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Abstract—Drones enable humans to perform certain high-risk
and attention operations and safety-critical tasks remotely, which
are boosted by the use of Brain-Computer Interfaces. However,
these technologies are correlated with the cognitive state of the
operator, who is prone to stress and diversions, which brings
instability to drone control. In this paper, we propose a decision
making system aiming to decide, upon the operator’s emotional
state, whether the command should or should not be sent to
the drone. By building a predictive operator’s digital twin for
cognitive emotional detection and by benefiting from a visual
facial expression classifier, this system computes the coordinates
and sends them to the drone through a Robot Operating System
2 client. Results show that both the digital twin and the facial
expression classifier are capable of detecting emotions in a real-
time setting and the system provides a reliable and secure way
of commanding drones through the mind. Drone swarms could
be integrated as this solution eases the addition of more ROS2
client nodes.
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I. INTRODUCTION

This paper showcases the implementation of a drone op-
erator digital twin that relies on a brain-computer interface
available data streams in order to evaluate whether the operator
is in a suitable condition to send commands to the drone. This
work is an extended version of [1] (that detail preliminary
results regarding human emotion recognition); thus, details
regarding the modelling of the cognitive digital are further
analyzed and explained in this document as well as different
validation tasks that comply with other requirements adjacent
to the main purpose of the work (i.e., experiments with
more than one drone as proof-of-concept of a ROS2 client-
subscriber communication system for multi-drone control).

The drone sector has been growing with higher demand
through the years. The common belief is that drones are
singularly used for military affairs; however, they are func-
tional and versatile systems. One major use is providing
monitoring services, i.e., target searching, surveillance for
security purposes and others.

Even thought they have attracted companies due to their
visionary application, the most significant change is how
civilians have been adopting this technology in their lives.
Photography and cinematography are key activities that lead to
potential customer interest because of the accessibility drones
provide to reach high places, enough to capture a panoramic
shot. Either way, drones are essentially useful for people with
less motor skills that costly go through their everyday routines.
In this case, a drone could serve as an assistive device [2].

Still, the most impactful usage of drones is their applica-
bility to complete high-risk and safety-critical operations with
success, often in locations unreachable and/or dangerous to
humans. Although there is a risk of compromising the mission
due to faulty hardware or control management, the drone
operator is isolated from the target site, which ensures the
safety of all the stakeholders involved.

A. Problem Overview

Drones are considered critical systems. By definition, a
critical system is a technology that brings its inherent risks
while executing, whose failures could be significantly damag-
ing [3]. For instance, the failure of these systems could lead
to financial loss where the hardware could be damaged by a
collision with other objects or could compromise the mission
itself by a poor performance from the operator. Nonetheless,
controlling one drone is already a complex task. Operators
are responsible for, not just to perform standard operations
(i.e., takeoff and landing) with success, but also to safely
execute them. When adding unsafe and critical operations to
the task log, the control complexity increases significantly. The
operator needs abilities at their peak, full attention and focus
when performing these operations, to provide a reliable and
stable control.

Hand control allows operators to remotely send commands
to drones; however, as these are critical systems, operators
need to be cautious with the commands they deliver. The
Brain-Computer Interface (or BCI) is an alternative mecha-
nism that aims to optimize this control. As humans are prone to
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fatigue, increasing mental workload and emotions, the control
will become uncertain and insecure, that is, the operator cannot
be fully consistent with his performance for longer periods
of time due to the organic degrading factors of its human
condition. These situations can lead to events of disruption
and/or disasters, such as the collision with objects that the
system cannot autonomously detect.

All things considered, the problem of controlling a drone
with a BCI rises on the addition of the human factor and his
involuntary natural incapability of managing a critical system
consistently. To address this issue, this work focuses, primarily,
on how to reduce or avoid the operational impact on the drone
when the operator sends a command under the influence of a
negative emotion.

B. Proposed Solution

The hypothesis of this work is that, by adopting a digital
twin [6] to virtually represent the operator and by using
machine learning techniques, it is possible to process, filter and
predict whether the human operator has high mental workload
and/or impactful emotions and decide whether the commands
produced should or should not be sent to the drones. With
the goal of validating the formulated commands, the digital
twin is complemented with a visual emotion recognizer that
will classify the operator’s visual facial expression into a set
of emotional states. Additionally, a Robot Operating System
2 (or ROS2) client node can be used in order to send the
commands to the drone.

