
203

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Automotive Software Product Line Architecture Evolution:
Extracting, Designing and Managing Architectural Concepts

Axel Grewe, Christoph Knieke, Marco Körner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel

TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany

Email: {axel.grewe|christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel}@tu-clausthal.de

Abstract—The amount of software in cars has been growing
exponentially since the early 1970s, and one can expect this
trend to continue. To keep the software development for vehicles
cost efficient, modular components with a high reuse rate cross
different types of vehicles are used. Often, a product line approach
is used to handle variability. As the underlying software product
line architecture and its evolution are generally not explicitly
documented and controlled, architecture erosion and complexity
within the software product line architecture are growing steadily.
In the long-term, this leads to reduced reusability and extensi-
bility of the software artifacts, and thus, to a deterioration of
evolvability. First, we propose methods used to extract initial
product line architectures by recovery/discovery methods and
describe our experiences gained from a real world example.
Furthermore, we integrate this approach into an evolutionary
incremental development process and show how a knowledge
based process for architecture evolution and maintenance for ar-
chitectural concepts can be implemented. The approach includes
methods and concepts to create adequate architectures with
the help of abstract design principles, patterns, and description
techniques. Our approach helps software engineers to manage
system complexity by suitable architectural concepts, by tech-
niques for architecture quality measurements and by processes
to iteratively evolve automotive software systems. We demonstrate
our approach on a real world example, the longitudinal dynamics
torque coordination from automotive software engineering.

Keywords–Architecture Evolution; Software Product Lines; Ar-
chitecture Quality Measures; Automotive Software Engineering.

I. INTRODUCTION

This paper is a substantial extension of the work presented
at the ADAPTIVE 2017 conference [1]. Usually many vari-
ants of a vehicle exist – different configurations of comfort
functions, driver assistance systems, connected car services,
or powertrains can be variably combined, creating an individ-
ual and unique product. To keep the vehicles cost efficient,
modular components with a high reuse rate cross different
types of vehicles are required. With respect to innovative and
sophisticated functions, coming with the connected car and
automated resp. autonomous driving the functional complexity,
the technical complexity, and the networked-caused complexity
is continuously and dramatically increasing. It is, and will be
in future, a great challenge to further manage the resulting
complexity.

As the number of functions grows steadily in the evolu-
tionary development of automotive software systems, the “es-
sential” complexity of the product line architecture increases
continuously. However, the “accidental” complexity of the

Further development

Accidental complexity

Essential complexity

Figure 1. “Essential” vs. “Accidental” complexity

architecture of automotive software systems grows dispropor-
tionately to the essential complexity as illustrated in Figure 1
[2]. The growth of accidental complexity results from a “bad”
architecture (product line architecture and product architecture)
with strong coupling and a low cohesion, which have evolved
over the time. “Bad” architectures increase accidental com-
plexity and costs, hinder reusability and maintainability, and
decrease performance and understandability.

A software system architecture defines the basic organiza-
tion of a system by structuring different architectural elements
and relationships between them. The reduction of accidental
complexity of the software system architecture is crucial for
the success of the system to be developed and its evolvability.
By our definition, a “good” architecture is a modular and
evolvable architecture, which should be built according to the
following design principles:

1) Design principles for high cohesion
2) Design principles for abstraction and information

hiding
3) Design principles for loose coupling

In this paper, we propose a sophisticated approach for
extracting, designing and managing architectural concepts and
thus enabling long-term evolution of automotive software prod-
uct line architectures. By the term “architectural concepts” we
subsume design patterns, architectural patterns or styles (see
Section V). Our approach helps engineers to manage functional
software systems complexity based on adequate architectures
with the help of abstract principles, patterns, and description
techniques. As an approach to manage automotive software
product line architecture evolution, we propose the following
steps:

