became stronger, and
they responded to inputs in the precedent layers with clear
regularity. This tendency was further enhanced over individual
potentialities in Figure 9(2). Figure 9(b) shows weights and
individual potentiality by the weight decay (α = 0.1). Though
we could not see any strong weights, a small number of
weights could be seen by using the individual potentiality.
Finally, when the conventional method was used in Figure
9(c), weights seemed to become randomly activated, though
we could see a smaller number of individual potentiality.

5) Partial Compression: The results show that the present
method tried to extract information from inputs, while the
weight decay and conventional method tried to extract infor-
mation from outputs.

Figure 10(a) shows partially compressed weights when the
parameter β1 was 0.85. As can be seen in the figure, only
the initial partially compressed weights had higher connection
weights, and the strength of weights remained small. This
means that at the beginning the present method tried to acquire
information on inputs and that it seemed to try to extract
information on inputs as much as possible. Figures 10(b) and
(c) show partially compressed weights by the weight decay
and by the conventional method. Clear compressed weights
could not be seen until the final compression was performed.
This means that information from outputs played a critical role
in creating the final connection weights.

6) Full Compression: The results show that the present
method could produce compressed weights whose correlations
with the original correlations between inputs and targets were

(1) Weights

(1) Weights(1) Weights

(1) Weights

(2) Potentiality

(2) Potentiality(2) Potentiality

(2) Potentiality

(a) 0.85

(b) 0.1(b) 0.1

(c) Conventional

Fig. 9. Weights (1) and potentiality (2) when the parameter β1 was 0.85 (a),
α was 0.1 (b), and by the conventional method (c) for the traffic data set.

high and close to those by the logistic regression. In addition,
the present method produced higher generalization accuracy.

Figure 11(1) shows the correlation coefficients between
inputs and targets, and we could see that the first input (hour)
played the most important role in traffic behavior. Figure
11(2) shows fully compressed weights by the paradigmatic
compression when the parameter β1 was 0.85. As can be seen
in the figure, the correlation was 0.908, the second largest
one behind the logistic regression analysis, and generalization
accuracy was the highest at 0.812. When the weights decay
was introduced, the correlation decreased to 0.875, and the
accuracy also decreased to 0.808 in Figure 11(3). When the
conventional method was used in Figure 11(4), the correlation
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(i) (1,10,12)

(i) (1,10,12)
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(1) 0.85

(2) 0.1

(3) Conventional
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Fig. 10. Partially compressed weights when the parameter β1 was 0.85 (1),
α was 0.1 for weight decay (2), and by the conventional method (3) for the
traffic data set.

and accuracy were slightly larger than those by the weight
decay. The logistic regression analysis in Figure 11(5) pro-
duced the largest correlation of 0.938, but the accuracy was
lower, with the second worst value of 0.786, slightly better
than the 0.736 of the random forest. Finally, when the random
forest was used, the correlation and accuracy were the lowest
in Figure 11(6).

When we used the relative correlation coefficients relative to
the absolute original correlations between inputs and targets in
Figure 11(b1)-(b5), the fourth input (vehicle excess) showed
higher values for the cost reduction, weight decay, conven-
tional method, and logistic regression analysis. This suggests
that, in addition to the first input, the fourth input could play
an important role in traffic behavior.

B. Facility for the Elderly Data Set

1) Experimental Outline: The second experiment used the
data set of the facility for the elderly [64], in which we tried to
distinguish between male and female residents and to identify

(1) Correlation

(1) Correlation

(4) Conventional(0.905,0.810)

(4) Conventional

(2) 0.85(corr=0.908,acc=0.812)

(2) 0.85

(5) Logistic(0.938,0.786)

(5) Logistic

(3) 0.1(0.875,0.808)

(3) 0.1

(6) Random forest(0.802,0.736)

(6) Random forest

(a) Collective weights

(b) Relative collective weights

Fig. 11. Collective weights and related importance measures (a) and relative
collective ones (b) for the present method (1) to the random forest (6) for the
traffic data set. The numbers in the figure show the correlation coefficients
(left) and generalization accuracy (right).

the essential needs of residents for the facility. The objective
of the experiment aimed to improve the services provided by
the facility. The number of input variables was seven, and the
number of patterns was 1,000. We used the same parameter
values presented in the first experimental results on the traffic
data set for easy reproduction of the results.

2) Syntagmatic and Paradigmatic Compression : The re-
sults show that the present method produced very high corre-
lation coefficients, with almost perfect correlations with the
original correlation coefficients between inputs and targets.
The weight decay and conventional method could produce
weights with higher correlations, but they were lower than
those by the present method.