C. Structure of the Document

This document is structured in seven sections: (I) the
current section detailing the context and proposed solution to
accommodate the urged necessities mentioned; (II) literature
review of the state-of-the-art key technologies selected in the
proposed solution; (III) that details the methodology adopted
for the development of the digital twin; (IV) implementation
insights for the development of the solution; (V) validation
of the solution including an incremental test environment for
measuring the accuracy and other suitable test scenarios for
showcasing the value of the developed system; (VI) conclusion
regarding the system and its performance and (VII) listing
goals to achieve in future work.

II. STATE-OF-ART

A BCI is defined as ”a device that connects the brain to
a computer and decodes in real-time a specific, predefined
brain activity” [4]. This technology can use direct or indirect
methods to do so, namely by evaluating the nerve cells activity
or by assessing the levels of blood oxygen for these cells [4].
This technology has proved its relevance in many areas, for
instance, there was a study aiming to deliver accurate real-
time and precise command classification for drone reliable
control. An Electroencephalography (or EEG) headset was
used to record the brain activity, followed by a motor imagery
acquisition. This mechanism involved four tasks, based on the

subject visualizing physical movements instead of performing
them. Then, a classification methodology was developed by
combining the Common Spatial Paradigm (or CSP) and the
Linear Discriminant Analysis algorithms (LDA) [5]. Using
this method, the authors were able to improve classification
precision in real-time. The solution was validated using a
fixed-wing drone use case [5].

Another crucial component of this work is the digital twin.
Nowadays, a virtual twin is described as a virtual representa-
tion that carries information to realistically behave and change
as a physical hardware [6]. This technology is constantly
evolving to serve each project needs. One variant that derives
from it is the digital twin environment [6] with predicting
capabilities. The main goal is to train the digital twin to gain
predictive capabilities in order to anticipate the hardware’s
response or behaviour in situational events during run time.
One example is a research work that proposes a framework
to improve the estimates of certain measurements of physical
systems, more specifically a drone, by implementing a virtual
layer, i.e., a digital twin, that would represent the real device
and predict its performance [7]. This approach implies that
each piece of the drone has its own prediction models that
should learn and be updated through time to, ultimately,
accurately anticipate some metrics that are valuable to the end-
user.

The goal of this work is to predict the emotional state
of a drone operator in real-time. In this specific area, there
are some articles that detail visionary approaches on how to
analyse the mental workload of a subject or, more importantly,
the emotional spectrum. One of these works [8] makes use
of a dataset composed by sounds with the goal of triggering
certain emotions on the subject. The arousal (or excitement)
and valence (defines the whether the emotion is positive or
negative) (Figure 1) are measurements that are computed
according to a set of frequency channels of the brain-wave
activity, for instance, the alpha and beta signals. By using
machine learning techniques and by training with the Linear
Discriminant Analysis (or LDA) and Support Vector Machine
(or SVM) algorithms, the authors were able to classify the
emotional states of the subjects in the following categories:
happiness, anger, sadness, and calm.

Even though there is a wide range of projects that tar-
get these key technologies, this particular research area that
crosses the digital twin framework with a BCI for drone
control is undeveloped. While the BCI mechanism is being
targeted for scientific purposes, it is possible to bring it as
a control mechanism of drone systems (as validated in [9]).
However, these studies suggest the remote control of drones
whenever as far as the human operator can continuously for-
mulate commands. In contrast, this work allows the evaluation
of the human emotional state to permit or break this cycle of
continuous commands, in the context of the execution of high-
risk tasks (where the error margin is very limited). Ultimately,
the purpose is to establish a mental control mechanism and
assessment of the human condition, while incorporating an
efficient communication channel with ROS2.
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Figure 1. Emotional map based on arousal and valence (from [8]).

