
105

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Introduction to Edge Computing and A Real-Time Capable Server Architecture

Volkan Gezer, Jumyung Um, and Martin Ruskowski
Innovative Factory Systems (IFS)

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany

Emails: {name.surname}@dfki.de

Abstract—The Internet has changed the way people access the
information they need, and indeed how they live. Whether it
is individuals reading emails or watching videos, or factories
utilising automated fabrication devices, the access and processing
of data is totally different. Thanks to the accessibility and the
benefits that it brings into the lives, new research areas are
emerging. One of the areas is Internet of Things (IoT) which
connects countless of devices to the Internet. Increasing usage
in IoT tremendously increases the count of connected devices
to the Internet as well as the data generated and transferred.
However, this increase brings several issues which could degrade
the Quality of Service (QoS) with delays or even failed requests
due to bandwidth limitations. Current tendency to solve problems
that the Cloud Computing has is to perform computations close
to the device as much as possible. This paradigm is called
Edge Computing. There are several proposed architectures for
the Edge Computing, but there is not an accepted standard by
the community or the industry. Besides, there is not a common
agreement on how Edge Computing architecture physically looks
like. In this paper, we describe the Edge Computing, explain
how its architecture seems, its requirements, and enablers. We
also define an extensible, server architecture. The proposed
Edge Server architecture has an ability to decide whether the
task should be offloaded to the Cloud or to another Edge
Server by considering the several parameters such as available
resources and network delays. The resources of Edge Server
can be extended with additional optional hardware or software
modules to add new functionalities for artificial intelligence tasks,
additional storage, wireless communication, etc. The server in
the proposed architecture is also capable of performing real-
time tasks and uses standard technologies to keep migration
efforts at minimum. The paper also shows the results of an initial
experiment, done without and with an Edge Server to compare
computing performance.

Keywords–Edge computing; real-time computing; edge comput-
ing requirements; enablers; Fog computing.

I. INTRODUCTION

Internet of Things (IoT) gave new possibilities and changed
how people live their lives. Number of connected devices to the
Internet is going up with the increased tendency towards IoT
[1]. In 1992, ”connected device” count was around one million
which went up to 500 million in 2003 thanks to increased
usage of personal computers. Later, IoT became even more
popular and saw three billions of connected devices. In 2012,
inclusion of of wearable devices increased this number to 8.7
billion. In 2013, this number went up to 11.2 billion owing
to connected home appliances and in 2014, 14.4 billion with
smart grids. The numbers increased in the upcoming years
due to involvement of even small personal objects, such as
toothbrushes, traffic lights, and table watches. Finally, even
door levers are expected to be part of smart objects in 2020
[2].

Researches foresee that the connected devices are expected
to be around 50 billion by 2020 [2][3]. This number is high as
the Cyber-Physical Systems (CPS) and more intelligent com-
ponents being used even for simple tasks. Tendency towards
Cloud Computing and IoT devices leveraged the research in
this domain and created new ones.

Figure 1. A simplified example showing the major difference between Cloud
and Edge Computing. Cloud Computing (a) connects end-devices to the
Cloud directly whereas Edge Computing (b) has an additional computing

power in-between.

Cloud Computing or the Cloud, allows its users to store
data, perform tasks using data centres through the Internet.
The available resources in the Cloud granted low-powered
or resource limited end-devices perform complex tasks in the
Cloud, saving exceptional computational time [4]. Thanks to



106

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the ubiquitousness of the Cloud, data can be accessed from
anywhere and any time as long as an active Internet connection
is available. Some everyday tasks such as checking e-mails,
video streaming, photo browsing, and file sharing or industrial
tasks such as getting sensor values or controlling robots are
performed through the Cloud. Using different standards, a sin-
gle infrastructure to keep the system reliable is becoming even
more complex, causing difficult and costly maintenance. The
companies and research institutes are working to avoid failures
of tasks due to insufficient hardware and network resources.
The physical distance to the Cloud and the available resources
within the infrastructure increase the latency and reduce the
Quality of Service (QoS). One of the recent paradigms in this
area to solve issues of Cloud Computing is Edge Computing.
Although there are several naming for Edge Computing such as
Fog Computing and Cloudlets, within this paper, only the term
Edge Computing will be used. Figure 1 shows the difference
between Cloud and Edge Computing.

Cloud Computing [5] is an emerging technology which
allows machines/people to access the data ubiquitously. It
enables on-demand sharing of available computing and storage
resource among its users which could be either human or
machine, or even both. Today, it is even possible for a simple
device to share its status or get information over Internet with
millions of users.

A layer is a logical organisation of set of services, de-
vices, or software with the same/similar specific functionality,
mainly defined for abstraction of tasks. A tier is, however, a
physical deployment of layers for scalability, security and to
balance performance [6]. In Cloud Computing, communication
between a device and the infrastructure which provides the
service is direct, without involvement of other tiers. In Edge
Computing, however, an intermediate component, or an Edge
Server performs the initial computation.

Edge Computing combines multiple technologies such as
Cloud Computing, Grid Computing, and IoT. It adds an addi-
tional tier between the Cloud and the end-devices and moves
computational power to the end-device as close as possible.
This means that, in the need of more computational resource
by the end-device or a system, the task can be offloaded to
an Edge Server instead of the Cloud. Edge Computing is
expected to reduce the latency and increase the QoS for tasks
which cannot be handled by these devices. These tasks are
usually computationally heavy such as big data processing,
video processing, artificial intelligence or time-sensitive. If the
computation must be done in real-time, utilization of Cloud is
out of the question since Cloud and Internet offers only best-
effort service and delivery. A system is a real-time system
only if it reacts to its environment by performing the correct
predefined actions within the specified time intervals.

Real-time computing can be divided into three categories:

• Hard Real-Time: Failure in the system is mostly fatal.
For example, if an airbag in a car deflates before or
after the specified timeframe (between 100 ms and 300
ms, within 10 ms), it loses its protective impact [7].