Figure 12(a) shows the syntagmatic (left) and paradigmatic
(right) compression when 100 different initial conditions and
100 different subsets of data were used, where the parameter
β1 was set to 0.85 for cost reduction. As can be seen in
the left-hand box on the syntagmatic compression, except
for five low correlations between compressed weights and
original correlations, the correlations became close to one.
For the paradigmatic compression on the right-hand side,
the correlations became immediately close to one, meaning
that paradigmatic compression produced original correlations
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(a) 0.85

(b) 0.1

Fig. 12. Correlations by the syntagmatic compression (left) and by the
paradigmatic compression (right) when the parameter β1 was 0.85 (a), α was
0.1 for the weight decay (b), and by conventional method (c) for the facility
for the elderly data set.

between inputs and targets over compressed weights. Figures
12(b) and (c) show syntagmatic (left) and paradigmatic com-
pression (right) by the weight decay (α = 0.1) and by the
conventional method without weight decay. The two methods
produced quite similar results for both types of compression.
However, the correlations were lower than those by the present
method. In particular, correlations with syntagmatically com-
pressed weights fluctuated extensively.

These results showed that the present method could produce
collective weights close to the original correlation coefficients
between inputs and targets. We could obtain those results al-
most independently of different initial conditions and different
inputs. On the contrary, the conventional methods produced
lower correlations, and they fluctuated considerably.

3) Selective Information, Cost, and Ratio: The results show
that the selective information increased up to a certain point,
and then it decreased in the end. However, due to the smaller
cost, the ratio increased gradually for all the learning steps. On
the contrary, the weight decay and conventional method could
not sufficiently increase selective information, and in addition,
they could not decrease the cost. Then, ratios became smaller
almost over all different runs.

Figure 13(a) shows selective information (left), cost (mid-
dle), and ratio of information to its cost (right) when the
parameter β1 was 0.85. The selective information increased,
and then decreased gradually. Because information was not
forced to be increased, the information could not naturally
continue to be sufficiently increased. However, the cost con-
stantly decreased when the number of learning steps increased.
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Fig. 13. Selective information (left), cost (middle), and ratio (right) when
the parameter β1 was 0.85 (a), α was 0.1 for weight decay (b), and by the
conventional method (c) for the facility for the elderly data set

Then, the ratio of information to its cost increased rapidly.
On the contrary, Figure 13(b) and (c) show the results by
the weight decay and conventional method. The selective
information slightly increased, but the cost remained large,
and the ratios remained small for all the learning steps. The
results confirmed that the present method could decrease the
cost sufficiently to increase the selective information. Then,
the ratio of information and cost increased gradually.

C. Weights and Individual Potentiality

The results show that the number of strong weights became
smaller when the hidden layers became higher. On the con-
trary, the weight decay and conventional method could not
produce explicit regularity over connection weights.

Figure 14(a) shows weights (1) and corresponding indi-
vidual potentiality (2) when the parameter β1 was 0.85. As
can be seen in the figure, the number of strong connection
weights gradually decreased when the hidden layers became
higher. In addition, for the individual potentiality, we could see
several groups of connection weights responding to the inputs
in the same way. On the contrary, by the weight decay (b) and
conventional method without weight decay (c), no regularity
over connection weights and individual potentiality could be
seen.

The results showed that the present method could decrease
the number of strong connection weights, and connection
weights cooperated with each other as several groups to
transmit the information.

1) Partial Compression: The results show that the present
method could extract information on inputs in the lower hidden
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Fig. 14. Weights (a) and individual potentiality (b), when the parameter β1
was 0.85 (a), α was 0.1 for the weight decay (b), and by the conventional
method (c) for the facility for the elderly data set.

layers. On the contrary, the weight decay and conventional
method could not extract the information in the hidden layers.

Figure 15 shows partially compressed weights by the
present method (a), weight decay (b), and conventional method
(c). The present method in Figure 15(a) produced strong par-
tially compressed weights in the beginning, and the strength of
compressed weights became smaller when the layers became
higher. On the contrary, by the weight decay in Figure 15(b)
and conventional method in Figure 15(c), the strength of
partially compressed weights remained small until the final
compression was applied.
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Fig. 15. Partially compressed weights, when the parameter β1 was 0.85 (1),
α was 0.1 for the weight decay (2), and by the conventional method (3) for
the facility for the elderly data set.

These results show that the present method tried to ac-
quire information content from inputs, and this information
gradually decreased when going through many layers. On the
contrary, the other conventional methods could not acquire
enough information until we reached the final layer.