III. RESEARCH METHODOLOGY

A central piece of this work is the applicability of machine
learning techniques to build a cognitive profile of a drone
operator (the digital twin). In this work, the Cross Industry
Standard Process for Data Mining (or CRISP-DM) method-
ology [10] was used. This dictates a systematic approach
for building an intelligent software component by means of
data analysis and application of machine learning algorithms
for knowledge gathering. The main steps adopted are the
following:

1) Data understanding: data acquisition from known and
reliable sources that delivers important information for
the problem, in addition to analysis of this data to
acquire knowledge on its quality and required processing
(i.e., finding missing values).

2) Data Preparation: prepared the acquire data for the
modeling phase based on prior knowledge gathered
from the data analysis. This task consumes the most
resources, because it has a direct impact on the quality
and performance of the final digital twin.

3) Modeling: manipulate the previous dataset to build a
prediction model, i.e., the digital twin. In this phase,
training multiple machine learning algorithms and vali-
dating in a set of performance metrics is crucial to assess
which algorithm best fits the proposed problem.

4) Evaluation: the best fitted prediction model and its
outcomes provides a way of gathering more knowledge
and validate if all goals established are being met.

A. Brain-Computer Interface Headset

As a starting point, the Emotiv Epoc+ [11] headset was
chosen (Figure 2), developed by the Emotiv company, for data
acquisition due to its portability and reliability as a commercial
BCI. Emotiv Epoc+ provides a source of data of interest since
EEG signals to the motion of the head according to a set of 3-
axis. It is composed by arms that fit on specific locations on the
scalp and are arranged accordingly to ease the subject while
placing it on the head. In addition, each sensor is embedded
with a felt tip. Dumping this felt tip is crucial for the signal

quality since it will connect the whole assembly to the scalp
and allow brain activity to be detected (for more information
check [11]).

Figure 2. Emotiv Epoc+ hardware.

Between the multiple software that allow the exploration
of data streams, it was used the EmotivBCI, developed by the
Emotiv company. This provides a platform for direct command
and facial expression’s training and monitoring of multiple
data streams. Fundamentally, in order to control a drone with
a BCI, a first approach is to create a set of commands to be
operational during experiments. This task implies the creation
of strategies to be mentally reproducible whenever the operator
desires. In this case, the operator could reproduce a certain
command by visualizing the movement to the matching direc-
tion, followed by the natural eye movement. This procedure
works around a method of training the command and testing
in a live environment, both provided by the platform. The
application is supported by a machine learning prediction
model to build a profile and refine it each time the user has
a training session. This allows the definition of a command
through the identification of patterns the operator organically
produces while training. For the purpose of this work, it
was necessary that the operator was subjected to multiple
sessions of command training to ensure its accuracy. After
this stage, the operator was able to formulate right and left
commands, and establish a neutral one (stationary state). For
more information check [12].

B. Experimental Setup
This work falls within the context of a real-world use case

and validated as such. In this environment, the drone used
was the crazyflie 2.1 quadcopter, developed by the Bitcraze
company [13]. Measuring 92 mm of width, 92 mm of height
and 29 mm of depth, this drone model is as lightweight as
27 g and holds on air for about 7 minutes. Crazyflie 2.1. is a
suitable model for validating this work, because it is easier to
control upon unexpected behaviors derived from hardware or
communication failures, without having significant impact on
their surroundings.

The second part of this experimental setup is the zone
for flight demonstrations. As explained above, a drone is a
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critical system and can result in unpredictable behaviors. To
validate the proposed solution, a dedicated physical area was
assembled, called the arena (Figure 3). The arena is a four-
meter indoor area, gathered by net for safety precautions and
a position system, similar to a GPS. The loco positioning
system [14] was developed by the Bitcraze company and aims
for locating the drone in the 3-dimensional space. For this
purpose, anchors are placed on each vertex of the arena,
serving as reference guides.

Figure 3. Drone Arena.

IV. IMPLEMENTATION

As mentioned in Section I-B, the core goal of this work
is the development of a software platform capable of: (1)
acquiring data from a BCI, (2) pre-process it, (3) identify the
current emotional state of a drone operator and (4) decide
whether he is in a suitable emotional condition to send
commands. Even though brain-activity is the primary source of
data for identifying the cognitive emotional level, a real-time
visual input is also taken into account as a way of validating or
invalidating this result. Nonetheless, as a decision is computed,
it is equally crucial to establish a communication channel
with the drone in order to forward all necessary information.
This section will detail the implementation of such system
and all necessary components that function together for these
purposes.