• Firm Real-Time: A real-time category between hard
and soft real-time. It tolerates some deadline misses,
but increase in the misses degrades the service, in
the end causing unacceptable results [8]. For example,

miss-sorting colors of the parts are acceptable up to
some point [9].

• Soft Real-Time: This category groups the real-time
applications which are less critical and have wider
deadline interval for their acceptance. For example,
voice calls or video streams are tolerated in case some
data packages are lost.

Some systems produce gigabytes of data per second
[10][11]. Devices with limited computing capacity may also
have critical deadlines for their primary task. In these situ-
ations, the task can be offloaded to an Edge Server using
the same constraints and can be accomplished at this level.
Depending on the outcome of the task, the system reacts to
the result, e.g., sends the data back to the end-device.

Both Edge Computing and Cloud Computing are strongly
related to IoT and allow accessibility of the data ubiquitously.
To build an architecture, the issues on the current Cloud or IoT
systems must be identified, requirements must be specified,
enabling technologies must be listed, and then a concept
must be given. Later, the concept can be implemented in an
architecture, validated, and evaluated. This paper presents an
ongoing work on Edge Computing with its clear description.
It also explains its requirements and enablers to solve the
introduced issues. The paper also shows an ongoing work
to implement a novel server architecture which is capable of
performing real-time tasks and take the necessary actions to
provide a high QoS, such as offloading the task to another
server or to the Cloud. The architecture will not simply be an-
other architecture, but will compare the existing architectures
and consider real-world requirements from the industrial use
cases. The architecture will also be vendor-independent and
extensible and it meet industrial requirements.

The rest of the paper is structured as follows: Section II
introduces some of the existing work done and simulators
in the area of Edge Computing. Section III describes the
concepts and some definitions together with requirements and
enablers. Section IV defines the Edge Server architecture to be
implemented for Edge Computing in two sub-sections. Section
V shows the initial experiment results with various scenarios
and finally, Section VI concludes the paper and presents the
future work.

II. BACKGROUND

Although usage of the term “Edge Computing” is recent,
there are already several proposed architectures available, each
considering different aspects to meet the requirements of the
Edge Computing.

The architecture proposed by IBM considers the require-
ments for autonomy and self-sufficiency of production sites.
The architecture is three-layered to balance the workload
between the Edge, the Plant, and the Enterprise. The challenges
of the architecture are listed as productivity gains for high
throughput, failure prevention for reliable system and high
product quality, and flexibility while hiding the complexity
and allowing reconfiguration without a lot of effort [12].

Another reference architecture is proposed by OpenFog
Consortium [13]. This architecture names the core principles
as pillars. Pillars group requirements within their scope. These
pillars are Security, Scalability, Openness, Autonomy, Agility,



107

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and Programmability. OpenFog Reference Architecture is pro-
posed by covering industrial use cases.

Another recent initiative to build a common platform for
Industrial IoT Edge Computing is EdgeX Foundry [14]. It was
launched by Linux Foundation and initial contribution made
by Dell. However, similar to OpenFog Consortium, it is also
open for new memberships. EdgeX Foundry is a vendor-neutral
open source software platform that interacts at the Edge of the
network. It defines its requirements in architectural tenets as
follows: platform agnostic in terms of hardware and operating
system, flexible in terms of replaceability, augmentability, or
scalability up and down, capable in storing or forwarding data,
intelligent to deal with latency, bandwidth, and storage issues,
secure, and easily manageable. A similar framework called
Liota is being developed by VMware and it also aims at easy
to use, install, and modify. Secondarily, it targets for a general,
modular and enterprise-level quality. This framework is also
open source and governed by VMware [15].

There are also several work done for computation and
control in the Cloud. Below some of the related work is
explained.

A research project called ”pICASSO” focuses on the
control of a robot using a Cloud-based control platform. The
project implemented a platform and a Cloud controller which
can perform motion planning and control for industrial robots
[16].

A recent work done by Givehchi, Imtiaz, Trsek, and
Jasperneite [17] studies industrial use cases for using virtual
control service in a private Cloud. Instead of using hardware
programmable logic controllers (PLC) on site, they use a
computer with multi-core processor and set each core as a
virtual PLC to control sensors and actuators. The solution
suggests a low-cost, but a slightly lower performance software
PLC, compared to the hardware PLCs.

Another study on Cloud-based control is done by Gold-
schmidt et. al [9]. The work introduces a new architecture
for scalable and multi-tenant Cloud-based control, virtualized
PLCs. It also considers and evaluates the architecture with
respect to its scheduling policies and time-sensitiveness. The
Cloud architecture is located in a different physical location
than the industrial site where the actual control is done and
the communication is performed through Internet. The results
showed over 99% success rate for tasks requiring response
within one second. They suggest that the architecture is
feasible for soft or firm real-time applications.

Realizing an unproven concept in real environments with-
out testing and validating requires good investment of engi-
neering time and money. However, using virtual environments
which can simulate several hours of real environment tasks in
couple of minutes save a lot of time.

CloudSim is a framework to model and simulate Cloud
Computing infrastructures and their services. It supports mod-
elling and simulation of large scale Cloud data centers, their
application containers, costs as well as power consumption
[18]. One simulation tool to evaluate the reliability of the
system is called iFogSim and implemented by Gupta, Dast-
jerdi, Ghosh, and Buyya [19]. It is based on CloudSim and
allows addition of fog or edge devices, creation of topologies
and evaluation of resource management policies focusing on

latencies [19]. Sonmez, Ozgovde, and Ersoy introduced an-
other simulator called EdgeCloudSim [20]. It adds a mobility
model and non-fixed delays into the network which is fixed
in iFogSim. The simulator also gives detailed information on
resource usage as well as the percentage of tasks statuses.