2) Full Compression: The results show that the present
method could extract almost perfect correlations with higher
generalization accuracy, compared with the weight decay and
conventional method. The correlation coefficient was still
higher than that obtained by the logistic regression.

Figure 16(a) shows correlation coefficients between inputs
and targets of the original data set (1); collective weights by
the present method, with the highest correlation coefficient
(2), weight decay (3), and conventional method (4); regres-
sion coefficients by the logistic regression analysis (5); and
prediction importance by the random forest (6). As can be seen
in Figure 16(a2), the correlation was rounded to one (perfect
correlation), and the generalization accuracy of 0.566 was the
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second best, behind the 0.568 by the weight decay. Figure
16(a3) shows a case with the best generalization accuracy
of 0.568 by the weight decay. The correlation coefficient
decreased to 0.8. The conventional method in Figure 16(a4)
produced the correlation of 0.804, and the accuracy was 0.566.
The logistic regression in Figure 16(a5) produced a high
correlation of 0.985, but the accuracy decreased to 0.551.
Finally, the random forest produced the worst accuracy of
0.541 and the worst correlation of -0.294.

Figure 16(b) shows the relative collective weights. As shown
in Figure 16(b2), the present method with the best correlation
coefficient produced an almost even score over all inputs. On
the contrary, the weight decay and conventional method in
Figure 16(b3) and (b4) produced negative values for the latter
three inputs. The logistic regression analysis in Figure 16(b5)
produced evenly distributed and positive relative weights,
but the strength varied considerably. Finally, the prediction
importance in Figure 16(b6) by the random forest produced
importance values completely different from other measures.

The results show that the present method with many hidden
layers could produce connection weights close to the origi-
nal correlation coefficients, keeping generalization sufficiently
good. These results demonstrate that multi-layered neural net-
works could be transformed to identify individual correlation
coefficients, and if differences between them and their original
correlations were considerably large, neural networks tried to
use non-linear and complicated connection weights.

D. Wine Data Set

1) Experimental Outline: The data set was composed of
red and white wine samples from the north of Portugal, where
we tried to distinguish between red and white ones based on
12 variables [65]. The number of samples was 6,497. Because
the resultant correlation coefficients were lower than those in
the above sections by the simple cost reduction, we tried to
use the two-steps selectivity or cost control method. All the
parameters used in this experiment were forced to be set to the
same values as those in the above two experiments, except for
the parameter β for the initial learning stage. The parameter β2
was larger than one, actually, 1.3, in the beginning of learning
(until one third of the total learning steps was reached). Then,
the parameter was reduced to the normal 0.85. Thus, this
method lay in cost augmentation in the first place, and then
the cost was reduced.

2) Correlation Coefficients : The correlation coefficients
between compressed weights and the original correlations
computed by the data set were relatively high for all methods.
However, the present method could produce higher correla-
tions for all different runs.

Figure 17 shows correlation coefficients between com-
pressed weights and the original correlations when the param-
eter β2 was 1.3 (first part) and when β1 was 0.85 (remaining
part) (a), when the decay parameter α was 0.1 (b), and by the
conventional method without the weight decay and selectivity
control (c). As shown in the left-hand box in Figure 17(a),
the correlation coefficients by the present method fluctuated
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(3) 0.1
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Fig. 16. Collective weights (a) and relative collective weights (b) for the
facility for the elderly data set. Figures 1 to 6 denote the original correlation,
compressed weights by the present method with best correlation, weight decay,
conventional method, logistic regression, and random forest method.

in the processes of syntagmatic compression. However, in the
processes of paradigmatic processing in the right-hand box
in Figure 17(a), the correlation coefficients were very stable
and close to those from the beginning. On the contrary, the
correlation coefficients by the weight decay in Figure 17(b)
and by the conventional method in Figure 17(c) tended to de-
crease gradually when the number of different runs increased.
In addition, the correlation coefficients by the syntagmatic
and paradigmatic compression were smaller than those by the
present method.

The results show that the simplified two-step method could
produce higher correlation coefficients for syntagmatic and
paradigmatic compression.

3) Selective Information, Cost, and Ratio: The initial steps
of learning by the simplified method could increase the cost
considerably, keeping the selective information smaller. Then,
in the subsequent steps, the selective information increased
rapidly and, at the same time, the cost decreased considerably.
Finally, the ratio of selective information to its cost increased
in the subsequent steps. On the contrary, the other methods
could not increase the selective information and decrease the
cost.