As illustrated by Figure 4, this system is composed by four
components: (1) the digital twin, (2) the visual classifier/com-
ponent, (3) the decision making component and (4) the ROS2
component.

A. Digital Twin

The digital twin is a virtual representation of the operator
and its goal is to classify, in real-time, the operator’s emotional
state. It relies on data collected by the BCI to build a cognitive
profile, adapted to the operator. It is the core component
of the proposed solution and provides decisive information
to ascertain the destination of the command. The remaining
components that follow are designated to support the digital
twin and add complementary information for the decision.

According to Section III, this work comprehends that the
digital twin, by means of machine learning techniques, will
be built in an iterative manner following the tasks of: data
acquisition, data preparation, modeling and evaluation. After
data acquisition, procedures that follow are executed offline.
The goal is to produce a digital twin, or a prediction model,
that is going to be built under a set of training and testing
tasks. Training requires data to be pre-processed and cleaned
so that a machine learning algorithm can learn from it and find
patterns on behaviors that correspond to certain emotions. This
will result in an intelligent twin, which will be submitted to a
testing session to validate whether the predictions match the
correct emotion.

1) Data Acquisition: In a first approach, data acquisition
was performed based on the analysis of available data streams
from the BCI and fetched by a subscription procedure, which
allows recording in real-time. For this purpose, three data
streams, recorded by the Emotiv Epoc+ headset, are collected:
(1) the band power, i.e., power of the EEG data according
to the sensor and frequency band; (2) the motion, based
on the built-in gyroscope of the headset and (3) the facial
expressions, recorded from facial muscle motions. The system
communicates with the cortex API [15] to send requests for
these data subscriptions and receive JSON responses with the
resulting data streams as well as the classified commands, for
the time period of the subscription.

2) Data Preparation: Since each request and response are
unique to each stream, records are written to different files as
separate datasets matching their type of data stream. In order to
manipulate data on further tasks and, as needed by algorithms,
these datasets need to be merged together. The newly collected
data is integrated according to the nearest point in time of each
observation (according with the timestamp feature), resulting
into a single dataset. One particularity of this joint transaction
is that it fills missing values of whatever feature with the
closest value. This is useful due to different frequencies of the
subscriptions and the asynchronous timestamps, which may
not match exactly.

Columns with unique values are eliminated from this
dataset, as well as features that do not add any value for the
resolution of the problem (i.e., the timestamp feature).

Another strategy to improve the quality of the dataset is
to perform feature engineering. This method transforms the
current features and/or includes domain knowledge to increase
their value and impact when solving the problem at hand.
For this purpose, one-hot-encoding was performed on motion
related-features (categorical data). This process consists on
selecting each categorical column and transform it into a
binary value. Motion related-features are transformed into
binary columns, representing each type, through an one hot
encoder. In addition, two features were added to the dataset:
arousal and valence values, that are computed according to
certain values of band power (according to [16] and equations
(1) and (2)).
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Figure 4. System architecture.

arousal =
(F3/betaL+ F4/betaL)

(F3/alpha+ F4/alpha)
(1)

valence =
F4/alpha

F4/betaL
− F3/alpha

F3/betaL
(2)

3) Modeling and Evaluation: For the classification of the
operator’s emotional states, a set of classes were selected to
represent positive and negative states. The positive classes are
calm and focused, representing a stable cognitive state to send
commands to the drone, as opposed to the negative classes
(i.e., stressed and distracted) that detail an unstable cognitive
state and, therefore, unacceptable state to send commands. In
this work, the same operator simulated all the four emotions, at
multiple days, in sessions of 8 seconds, reproducing a balanced
dataset of about 19 600 observations per emotion (78 400
total). In this work, 70% of the data was split for training the
algorithms and 30% for testing and evaluated 8 classifiers in
four performance metrics (Table I).