In both simulators, the data is passed to the Cloud in
case there are no resources available in the Edge/Fog Server.
However, in our scenario, the Edge Servers can also offload
the tasks to other Edge Servers by considering the available
resources, network and computation delays. Additionally, the
end-devices do not have mobility, only the data does. We
believe that there are no available simulators in the literature
which can offload the tasks of immobile end-devices between
the Edge Servers nor a standard Edge Server architecture
which is capable of performing real-time calculations. The aim
in this research is not simply to build another architecture, but
to analyse the existing architectures and consider industrial
requirements to make up a generic reference architecture which
is vendor-independent and extensible. This ongoing work will
build a novel architecture comparing the existing architectures,
initially simulating in a virtual platform. To the best of our
knowledge, this is not considered in any of the aforementioned
reference architectures.

III. CONCEPT

Although Cloud Computing reduces costs of computation
by saving hardware and giving flexibility, the physical distance
to the device reduces the QoS. Additionally, if the resources
of a Cloud infrastructure is shared, scheduling the tasks is
a difficult task. Moreover, transmitting too much data to
the Cloud more than a network can handle is unnecessary
and causes network congestion [21]. If the task execution is
critical and time-constrained, then an in-time correct reaction
is necessary.

Figure 2. Simplified topology of the Edge Computing network.

One of the main goals of Edge Computing is to reduce
latency and to keep the QoS as high as possible. As seen
in Figure 1, in Cloud Computing, the Cloud infrastructure
communicates with the end-devices directly. Edge Computing
intends to solve the issues of Cloud Computing or IoT by
adding an additional tier between the IoT devices and back-end
infrastructure for computing and communication purposes. As
depicted in Figure 2, this tier also has intermediate components
for the first gathering, analysis, computation of the data. These
intermediate components are called Edge Servers. Several
architecture types for IoT-enabled applications are proposed



108

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22]. In this paper, a three-tier architecture is used. Unlike the
example scenario of work done in [20], this paper assumes
that the end-devices are not mobile.

Figure 3. Overview of the modular testbed architecture to be used for
validation and evaluation.

The scenario in our research involves a multi-vendor modu-
lar testbed for research purposes by SmartFactoryKL [23]. The
testbed is composed of plug-and-produce modules and each of
them performs one step of the production, independent from
other modules. The modules are developed by different indus-
trial partners and work together to produce a customizable and
individualized product. As Figure 3 illustrates, the modules in
the testbed are not directly communicating with each other,
but through the infrastructure boxes. Each infrastructure box
is connected with each other serially and provides pressured
air, network connection, safety bus, and power to the modules.
The communication to the Internet is performed through the
central infrastructure server. The aim of the research is to
add computing power into the infrastructure boxes to analyse,
monitor the modules and react to the expected or unexpected
situations, including real-time behaviour.

In our approach, we propose an extensible Edge Server
model for Edge Computing to be integrated inside Infrastruc-
ture Boxes. If there are multiple Edge Servers in the same
network, they are able to communicate with each other. Each
server is orchestrated by itself, which means that they are
not dependent of each other and aware of the neighbouring
server capabilities in the same network. If a task cannot be
guaranteed or performed by a server, the receiving server
knows which other servers are capable of performing the same
task. In all circumstances, the data transfer among devices will
be performed through secured protocols. Figure 2 shows the
simplified topology of a three-tier Edge Computing.

Edge Server is not a complete replacement of the Cloud
with respect to its functionalities. Although its available re-
sources are higher than the end-devices, they are lower than the
Cloud. Instead, highly repeated tasks, or tasks that require in-
time response are preferred to be executed in an Edge Server.

As seen in Figure 2, the proposed architecture for Edge
Computing consists of Cloud Tier, Edge Tier, and Device
Tier. In the Device Tier, there are end-user devices. The green
blocks in the Edge Tier are Edge Servers. These servers gather,
aggregate, analyse, and process the data before offloading them
to the Cloud Tier or send back to the devices. The end-
devices can be in the same physical location, or in different
locations as depicted in the figure. When an end-device needs
to communicate with the Cloud, first, the request is sent to

the Edge Server which is at the closest location. Then, if the
Edge Server is capable of completing the task by itself, it
automatically handles the data and responds to the end-device
with the result. If not, the data is offloaded to another server
in the same tier provided that it exists. Otherwise, the data
is offloaded to the Cloud. The decision process is made by
considering available resources in other available servers in
the same network, physical distance, and time requirements.
In automation domain, Edge Tier can be seen as an edge or
borderline between the Information Technology (IT) and Op-
erational Technology (OT). In IT, the speed considerations are
not critical whereas in OT, the communication or computing, or
both must be real-time. Edge Tier isolates the network between
IT and OT. Assume that A and B are features that could be
serviced by the Cloud. For example, if a device in location X
or Y needs the feature B to perform a task, the request will
be orchestrated by the Edge Servers #1 or #2 and be sent to
and performed by the Cloud. However, if, for example, the
feature A is requested by an end-device in location X, first
the Edge Server #1 will evaluate its own available resources.
Depending on the urgency of the request, resource utilization,
and calculated delays, it will either complete the request by
itself or offload to the server #2 or to the Cloud.

Different tasks may have different priorities even though
they are real-time. If there are multiple task requests, the
server should pause the lower priority tasks while keeping
track of the paused tasks or offloading them. The challenge
here is to decide on the functionalities in the Edge Tier by
keeping the costs at minimum and the QoS at maximum.
However, deciding on the count and available resources of
Edge Servers are also big challenges and big trade-offs. There
are several aspects to consider before passing the data to the
Cloud. To decide where to execute the task, each server has
an orchestrator of which details will be explained in Section
IV. According to this, the function should consider the priority
of the task, resource utilization of the servers, computing cost
for the task, and the physical distance or distance cost of the
servers that is going to be used.

A. Requirements

Edge Computing is a paradigm which uses Cloud Comput-
ing technologies and gives more responsibilities to the Edge
tier. These responsibilities are namely, computing offload,
data caching/storage, data processing, service distribution, IoT
management, security, and privacy protection [24].