204

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(1) We often have to deal with an initially eroded software
architecture which first has to be repaired. Thus, we propose
methods used to extract initial product line architectures by re-
covery/discovery methods and describe our experiences gained
from a real world example. The recovery/discovery approach
is supported by an approach to extract architectural concepts
from system realizations. (Sections IV and V)
(2) For designing automotive software product line archi-
tectures, we present architectural concepts developed within
different industrial projects in the automotive domain involving
different software architects and project members. Here, we
aim to build the architecture according to the three design
principles for a “good” architecture design mentioned above.
In addition, we propose metrics to measure complexity of the
design. Finally, a systematic approach for planning of devel-
opment iterations and prototyping is introduced. (Section VI)
(3) Furthermore, we integrate this approach into an evo-
lutionary incremental development process and show how
a knowledge-based process for architecture evolution and
maintenance for architectural concepts can be implemented.
The term “knowledge-based” in this context means, that
knowledge-based techniques like knowledge management are
applied in the process. (Section VIII)

Step (1) of our approach is optional and only required in the
case of an eroded software architecture, i.e., it is not intended
for software product lines that are newly developed.

The paper is structured as follows: Section II gives an
overview on the related work. Our overall development cycle
for managed evolution of automotive software product line ar-
chitectures is proposed in Section III. The first process activity
to extract the initial architecture is proposed in Section IV.
Section V introduces a new approach to extract concepts from
source models. In Section VI we propose our methodology for
designing and planning automotive product line architectures
including long-term evolution. Section VII introduces a real
world example, a longitudinal dynamics torque coordination
software, from automotive software engineering. We apply our
methodology for planning and evolving automotive product
line architectures on this example and present the results of a
corresponding case study. Section VIII extends the proposed
methodology by an approach for knowledge-based architecture
evolution and maintenance. Section IX concludes.

II. OVERVIEW ON THE RELATED WORK

To the best of our knowledge no continuous overall devel-
opment cycle for automotive software product line architec-
tures exists. Next, we give an overview on the related work.
Mostly, we focus on approaches that are related to automotive
and embedded software systems.

A. Software Erosion
Van Gurp and Bosch [3] illustrate how design erosion

works by presenting the evolution of the design of a small
software system. The paper concludes that even an optimal
design strategy for the design phase does not lead to an optimal
design. The reason for this are unforeseen requirement changes
in later evolution cycles. These changes may cause design
decisions taken earlier to be less optimal.

In [4], a method is described to keep the erosion of the
software to a minimum: Consistency constraints expressed by

architectural aspects called architectural rules are specified as
formulas on a common ontology, and models are mapped
to instances of that ontology. Those rules can, e.g., contain
structural information about the software like allowed commu-
nications. In [4], the rules are expressed as logical formulas,
which can be evaluated automatically to the compliance to the
product line architecture (PLA). These rules are extracted via
Architecture Checker (ArCh) framework [5].

In order to enable the evolution of software product line
architectures, architecture erosion has to be avoided. In [6], de
Silva and Balasubramaniam provide a survey of technologies
and techniques either to prevent architecture erosion or to
detect and restore architectures that have been eroded. The
approaches discussed in [6] are primarily classified into three
generic categories that attempt to minimize, prevent and re-
pair architecture erosion. The categories are refined by a set
of strategies to tackle erosion: process-oriented architecture
conformance, architecture evolution management, architecture
design enforcement, architecture to implementation linkage,
self-adaptation and architecture restoration techniques consist-
ing of recovery, discovery and reconciliation. However, each
approach discussed in [6] refers to architecture erosion for
a single product architecture, whereas architecture erosion
in software product lines is out of the scope of the paper.
Furthermore, as discussed in [6], none of the available methods
singly provides an effective and comprehensive solution for
controlling architecture erosion.

B. Software Product Line Architecture Extraction

The aim of software product line extraction is to identify
all the valid points of variation and the associated functional
requirements of component diagrams. The work in [7] shows
an approach to extract a product line from a user documen-
tation. The Product Line UML-based Software Engineering
(PLUS) approach permits variability analysis based on use
case scenarios and the specification of variable properties in a
feature model [8]. In [9] variability of a system characteristic
is described in a feature model as variable features that can
be mapped to use cases. In contrast to our approach, these
approaches are based on functional requirements whereas our
approach is focused on products.

C. Software Product Line Architecture Evolution and Life-
Cycle Management

The work in [10] elaborates on the foundations of software
product line engineering and provides experience-based knowl-
edge about the two key processes, domain engineering and
application engineering, and the definition and management
of variability.