TABLE I
EVALUATION OF ALGORITHMS

Algorithms Performance Metrics
Accuracy Precision Recall f1-Score

Decision Tree 0.995 0.995 0.995 0.995
k-Nearest Neighbors 0.997 0.997 0.997 0.997

LDA 0.911 0.916 0.911 0.912
Naive Bayes 0.614 0.645 0.614 0.617

Random Forest 0.999 0.999 0.999 0.999
SVM (linear kernel) 0.994 0.994 0.994 0.994

SVM (rbf kernel) 0.888 0.923 0.888 0.894
Neural Networks 0.948 0.949 0.948 0.948

As presented in Table I, Random Forest outperforms the
remaining algorithms and is chosen for the training and mod-
eling of the digital twin. In addition, the resulting confusion

matrices are further analysed. These matrices display the true
and false positives and negatives as way of assessing the
level of confusion between classes from the machine learning
algorithms. This work focuses primarily on a secure platform
to send commands only when the operator is in a suitable
condition to do so. Nevertheless, it also aims for minimizing
the impact on the drone upon inaccurate classifications from
the digital twin. Taking this into consideration, a confusion
matrix is useful to assess the proportion of observations that
were incorrectly classified as calm or when the operator was
indeed distracted or stressed.

Figure 5. Random Forest confusion matrix (from [12]).

As illustrated by Figure 5, almost all observations were cor-
rectly identified by the Random Forest-based digital twin. Still,
by analysing the true condition of the operator, in the negative
spectrum, against the predicted labels, two observations that
belonged to the distracted class were incorrectly classified as
the calm class. From the testing set (30% of the whole dataset,
about 23 520 observations), this error represents 0.009% of the
sample. Although this demonstrates a flaw from the digital
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twin, the probability of occurrence is minimum. For further
details, check [12].

B. Visual Component

Regarding the visual component of the system, a camera
captures the real-time image of the operator and uses a Convo-
lutional Neural Network based-prediction model [17] from an
open-source project [17], modeled and trained with the FER-
2013 emotion dataset, to classify the visual expressions of the
operator as a set of emotions. This component can output:
positive emotions as happy and neutral and negative emotions
as angry, disgust, fear, sad and surprise.

C. Decision Component

While the EmotivBCI application classifies the reproduced
commands from the operator, the digital twin receives infor-
mation from the headset and classifies the cognitive state of
the operator. The visual component receives the image from
the camera and classifies the facial expressions. This process
results in three input variables for the decision component.
This decision module will decide whether the operator is stable
by mentally and visually evaluating his state. Only positive
emotions detected on both components will allow the operator
to send the command.

Considering the confidence percentage of the command and
the digital twin upon the classification, the decision module,
in case of an overall positive emotion detection, will compute
the drone coordinates accordingly and send them through a
ROS2 node. These coordinates are based on the distance to
be travelled by the drone.

d = (c ∗ i) ∗ e (3)

Equation (3) showcases the computation of the distance,
where c is the confidence of the EmotivBCI classifier upon
the identified command, e is the confidence of the digital twin
upon the classified cognitive emotion and i is a safety incre-
ment with value 0.25 (meters). This means that classification
errors from the prediction models might have an impact on
the drone but is not decisive that it will be catastrophic due
to filtering on the computation of coordinates.

D. ROS 2 Communication Node

For the connection between the system and the drone,
a ROS2 client-server architecture is created between what
is called the base station, meaning the server machine that
manages the drone, and the client node (Figure 6). Nodes
are software units that are responsible for the execution of
some task. Here, there are two nodes, the client and the server.
For these nodes to communicate, service schemes are created
specifically to portray each task. The client instantiates the
required scheme with the desired values and sends the request
message to the other node. In this case, the operations available
for the drone are: takeoff, relative motions and landing. These
actions are translated into service schemes that are used by the

solution, through the client node, with the desired values. In
this context, the client node is implemented as a gateway of
the decision module, sending a request with the coordinates.
The server receives the coordinates and forwards them to the
drone in real-time. Code listing 1 is an example of service that
depicts the relative motion operation that matches the mental
command formulated by the operator.