Without limiting the Cloud Computing features, Edge
Computing needs to have the following requirements, some
of which are also defined for Cloud Computing [25][26]:

1) Interoperability: Servers in Edge Computing can con-
nect with various devices and other servers. In Cloud Comput-
ing, IoT allows countless number of devices to communicate
with humans or each other. This creates a big market for
manufacturers of these devices. For this reason, there is the
issue of interoperability with connected device using different
communication protocols. Advanced Message Queuing Proto-
col (AMQP), Message Queue Telemetry Transport (MQTT),
and TCP/IP are widely used and should be supported by Edge
Computing. Using a widely-used and widely-known standard
will remove the technology and language barriers, increasing
interoperability among the devices.



109

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Scalability: Similar to Cloud services, Edge Computing
will also need to be adapted for the size of its users and sensors.
Additional deployment of Edge Servers is costly and small
number of Edge Servers is desirable in terms of economical
aspects. For this reason, high scalability is also mandatory.

3) Extensibility: Computing technology is developing
rapidly. After 2-3 years of deployment, clock speeds, memory
size and program size increase, too. Easy deployment of new
services and new devices with small effort is required for
essential goal of Edge Computing. New functions and devices
should be integrated without (re)configuration of the Edge
network. Therefore, the system should allow extensibility with
hardware and software components.

4) Abstraction: For the seamless control and communica-
tion, the abstraction of each Edge Node and group of nodes is
required. Moreover, abstraction helps the topology of an Edge
network to be flexible and reconfigurable. Fundamentally, an
Edge node is located between device tier and Cloud tier. In
other words, an Edge tier is a border between Information
Technology (IT) and Operational Technology (OT). This tier
can consist of one or more Edge nodes and groups. In this
case, one Edge node of the group can share tasks or nodes
in the group can be prioritized. Utilization of Application
Programming Interfaces (APIs) in abstraction is useful to
provide backward compatibility for the new functionalities or
big changes in the architecture.

5) Time sensitiveness: Below OT, the operations may be
near-real-time or real-time. Edge Computing is expected to
solve time issues which Cloud computing cannot guarantee.
Unlike Cloud Computing, physically close distance is one
strength of reliable and fast communication without worry-
ing about traffic problem. Video streaming service is one
of expected applications of Edge Computing. It is required
for real-timeness of the service provision. In addition, time-
sensitiveness adds big benefits to the providers of reactive
services, such as location-based advertisements and user-status
based guide systems.

6) Security & Privacy: Using Cloud Computing services
has a trade-off for enterprises like manufacturing and high-
tech companies because there is a concern about the leakage
of high knowledge and business activities outside their own
organization. Edge Computing is a way to secure data contents,
which is different from firewall which only controls external
access into the network. It is also important to isolate the data
by preventing access from even non-authorized users.

7) Reliability: Edge Servers provide real-time or non-real-
time control for the devices. Real-time tasks may be vital
which involve human safety. Therefore, it is vital to have
a reliable system which reacts when it is needed and how
it is needed. The physical reliability requirements for Edge
servers providing services is similar to Cloud Computing.
Harsh environments, such as factories and construction yards,
require water-proof ceiling, fanless computers and dust-proof
system. In power plant, magnetic shield is equipped by sensor
gateways.

8) Intelligence: Multi-sensor generates tremendous amount
of data and uploads into Cloud, directly. It causes network con-
gestion and heavy load on the Cloud server. Edge Computing
supports first and second filtering of these data by converting
into higher level of data contents. Data filtering is implemented

by rule-based engines or machine learning algorithms. In the
case of multi-camera system like security systems, Edge Com-
puting supports image processing, computer vision and enables
object detection before transferring the data into the Cloud.
Another example is predicting the failure or abnormalities in
a production line by analysing the sensor data and taking the
precautions for prevention or informing the user. These kinds
of intelligent functions are necessary for Edge Computing.

9) Power: Unexpected shutdown or blackout is the cause
of breakdown of Edge Server. Uninterruptible power supply
(UPS) is required to give an ample amount of time to protect
the electronic units and data storage in case of an unexpected
shutdown due to power outage.

B. Enablers
Edge Computing uses wide range of technologies and

brings them together. Within this domain, Edge Computing
utilizes many technologies, such as wireless sensor networks
(WSN), mobile data acquisition, mobile signature analy-
sis, Fog/Grid Computing, distributed data operations, remote
Cloud services, etc. Additionally, it combines the following
protocols and terms:

1) 5G communication: It is the fifth generation wireless
system which aims at higher capacity, lower power consump-
tion, and lower latency compared to the previous generations.
Due to increased amount of data between the data, 5G is
expected to solve traffic issues which arose with the increased
number of connected devices.

2) PLC protocols: Object Linking and Embedding for
Process Control Unified Architecture (OPC-UA) is a protocol
developed for industrial automation. Due to its openness and
robustness, it is widely used by industries in the area of oil
and gas, pharmaceutical, robotics, and manufacturing.

3) Message queue broker: MQTT and TCP/IP are pop-
ular message protocols of smart sensors and IoT devices.
Supporting these message brokers, Edge Computing increases
the device count that it connects. For the problem of MQTT
security, AMQP is useful in the communication with Cloud
Computing server.

4) Event processor: After messages of IoT arrive in the
Edge server, event processor analyses those messages and
creates semantic events using pre-defined rules. EsperNet,
Apache Spark, and Flink are some examples for this enabler.

5) Virtualisation: Cloud services are deployed as virtual
machines on a Cloud server or clusters. Using virtual machines
allow running multiple instances of operating systems (OS) on
the same server.

6) Hypervisor: As well as virtual machine, performance
evaluation and data handling are required and realized by
hypervisor to control virtual machines in the host computer.

7) OpenStack: Managing multiple resources could be chal-
lenging. OpenStack is a Cloud operating system that helps
control of pools of computing and storage resources at ease
through a control panel and monitoring tools.

8) AI platform: Rule-based engine and Machine learning
platform supports data analysis in local level. As stated in
Section III-A, this is quite important to reach one of the goals
of Edge Computing which is to gather, analyse, and perform
the first filtering of the data.