Figure 18 shows the selective information (left), cost (mid-
dle), and the ratio of the information to the cost (right) by the
present method (a) and the weight decay (b), and the ratio (c).
Figure 18(a) shows the results by the present method when the
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(b) 0.1
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Fig. 17. Correlations between compressed weights and correlations of the
original data set by the syntagmatic compression (left) and by the paradigmatic
compression (right) when the parameter β2 was 1.3 and β1 was 0.85 (a), α
was 0.1 for the weight decay (b), and by the conventional method (c) for the
wine data set.

parameter β2 was 1.3 (initial) and β1 was 0.85 (remaining). As
can be seen in the figure, selective information was kept small
in the initial steps of learning. Then, the selective information
increased considerably in the remaining learning steps. The
cost (middle) was forced to be increased up to a point where
a further increase in the cost degraded the performance, and
the cost was forced to be decreased considerably in the end.
On the contrary, by using the weight decay in Figure 18(b),
and the conventional method in Figure 18(c), the selective
information had relatively high values without changes. The
costs, shown in the figures in the middle, were larger than
those by the present method. Finally, the ratio of selective
information and its cost remained small for all learning steps.

The experimental results show that the present method
could increase and then decrease the cost and correspondingly
decrease and increase the selective information. On the other
hand, the weight decay and conventional method could not
well control the selective information and its cost.

4) Weights and Individual Potentiality: The weights for
all hidden layers became relatively sparse by the present
method, and in particular, the individual potentiality showed
this sparsity tendency. However, the property of sparsity of
the present method was not so different from that by the
conventional methods.

Figure 19(a) shows connection weights (1) and the corre-
sponding individual potentialities (2) by the present method.
As can be seen in the figure, in particular, by seeing the indi-
vidual potentialities, the number of stronger weights tended to
be smaller, and weights became more selective by the present
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Fig. 18. Selective information (left), cost (middle), and ratio (right) when
the parameter β2 was 1.3 and β1 was 0.85 (a), α was 0.1 for the weight
decay (b), and by the conventional method (c) for the wine data set

method. In the same way, by using the weights decay in Figure
19(b) and conventional method in Figure 19(c), the number of
stronger weights seemed to be smaller. In particular, when we
examined the individual potentialities, the sparse properties
could be seen. However, we could not see large differences
among the three methods. The results show that the final
weights by the three methods seemed to be approximately the
same in terms of their sparseness, though the present method
could produce slightly more selective weights. This is due
to the large parameter value β for the present method, and
this large parameter value, accompanied by the large cost,
prevented the present method from producing more selective
states.

5) Partial Compression: The partially compressed weights
produced a similar tendency for all three methods. The com-
pressed weights by all the methods could not show explicit
characteristics until the final and output layer was considered.

Figures 20(a), (b) and (c) show partially compressed weights
by the present method, the weight decay, and the conventional
method, respectively. Though the final compressed weights
were different, all partially compressed weights were kept
small. Only in the final compression step did compressed
weights tend to be reasonably large. This can be explained
by the fact that the selective information was forced to be
smaller by increasing the cost. Then, selective information on
inputs tended to disappear by the present method. This means
that the information content in inputs could not be used to
relate inputs and outputs.

6) Full Compression: The results by the full compression
show that the present method could produce collective weights
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Fig. 19. Weights (a) and individual potentiality (b), when the parameter β2
was 1.3 and β1 was 0.85 (a), α was 0.1 for the weight decay (b), and by the
conventional method (c) for the wine data set.

close to the original correlation coefficients. Though the con-
ventional logistic regression analysis could produce similar
correlation coefficients, its accuracy rate was smaller than that
by the present method.

Figure 21 shows the correlation coefficients and the fully
compressed weights by five methods. By using the present
method, the correlation coefficient became 0.952, and the
accuracy was 0.952 in Figure 21(a2). In addition, the similarity
between the original correlation and compressed weights was
observed in the positive relative weights for all inputs in Figure
21(b2). By using the weight decay, the correlation decreased
to 0.749, and the accuracy rate was the highest one of 0.996
in Figure 21(a3). The conventional method could also produce
the highest accuracy of 0.996, but the correlation coefficient
decreased to 0.771 in Figure 21(a4). Though those methods
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Fig. 20. Partially compressed weights when the parameter β2 was 1.3 and
β1 was 0.85 (1), α was 0.1 for the weight decay (2), and by the conventional
method (3) for the wine data set.

produced lower correlation coefficients than those by the
present method, the relative collective weights were positive
except for input No.11 in Figure 21(b3) and (b4). Then, by the
logistic regression analysis in Figure 21(a5), the correlation
was 0.937, which was lower than the 0.952 by the present
method. In addition, the accuracy by the present method was
0.995, larger than the 0.989 by the logistic regression analysis.
Finally, the random forest in Figure 21(a6) produced the lowest
correlation of -0.075, though the accuracy was the highest at
0.996. The random forest produced importance measures quite
different from those by the other methods. The results show
that the present method could produce the highest correlation
coefficient, keeping high accuracy rates.