1float32 x
2float32 y
3float32 z
4float32 yaw
5float32 duration
6---
7int8 ret

Listing 1. GoTo service scheme

V. RESULTS AND DISCUSSION

In this section, are presented the results and their discussion.
This validation is divided into three parts: (V-A) where each
emotion is experienced isolated, (V-B) a free environment
with unexpected occurrence of emotions and (V-C) ROS2
communication validation with two drones to ensure a message
can reach both. It is expected that, after the operator training
session and digital twin training, the system is capable of
detecting multiple emotional states of the operator in real-time
and handle the drone accordingly.

A. Isolated Emotion Validation

To evaluate the different impacts of the solution, function-
alities were split in a multi-level manner that go from the
lowest experiment to the highest level (solution as a whole) to
emphasize its value on securing a stable control environment
for the drone. These experiments are:

• The baseline test, defining the current state of drone
control without the support of emotion recognition;

• The level 1 test, representing the implementation of the
core functionality which is the cognitive digital twin and
the ROS2 client node;

• The level 2 test, the cognitive digital twin with the
addition of the computation of coordinates according to
the prediction’s confidence and the ROS2 client node;

• The full test, having all the above functionalities and the
support of the visual emotion recognition.

With the exception of the baseline test, which gives no
importance to the mental state of the subject, each test covers
the four mental states (focused, calm, distracted and stressed)
individually, each one with sessions of 8 seconds. The subject
had to be put under the same conditions in which he used to
simulate the four emotions on the training phase.

One particularity is that levels 1 and 2 differentiate only
in the computation of coordinates, which is a more visible
advancement while operating the drone rather than an im-
provement of accuracy of the system. In this context, as a
first validation session, the goal is to compute the accuracy
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Figure 6. ROS 2 System architecture (from [12]).

of the digital twin when classifying the operator’s mental
emotions (experimental levels are seen as different temporal
spaces). The second approach showcased in this section, is the
analysis of observations of the negative spectrum. Here, the
experimental levels are more significant to discuss the value
of the functionalities of the system.

Given the environment set-up described in Section V, the
number of observations per emotion and per experiment, for
the same subject that trained the commands in the EmotivBCI
application, are described in Table II.

TABLE II
NUMBER OF OBSERVATIONS PER EMOTION

Emotions Group of Test
Level 1 Test Level 2 Test Full Test

Calm 142 120 85
Focused 94 101 90

Distracted 124 135 104
Stressed 134 120 112

From the number of observations, it was computed the
success rate, or accuracy, for each emotion and per experiment
(Figure 7). This metric is calculated by dividing the number
of correctly classified observations by the total amount of
observations. For the calm state, the highest accuracy of the
digital twin was 87.5%, for the focused state a 98.8%, for the
distracted state a 93.5% and for the stressed state a 100%, as
described by the round values on Figure 7.

Even with a high average of success rate for detecting the
subject’s mental states, the most accurately classified emotion
was the stressed state. The difference between them can be
due to the distinct way the model is trained in this segment,
which involves more physical movement to denote agitation,
rather than a low on motion condition on the remaining ones.

Lower success rate depicted on level 1 for the focused
state can be explained by the different background noise and
movement between the training and test phase. This caused
the subject to deviate his attention, explaining the occurrences
of distracted classifications during this period. In the next test

Figure 7. Accuracy bar chart (from [12]).

levels, this value is no lower that 80%, which is explained by
the calmer environment. As opposed to this situation, the lower
success rate on level 2 for the distracted state classification
can be explained by the lower amount interference or other
diversions derived from background movement, which led to
short occurrences of focus by the subject.

Regarding the classification of the negative emotional spec-
trum (distracted and stressed states), Tables III and IV give
some insight about the number of sent commands under an
incorrect classification.

TABLE III
DISTRACTED EMOTION RECOGNITION

Positive Group of Test
Detections Level 1 Test Level 2 Test Full Test

Total number 6 11 10
Nº of neutral commands 4 7 6

Nº of sent commands 2 4 1
BCI positive, visual negative N/A N/A 3

As registered in Table III, at level 1 were detected 6 positive
states, 2 of them sent; at level 2 were detected 11 positive
emotions, 4 were sent and at the full test, 10 positive emotions
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Figure 8. Real-time mission with distracting external events with a single drone (from [12]).

were detected, 1 command was sent to the drone and 3 were
prevented due to the detection of a negative emotion by the
visual component.