110

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

9) Docker: Virtual machines work with installation of
operating systems. Unlike virtual machines, Docker is a Con-
tainer as a Service (CaaS), which can use a single shared
operating system and run software in isolated environment.
It only requires the libraries of the software which makes it a
lightweight system without worrying about where the software
is deployed.

IV. ARCHITECTURE DESIGN

An Edge Server must be capable of gathering, aggregating
the data, computing and transferring it back to the end-
device. However, in the meantime, the servers must be able
to communicate with other Edge Servers within the network,
in case their resources are not enough to perform the task.
Alternatively, they must be able to offload the data to the
Cloud. In other words, the Edge Servers must have a reliable
and communicable network between each other and the Cloud.

For seamless task handling and communication, the servers
must follow some standards compatible with each other. This is
not a simple task, since this technology contains several aspects
to consider such as resource allocation, scheduling, scaling,
storage, etc. The architecture must also be able to handle
time-critical or real-time tasks. The software must also be
designed or modified to work with the real-time capable system
[27]. Last but not least, the server must be extensible with
plug-and-play modules to advance or add new functionalities
via hardware or software modules. These extensions must
be validated before usage, to keep the system functional
and to prevent intrusion. Such architecture design is divided
into Hardware Modules and Software Components which are
explained in the next subsections.

A. Hardware Modules
As mentioned in the previous sections, to solve the prob-

lems of Cloud Computing, Edge Servers or ”Edge Nodes” need
to have more computing power than the end-devices. However,
the hardware in the Edge Tier is also limited compared to the
Cloud. Therefore, to keep the balance between the performance
and costs, first, the use cases for the Edge Servers must be
defined, then, the resource must be considered to handle these
defined use cases in-time. During the research, it has been
decided to use Samsung Artik 710 as the hardware. It has high
performance 8-core 64-bit ARM Processor, integrated wireless
adapters, 1 GB RAM and 4 GB flash memory, extensible with
an SD card. The price to performance ratio, internal real-time
clock (RTC), and availability of the open source repository
also played a big role for this decision [28][29].

The data produced by the end-devices are not directly sent
to the Cloud or back-end infrastructure, but initial computing
is performed on these servers. Considering the number of
connected devices and the data they produced, these servers
are used to aggregate, analyse, and process the data before
sending it into the upper layer, the infrastructure, or back to
the device.

The proposed Edge Server architecture is to be designed
modular and should provide functionalities for real-time and
non-real-time control, as well as real-time communication.
Each server in our proposal has a Core Node of which
functionalities can be extended by plugging additional optional
modules in. Figure 4 shows an overview of possible modules
or devices that could be attached to the core node. Hardware

Figure 4. View of the proposed extensible Edge server architecture with its
major functionalities, where green blocks extend the functionalities for the

blue core node.

modules can also have their computing power, or simply
improve the available functionality of the core node. For
example, to capture big data and store, a storage module can
be attached or in the case that machine learning algorithms
are desired to be executed on the server, a dedicated artificial
intelligence (AI) module with dedicated Graphics Processing
Unit (GPU) can be connected. This module will be available
for use with none to minimal configuration.

To preserve the integrity of the system and prevent unau-
thorized hardware from breaking the system functionality, only
verified hardware must be allowed for connection. Hardware
extensions are planned to be made using a physical master key,
which is thought to be a USB device. Whenever this device
is plugged in, the Edge Server will be ready to identify and
allow new hardware to be added.

As mentioned in Section III-A, scalability is quite impor-
tant to accomplish the tasks. In the scope of scalability, one
server is expected to be aware of its neighbouring servers along
with their functionalities. When a server is plugged into the
network and turned on, first, it publishes that it is available.
Then, it publishes its resources along with the available func-
tionalities inside. Using the previous example, in case an AI
module is connected to one server, other servers are informed
with this functionality and they can utilize this server more
often for AI-related tasks. The decision, of course, depends on
the conditions required by the task, such as deadline.

Core Node should support multiple communication in-
terfaces. Therefore, time and speed considerations are quite
important for choosing the best hardware. The Edge Server
is also expected to perform real-time computing and control.
Therefore, reliability and stability of the hardware is also
mandatory.

B. Software Components
As mentioned in Section IV-A, the server has a Core

Node which is capable of performing real-time tasks. Before
implementing the software architecture of such system, it is
important to define the roles of software, clarify, and assign
separate roles to the components. Rather than choosing the
technologies or languages, which the software components are
going to be implemented in, all components defined here can
be implemented in any language as long as they satisfy the



111

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Proposed Software Architecture of Core Node.

requirements. Time-sensitiveness requires implementation of
several components which are compatible with each other.
These components should enable a reliable, stable in-time
response and take correct actions.

Figure 5 shows the required software components inside the
Core Node to fulfil the requirements. Below, these components
are explained:

Real-Time Capable Operating System (RTOS): To im-
plement software components, the operating system (OS) in
the hardware must also be real-time capable. There are many
OSes which can handle real-time tasks. However, the choice
of the OS should be made by considering its available support,
availability of the source code or openness for modifications,
and applicability of the OS into the chosen hardware platform.
Having a real-time capable kernel does not mean that the
system will work in real-time. Applications, APIs, and the
system must be designed properly to benefit from real-time
functionality [30]. It should have a native support for the
chosen Core Node hardware that it is running on. With the
current stage of the research, the operating system has been
decided to be based on Linux kernel, as it is open source and
modification is easy with the plenty of resources available. The
chosen Samsung Artik 710 hardware comes with pre-installed
Fedora 24. However, the out-of-the-box version is not real-time
capable. Therefore, the real-time patch [31] will be integrated
into the kernel and it will be recompiled. Nevertheless, the
other software components will be OS-neutral, therefore could
be adapted to other OSes.

Inputs/Output (I/Os)s: I/Os are the interfaces which con-
nect the hardware with the software. These are also used to
connect other physical modules with the core node such as
Edge Gateway for real-time communication.