IV. CONCLUSION

The present paper aimed to propose a new type of interpre-
tation method for multi-layered neural networks. The method
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Fig. 21. Collective weights (a) and relative collective weights (b) by five
methods for the wine data set. The numbers in the figure represent the
correlation coefficients (left) and accuracy (right).

lies in considering all possible internal representations gener-
ated by multi-layered neural networks, in which we suppose
that all representations by multi-layered neural network have
the same status, meaning that many representations should be
created by seeing a data set from different points of view.

One of the main shortcomings of interpretation methods
of neural networks is that they try to understand only one
aspect of representations. For example, they tried to show
what components in a neural network can be responsible for a
specific input. This type of individual interpretation has been
extensively used in the present state of neural networks. In
particular, in the CNN, dealing with image data sets, it has
been extensively used, because it is easy to understand the
specific input and the corresponding component intuitively.
However, those corresponding components should be changed,
sometimes drastically, by using different initial conditions,
which is one of the main problems of neural networks. In
our approach, we suppose that different representations created
by different initial conditions can be used to explain the
inference mechanism of neural networks. This means that we
can interpret the representations from different points of view.

In actual learning, we have different internal represen-
tations in the course of learning. In addition, by different
initial conditions and inputs, we have also different internal
representations. We first take into account different repre-
sentations in the course of learning, which can be called

“syntagmatic compression.” In the syntagmatic compression,
all weights created in the course of learning with a specific
initial condition are averaged and compressed. Then, all syn-
tagmatically compressed weights are again averaged, which is
called “paradigmatic compression.” With syntagmatically and
paradigmatically compressed representations, we can interpret
neural networks in terms of collective interpretation, namely,
from many viewpoints.

The collective compression was flexibly controlled by con-
trolling the selective information. However, we proposed a
more simplified method to control the selective information,
that of controlling the cost in terms of weight strength.
This means that the selective information control eventually
corresponds to the cost control, which is much simpler to be
implemented in actual learning. In addition, we proposed a
new method to control the selective information by its cost,
where the cost is first increased, and then it is decreased.
This increase in the cost, corresponding to a decrease in
selective information aimed to eliminate information on input
patterns as much as possible. This is because the information
represented by the inputs of neural networks cannot be used
to relate the inputs to the corresponding targets.

The method was applied to three real data sets: the traffic,
facility for the elderly, and wine data sets. In the first two cases,
we could see that the selective information could be increased
and, at the same time, the cost could be decreased in terms
of the sum of absolute weights. The final collective weights
by the present method were very close to the correlation
coefficients between inputs and targets of the original data
set. This could be explained by the fact that the present
method could extract much information from inputs; on the
contrary, the other conventional methods could not extract
sufficient information from the inputs, but they were dependent
exclusively on the outputs. In the experimental results of the
third data set, the wine data set, the original information by
the corresponding inputs was forced to be eliminated by the
cost augmentation in the initial learning steps. This means
that the input variables cannot represent well the information
on the relations between inputs and outputs. This could be
observed in the results of partial compression, where partially
compressed weights could not show any regularity until the
final output layer was included.

We should point out here two problems with the present
method: extraction of features specific to input patterns,
and how to control selective information. One of the main
problems is how to identify differences between the original
correlations and specific ones by the present method. We
proposed a method to extract relative differences between
them. However, we should develop a more refined method
to distinguish between the original and new features dealt
with by the present method. Second, we proposed a method to
eliminate the selective information in the initial learning steps
and applied it to the third data set. However, we did not know
to what level we should eliminate the selective information.
Thus, we need to examine more closely the exact effect of
information reduction over information augmentation.
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Finally, we should mention briefly some future work to be
done on robustness and its relation to the selective information.
First, while we focused on the interpretation in this paper,
the collective concept described in this paper can be natu-
rally applied to generalization accuracy. This is because the
collective interpretation tries to interpret the inference mech-
anism, considering as many different internal representations
as possible, including ones with higher and lower robustness.
Our objective is to find some transformation rules from the
collective and core ones to more concrete networks with
different types of robustness [66], [67], [68]. We think that,
for these transformation rules, the selective information control
presented here can be of some use.

Though several problems should be solved for the present
method to be applied to more practical data sets, the present
study surely contributes to the problem of interpretation as
well as the relations between selectivity and network perfor-
mance.
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