TABLE IV
STRESSED EMOTION RECOGNITION

Positive Group of Test
Detections Level 1 Test Level 2 Test Full Test

Total number 0 0 2
Nº of neutral commands 0 0 1

Nº of sent commands 0 0 0
BCI positive, visual negative N/A N/A 1

As registered in Table IV, at the full test were detected 2
positive emotions and none were sent to the drone. One of
them was a neutral command and the other was associated
with a negative visual emotion, detected by the visual emotion
component.

Since the training of mental commands is a task that requires
time to practice and refine, it is challenging to reproduce a
command at a live setting and in an equivalent environment
the subject trained. Even with a digital twin inaccurate classi-
fication, most commands detected by the BCI are neutral ones,
which have no impact on the trajectory of the drone. However,
the command classifier can incorrectly output a right or left
commands and these can potentially be sent to the drones.
With the extra layer of the visual component, these unique
situations are assessed by it and some of those errors are
prevented. At a mission environment, where the operator needs
to follow a sequence of commands, if there is a cancellation
of a certain command, the operator will observe it and has
enough time to reproduce the needed operation.

Considering that this is a 4-class classification problem,
there is a probability of 25% that a baseline classifier correctly
categorizes the subject emotion state and, in the baseline test
characterized by the lack of machine learning, all commands

are sent to the drones, regardless of the operator’s emotional
state, which could only be beneficial if the subject has perfect
cognitive condition at all times.

B. Free Mission Flight

Even though previous section already validates the goal
of this work, an isolated environment, where the operator
simulates the four emotions, is a controlled scenario. In a free
environment, realistically, is it common to occur unexpected
events and different reactions from the operator. In this section,
it was conducted a 2-minute validation session were the oper-
ator was able to send whatever command. For the purpose of
validating the detection of mood swings, for instance between
the focused and stressed states, two alarms were set to trigger
at specific timestamps (27.6 and one minute and twenty eight
seconds) after the experiment initiated.

Figure 8 illustrates the distance travelled by the drone,
referencing the absolute position on the y axis (only right
commands were sent). During this experiment, the operator
was able to focus on the drone and send multiple commands,
each one with a different distances. Even though the operator
was consistently focused, at the trigger of the first alarm,
the system detected a distracted mental state and a surprised
visual state. The operator continued to be either stressed or
distracted afterwards but was able to refocus on the drone
and send new commands. At the sound of the second alarm,
the system did not detect immediately a mental reaction but
identified the physical reaction as fear. This validates the
value and robustness of the solution when handling incorrect
classifications by including a second classifier, the visual
component, to break the command cycle. For more information
regarding this experiment, check [12].

C. ROS2 Swarm Management Validation

Although a drone is a fundamental piece for the execution of
complex tasks, a swarm of drones aims to optimize resource
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allocation to more efficiently perform these high-risk tasks.
This section details a third experiment composed to include
two drones to receive and execute the same operations. The
following code listings demonstrate the communication of two
client nodes with the server node.

1[INFO] [1623235179.701766700] [minimal_service]:
Take off incoming request

2 height: 0.500000
3 duration: 2.000000
4 response: 1
5
6[INFO] [1623235179.704947100] [minimal_service]:

Take off incoming request
7 height: 0.500000
8 duration: 2.000000
9 response: 1

Listing 2. Server node take-off message.

1[INFO] [1623235180.412227300] [drone1]: Sending
information to server: height: 0.500000

2 duration: 2.000000
3 response: 1
4
5[INFO] [1623235180.413246332] [drone2]: Sending

information to server: height: 0.500000
6 duration: 2.000000
7 response: 1

Listing 3. Client nodes take-off messages.

1[INFO] [1623235924.239647700] [minimal_service]: Go
to incoming request

2 x: 0.000000 y: 0.041117 z: 0.000000 yaw: 0.000000
duration: 1.000000

3
4[INFO] [1623235924.244461100] [minimal_service]: Go

to incoming request
5 x: 0.000000 y: 0.041117 z: 0.000000 yaw: 0.000000

duration: 1.000000

Listing 4. Server node go to message.