API: APIs will be used for all communication with the
I/Os, the end-devices, or the Cloud. An API is necessary
to abstract the functionalities of other components. It allows

internal modifications in case a new software component added
without requiring complete change in the system. It also
guarantees that the requests cannot interfere with the internal
components since direct access to the individual modules or
components is not allowed. Another goal of the architecture
is to keep the migration efforts at minimum. Therefore, it
is important to choose an accepted and standard language
for the API to make it compatible with as many device and
software as possible. Another aspect to consider is to choose
a lightweight, yet stable API as a low latency is desired. Last
but not least, the API should make sure that the requests are
always authorized. This is performed by evaluating the request
with Security Protocols component.

Message Router: As soon as the task or data arrives, this
component retrieves and routes it to the location where task
should be handled by communicating with Resource Monitor
component. In case there are no resources available in this
server, the task will either be transferred to another Edge
Server or to the Cloud. This component always makes sure
that the incoming task is from a trusted device by interacting
with the Security Protocols component.

Configurator: The server and their modules are automat-
ically configured as soon as they are attached. Nevertheless,
their manual configuration or tweaks are performed via this
component. It provides a Web-based and shell-based admin-
istrator panel to modify server properties, monitor the status,
perform low-level resource allocations, and adjust orchestrator
parameters, etc. Additionally, this component detects other
nearby servers in the same network and configures the server
to use them, when necessary. Similar to other components, this
component is also accessed through the API.

Storage/Database: This component is used to store tem-
porary data for the active or waiting tasks. However, the
component will not keep the permanent data of the tasks.
To keep the permanent data, storage module or the Cloud is
recommended.

Servers: Standalone servers which are used out-of-the-
box with only configuration changes are encapsulated in this
component. The servers enable API communication as well as
internal communication among the components. The servers
are configured through the API via Configurator component.

Security Protocols: One of the most important require-
ment for the Edge Computing is keeping the data secure and
private. Security itself is a vast aspect to consider. Therefore,
a dedicated component to handle all security-related issues
is necessary. This component monitors all incoming connec-
tions and takes the necessary actions in case the request is
unexpected or unauthorized. Since the Edge Server will be
accessible via the Cloud, the component is also responsible
to prevent Internet-based attacks. Moreover, the component
makes sure that the data privacy is preserved by encrypting,
decrypting the data and issuing and exchanging keys, etc.

Resource Monitor (RM): The computing power in the
Edge Server hardware is limited. RM actively monitors all
available resources of Edge Servers in the network. It is also
aware of all the other connected Edge Servers and their at-
tached modules. RM directly interacts with the Message Router
and decides whether the task received must be processed in
this server or offloaded to another location. If the task is to
be executed in another server, this component informs the



112

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Message Router and points the target without further action.
This decision is made by bi-directional communication with
Orchestrator.

Cache: A temporary storage component to serve the data
faster for the future requests. It is especially used when
Resource Monitor decides that the task is not going to be
executed in the current server.

Virtual Processors: For performance and power reasons, it
is typical to have multi-core hardware. In multi-core hardware,
one thread is generally executed on a single core. If a software
is not optimized for multi-core, it cannot benefit from multi-
core hardware. On the other hand, multi-threaded software
execution is distributed among the cores. However, in either
case, it is possible to set central processing unit (CPU) affinity
of a process, that is a running instance of the software or
program. Low-level programming makes configuration of the
kernel possible to add virtual processors, limit or specify
the available resources, and assign specific processes to these
virtual processors.

Orchestrator: If RM allows execution of the task in this
server, this component becomes active. Using event-based
communication with the RM, the task is handled according
to its urgency or the priority. If there is enough resource to
execute the task, the task is immediately executed. If not, deter-
mined by the availability of the resource, task can be handled
in different ways using the sub-components. This component
has three different sub-components, namely: Scheduler, Scaler,
and Queue Manager.

Scheduler: If a task is chosen to be executed in this server,
it must be carefully scheduled to avoid deadline misses, espe-
cially for real-time tasks. Although multi-threaded software
is usually scheduled by the OS and assigned to the CPU
cores, the affinities may need to be adjusted. Depending on
urgency or the priority of the new task, this component is
responsible to set CPU affinities for the running tasks taking
their priorities into consideration. The scheduler should be
designed to minimize the waiting time of paused tasks.

Scaler: Scheduler sorts the execution times of the tasks. In
the proposed architecture, some of the cores are dedicated for
real-time tasks. Tasks not optimized for multi-core systems are
by default assigned to run on a single core. If Scheduler is not
able to meet the deadlines of the critical tasks, this component
can increase the available core count for the real-time tasks
to have them run on multiple cores, even if the cores are not
assigned to execute real-time tasks. Of course, this is only
possible provided that the tasks are multi-threaded.

Queue Manager: If a task cannot be executed immediately,
one other possibility is to queue it. The queue contains both
real-time (RT) and non-real-time (NRT) tasks. This component
communicates with the Scheduler, and stores the tasks marked
to pause and forwards the paused tasks to scheduler, following
a variable scheduling algorithm.

V. EXPERIMENT RESULTS ON DIFFERENT HARDWARE

SmartFactoryKL concept was depicted in Figure 3 in Sec-
tion III. It was also mentioned that, the factory comprises
multiple modules from different vendors. Figure 6a shows the
the modules, infrastructure boxes and the infrastructure server
as they are deployed in real world. Figure 6b, shows one of
the modules that is responsible for one task during production.

Figure 6. a) SmartFactoryKL with all modules, infrastructure boxes and the
infrastructure server, b) Close-up view of one of the modules.

Edge Server will be used in several real world scenarios such
as object detection, production priority change, emergency stop
and production cancellation. As a first experiment, we chose
object detection use case in which we can analyze the objects
using a smart glass. The experiment does not have a real-
time dependency, therefore they were made with best effort
approach. The experiment exposes an on-site Edge Server
to improve the overall performance and realize new features
which are not applicable in Cloud-computing.

It compares Edge Computing-based service with the only
low-end device-based computing. Comparison with various
combination of hardware is the experiment test coming from
the problem of Cloud-based computing services. The test
shows the advantage of using Edge Computing and help find
the conditions where Edge Computing is better than Cloud or
low-end device-based computing. The purpose of this experi-
ment is to prove the improvement that Edge Computing con-
figuration shows better performance than legacy configuration
or Cloud-based system configuration. The experiment contains
two computing servers which are CPS modules located in
front of a machine itself and Edge Server in order to share
the computing load. The test was made using five different
network configurations. The configurations are divided into
1) CPS module alone, 2) Edge Server alone, 3) Connection
with Edge server via wired communication, 4) Connection via
wired and wireless communication, and 5) Connection via two
different wireless communication. The input is video streaming
data transferring the objects and people in front of the camera,
attached in the production modules.

As seen in the Table I, we found the following results
through the tests. Using CPS module with an Edge Server per-
formed four times faster object detection than the CPS module
alone. All kinds of connection types satisfied the bandwidth
requirements of single connection with CPS module. Even if
the wireless connection was 400 Mbps, the image streaming
data could be transferred without any delay. Faster wireless
connection will be more useful when there are more data
being transferred in order to keep low latency. CPS test did not
show any delay but the computation time was long since no
Cloud services are used and computing power is weak. Edge
Server alone showed the best results, however needed more
memory because of the need to run additional software to test
the performance.



113

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Test Configuration CPS Module Comm. Method Edge Computing
CPS module
alone without
Edge service
(Raspberry Pi 3:
Quad core 1.2GHz
64bit CPU and
1 GB RAM)

U: 4.6 to 4.83s
C: 22 - 67%
M: <360 KB
(36%)

Not used Not used

Edge Server
alone (Intel I7 64bit
16GB RAM NVIDIA
GTX 950)

Not used Not used

U: 1.2 to 1.40s
C: 28 - 51%
M: <550∼650 MB
G: <6∼16%
(210-290MB)

CPS module
communicating with
Edge Server via Wired
connection

Only transferring
camera images

1 Gbps
Wired
Connection

U: 1-2s
C: 16-23%
M: 250-310 MB
G: 6-17% (571MB)

CPS module
communicating via
802.11ngb with Edge
Server with the router
via Wired connection

Only transferring
camera images

802.11ngb
@0.4 Gbps
and
1 Gbps wired
connection

U: 1-2s
C: 17-23%
M: 250-310 MB
G: 6-14% (570MB)

CPS module
communicating
via 802.11ngb
with Edge Server
with the router via
Wireless connection

Only transferring
camera images

802.11ngb
@0.4Gbps
and 802.11ac
@1.2Gbps

U: 1-2s
C: 17-23%
M: 250-310 MB
G: 6-14% (570MB)

TABLE I. Object detection experiment results with different configurations
(U: Update period (Average (AVG)), C: CPU Util. AVG, M: Memory Usage,

G: Graphical Memory Load).

VI. CONCLUSION AND FUTURE WORK

Edge Computing is a recent term which moves the services
from the Cloud to the device as close as possible and open
for new innovations. It is a borderline between the Cloud
and the device tier. Although the Cloud Computing and IoT
have brought many advantages in the previous years, increased
number in the connected devices raised some issues, such as
latency and low QoS problems. Edge Computing is believed
to solve these issues by analysing the issues and considering
the requirements of real world use cases.

There are already several existing proposed architectures
in the domain of Edge Computing, such as EdgeX Foundry,
Liota, and OpenFog Reference Architecture. Although they are
also extensible and they allow inter-connectivity, they do not
focus on the real-timeliness of the architectures.

This paper showed an ongoing work on how Edge Com-
puting physically looks like together with its requirements
and enablers. It also explained the basics on how the com-
munication between the end-devices and Edge Servers are
expected to be. Last, the paper proposed an ongoing work
for Edge Server architecture which is capable of performing
real-time computations. The servers are able to orchestrate
the tasks and find the best host to offload the requested task
by an end-device. The offloading can be done between other
Edge Servers in the network, or the Cloud. The work is
being developed by considering the real-world use cases of the
industrial partners. The first experiment is made using object
detection algorithms with intermediate devices, without real-
time requirement. However, further experiments will be per-
formed with industrial use cases requiring real-time deadlines.
Later on, the comparison with the legacy systems will be made.

One ongoing task is implementation of a simulator similar
to CloudSim framework, including all components explained
in Section IV. This will help us find out the optimal param-
eters for the hardware modules and the software components.

Current version of the simulator is capable of emulating
the computer central processing unit (CPU), generating tasks
with specific properties, and scheduling them with feasibility
checks. Later, the architecture will be implemented, validated
and evaluated on an optimal hardware chosen for the work.

In the proposed solution, when a task execution started, it
can be performed only using one server. Another future work
is to divide these tasks into multiple machines to exploit the
resource utilization of the available resources, which is called
task migration. This work could further be extended by using
artificial intelligence instead of mathematical calculation for
optimizations. For example, similar tasks can be grouped, and
the historical data can be used to estimate the task duration
and the action can be taken.

ACKNOWLEDGMENT

This research was funded in part by the H2020 program
of European Union, project number 723094 (project FAR-
EDGE). The responsibility for this publication lies with the
authors. The project details can be found under project website
at: http://www.far-edge.eu

REFERENCES

[1] V. Gezer, J. Um, and M. Ruskowski, “An extensible edge
computing architecture: Definition, requirements and enablers,”
in Eleventh International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies. International
Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies (UBICOMM-2017), Special Session on Edge
Computing, International Academy, Research, and Industry Association
(IARIA). IARIA, November 2017. [Online]. Available: https:
//www.researchgate.net/publication/321134141 An Extensible Edge
Computing Architecture Definition Requirements and Enablers

[2] NCTA, “The Growth of The Internet of Things,” Infographic,
May 2014, [retrieved: May 2018]. [Online]. Available: https://
www.ncta.com/platform/industry-news/infographic-the-growth-of-the-
internet-of-things/

[3] D. Evans, “The Internet of Things - Cisco,” Cisco, White Paper, April
2011, [retrieved: May 2018]. [Online]. Available: https://www.cisco.
com/c/dam/en us/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf

[4] H. H. Holm, J. M. Hjelmervik, and V. Gezer, “CloudFlow - an infras-
tructure for engineering workflows in the cloud,” in UBICOMM 2016:
The Tenth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies. IARIA, October 2016, pp. 158–
165.