1[INFO] [1623235925.104762600] [drone1]: Sending
information to server: x coordinate: 0.000000

2 y coordinate: 0.041117
3 z coordinate: 0.000000
4 rotation: 0.000000
5 duration: 1.000000
6 response: 1
7
8[INFO] [1623235925.106783200] [drone2]: Sending

information to server: x coordinate: 0.000000
9 y coordinate: 0.041117
10 z coordinate: 0.000000
11 rotation: 0.000000
12 duration: 1.000000
13 response: 1

Listing 5. Client nodes go to messages.

1[INFO] [1623231818.296960000] [minimal_service]:
Land incoming request

2 height: 0.000000
3 duration: 2.000000
4 response: 1
5
6[INFO] [1623231818.407826700] [minimal_service]:

Land incoming request
7 height: 0.000000
8 duration: 2.000000
9 response: 1

Listing 6. Server node land message.

1[INFO] [1623235180.412227300] [drone1]: Sending
information to server: height: 0.000000

2 duration: 2.000000
3 response: 1
4
5[INFO] [1623235180.413246332] [drone2]: Sending

information to server: height: 0.000000
6 duration: 2.000000
7 response: 1

Listing 7. Client nodes land messages.

As expected, the inclusion of an additional client node (one
more drone) does not disrupt the functionality of the overall
system and it is equally possible to send requests and receive
messages from the same server client in parallel with the
execution of other client nodes. This experiment demonstrates
that is possible to work with a swarm of drones with ROS2
without significant structural efforts.

VI. CONCLUSION

In this work, it was analysed EEG data captured by the BCI
Emotiv Epoc+ of a drone operator and, using machine learning
techniques, we were able to build a digital twin of the operator
capable of predicting his emotional state and decide whether
the commands should be sent to the crazyflie quadcopter. The
classification of the emotional state not only is supported by
EEG data but also by a visual component that analyses the
facial expressions. In addition, the communication between
the system and the drone is done through a ROS2 client
node. Multiple machine learning algorithms were validated
and Random Forest was the best fitted and therefore used
for training the digital twin. Considering the research question
pointed in Section I-A, results showed that the digital twin can
accurately discriminate the operator’s emotional states at a live
setting and the combination of classification models improved
the reliability of the system to decide upon the broadcasting
of the reproduced commands.

While uniquely relying on the cognitive classifier, the digital
twin, even with an overall satisfactory performance, allows
inaccuracies to happen unexpectedly while the operator is not
at his best state of mind. Including the visual component
minimizes the impact of these situations. As part of our
human condition, emotional reactions are often accomplished
by mental and physical responses. While the digital twin could
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produce an incorrect classification, the visual component will
likely detect a negative emotion and the command will not be
forwarded to the drone. A potential obstacle to the control of
the drone could be the fact that the accumulative complexity
of be mentally prepared to send commands, formulate a
command with success and be physically stable could disrupt
the execution of the command or sequence of command
unnecessarily. From what could be a quick set of commands
to perform a simple operation, it could demonstrate to be the
opposite and even leading to the frustration of the operator.
Regarding this issue, the visual component best detects the
happy and neutral states. Without a proper physical reaction,
this component will not detect other states and, therefore, these
disruptions will most likely not happen.

Additionally, the implementation of a ROS2 framework
in this work has proven to be crucial for the satisfactory
functionality of the system as it allows the management and
communication of information for one drone without explicit
hardware/firmware constraints. This work also validates the
ease of adding more drones (client nodes) for the execution
of tasks of higher demand.

VII. FUTURE WORK

As future work, we aim for collecting more data to train
the digital twin regarding the four emotional states and ensure
it keeps improving its real-time detection.

Due to Covid-19, it was not possible to validate this solution
with a wider range of subjects. Since a digital twin is adapted
to each subject, we plan on creating more profiles of people
with different demographics.

Emotiv Epoc+ was the target BCI for this work; thus, we
would like to experiment this platform with other commercial-
ized and, perhaps, open-source devices such as the OpenBCI
headset.
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