[5] P. M. Mell and T. Grance, “The nist definition of cloud computing,”
in National Institute of Standards and Technology Technical report,
September 2011, [retrieved: May 2018]. [Online]. Available: https:
//www.nist.gov/publications/nist-definition-cloud-computing?pub id=
909616

[6] R. Lhotka, “Should all apps be n-tier?” Blog, 2005, [retrieved:
May 2018]. [Online]. Available: http://www.lhotka.net/weblog/
ShouldAllAppsBeNtier.aspx

[7] E. Olderog and H. Dierks, Real-Time Systems: Formal Specification
and Automatic Verification. Cambridge University Press, 2008.

[8] T. Kaldewey, C. Lin, and S. Brandt, “Firm real-time processing in
an integrated real-time system,” Universitry of York, Department of
Computer Science - Report, vol. 398, 2006, p. 5.

[9] T. Goldschmidt, M. K. Murugaiah, and C. Sonntag, “Cloud-Based
Control: A Multi-Tenant, Horizontally Scalable Soft-PLC,” in IEEE 8th
International Conference on Cloud Computing, 2015.

[10] S. Higginbotham, “Sensor Networks Top Social Networks for Big
Data,” Article, 2010, [retrieved: May 2018]. [Online]. Available:
https://gigaom.com/2010/09/13/sensor-networks-top-social-networks-
for-big-data-2/



114

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] T. Valich, “Big Data In Planes: New P&W Gtf Engine Telemetry
To Generate 10GB/s,” Article, 2015, [retrieved: May 2018]. [Online].
Available: https://vrworld.com/2015/05/08/big-data-in-planes-new-pw-
gtf-engine-telemetry-to-generate-10gbs/

[12] I. C. A. Center, “IBM: Internet of Things,” Cloud Garage Method,
2017, [retrieved: Sep 2017]. [Online]. Available: https://www.ibm.com/
devops/method/content/architecture/iotArchitecture/industrie 40

[13] “OpenFog Consortium Reference Architecture,” Website, 2017,
[retrieved: May 2018]. [Online]. Available: https : / /www.
openfogconsortium.org/ra/

[14] “EdgeX Foundry Architectural Tenets,” EdgeX Foundry Wiki, 2017,
[retrieved: May 2018]. [Online]. Available: https://wiki.edgexfoundry.
org/display/FA/Introduction+to+EdgeX+Foundry

[15] “VMware Introduces Liota,” Website, 2017, [retrieved: May
2018]. [Online]. Available: https://www.vmware.com/radius/vmware-
introduces-liota-iot-developers-dream/

[16] “pICASSO Project,” Website (German), [retrieved: May 2018].
[Online]. Available: https://www.projekt-picasso.de/projekt/

[17] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-
service from the cloud: A case study for using virtualized plcs,” in
2014 10th IEEE Workshop on Factory Communication Systems (WFCS
2014), May 2014, pp. 1–4.

[18] “The Internet of Things - Cisco,” CloudSim Website, [retrieved: May
2018]. [Online]. Available: http://www.cloudbus.org/cloudsim/

[19] G. H., A. V. Dastjerdi, S. K. Ghost, and R. Buyya, “iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques
in Internet of Things, Edge and Fog Computing Environments,” in
Software Practive and Experience, June 2016.

[20] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
May 2017, pp. 39–44.

[21] H. Al-Bahadili, Simulation in Computer Network Design and Modeling:
Use and Analysis: Use and Analysis, ser. Premier reference source.

Information Science Reference, 2012.
[22] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, 2015, pp. 2347–2376.

[23] D. Zuehlke, “Smartfactory — towards a factory-of-things,” vol. 34,
no. 1, 2010, pp. 129 – 138. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1367578810000143

[24] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, October
2016, pp. 637–646.

[25] G. Orsini, D. Bade, and W. Lamersdorf, “Context-Aware Computation
Offloading for Mobile Cloud Computing: Requirements Analysis, Sur-
vey and Design Guideline,” Procedia Computer Science, vol. 56(1),
December 2015, pp. 10–17.

[26] J. Shamsi, M. A. Khojaye, and M. A. Qasmi, “Data-intensive cloud
computing: Requirements, expectations, challenges, and solutions,”
Journal of Grid Computing, vol. 11, no. 2, Jun 2013, pp. 281–310.

[27] S. Rostedt, “Intro to Real-Time Linux for Embedded Developers,”
Linux Foundation Blog, 2013, [retrieved: May 2018]. [Online].
Available: https://www.linuxfoundation.org/blog/intro- to- real- time-
linux-for-embedded-developers/

[28] “Samsung ARTIK IoT Platform - ARTIK 710 IoT module,”
Samsung IoT Website, [retrieved: May 2018]. [Online]. Available:
https://www.artik.io/modules/artik-710/

[29] “Samsung ARTIK Kernel on GitHub,” Github, [retrieved: May 2018].
[Online]. Available: https://github.com/SamsungARTIK/linux-artik/

[30] J. Huang, “RTMux: A Thin Multiplexer to Provide Hard Realtime
Applications for Linux,” Embedded Linux Conference Europe,
October 2014, [retrieved: May 2018]. [Online]. Available: https:
//events.linuxfoundation.org/sites/events/files/slides/rtmux 1.pdf

[31] L. K. Projects, “RTLinux Repository,” Website, 2007, [retrieved: May
2018]. [Online]. Available: https://www.kernel.org/pub/linux/kernel/
projects/rt/