Holdschick [11] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution
of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems. The approach provides an
overview of which changes relevant to variability could occur
in the functional model and where the challenges are when
reproducing them in the variant model.

205

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Reference Architectures
In [12], reference architectures are assumed to be the

basis for the instantiation of PLAs (so-called family architec-
tures). The purpose of the reference architecture is to provide
guidance for future developments. In addition, the reference
architecture incorporates the vision and strategy for the future.
The work in [12] examines current reference architectures and
the driving forces behind development of them to come to a
collective conclusion on what a reference architecture should
truly be.

Nakagawa et. al. discuss the differences between reference
architectures and PLAs by highlighting basic questions like
definitions, benefits, and motivation for using each one, when
and how they should be used, built, and evolved, as well as
stakeholders involved and benefited by each one [13]. Further-
more, they define a reference model of reference architectures
[14], and propose a methodology to design PLAs based on
reference architectures [15], [16].

E. Software Product Line Architecture Design
Patterns and styles are an important means for software

systems architecture specification and are widely covered in
literature, see, e.g., [17], [18]. However, architecture patterns
are not explicitly applied for the development of automotive
software systems yet. For automotive industry, we propose the
use of architecture patterns as a crucial means to overcome the
complexity.

The work in [19] proposes a method that brings together
two aspects of software architecture: the design of software
architecture and software product lines. Deelstra et al. [20]
provide a framework of terminology and concepts regarding
product derivation. They have identified that companies em-
ploy widely different approaches for software product line
based development and that these approaches evolve over time.

Thiel and Hein [21] propose product lines as an approach
to automotive system development because product lines facil-
itate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Flores et. al. [22] explain the application of 2GPLE (Sec-
ond Generation Product Line Engineering) - an advanced set
of explicitly defined product line engineering solutions - at
General Motors.

F. Measurement of Software Product Line Architecture Qual-
ity

Siegmund et al. [23] present an approach for measuring
non-functional properties in software product lines. The re-
sults are used to compute optimized software product line
(SPL) configurations according to user-defined non-functional
requirements. The method uses different metrics to measure
three non-functional properties: Maintainability, Binary Size,
and Performance. Siegmund et al. also discuss and classify the
presented techniques to measure non-functional properties of
software modules.

Passos et al. [24] show how automatic traceability, anal-
yses, and recommendations support the evolution of SPL in
a feature-oriented manner. They propose among other things

a change-impact analysis to assess or estimate the impact
and effort of a change. Furthermore, they regard metrics for
architectural analysis. As a result, erosion and problems can
be recognized at an early stage, and counter-measures can be
taken. The ideas are illustrated by an automotive example.

In [25], product lines are measured with the metric main-
tainability index (MI). The “Feature Oriented Programming” is
used to map an SPL to a graph. The values are transformed into
several matrices. Next, singular value decomposition is applied
to the matrices. The metric MI is then applied at different levels
(product, feature, product line). The results show that by using
the metric, features could be identified that had to be revised.
The number of possible refactorings could be restricted.

In [26], several metrics are presented, which are specifically
used for measuring PLAs. The metrics are applied to “vADL”,
a product line architecture description language, to determine
the similarity, reusability, variability, and complexity of a
PLA. The measured values can be used as a basis for further
evolutionary steps.

G. Approaches on Multi Product Lines
The work in [27] gives a systematic survey and analysis

of existing approaches supporting multi product lines and a
general discussion of capabilities supporting multi product
lines in various domains and organizations. They define a multi
product line (MPL) as a set of several self-contained but still
interdependent product lines that together represent a large-
scale or ultra-large-scale system. The different product lines
in an MPL can exist independently but typically use shared
resources to meet the overall system requirements. According
to this definition, a vehicle system is also an MPL assuming
that each product line is responsible for a particular subsystem.
However, in the following, we only regard classic product
lines, since the dependencies between the individual product
lines in vehicle systems are very low, unlike MPL.

H. Reuse of Software Artifacts in the Automotive Domain
To counteract erosion it is necessary to keep software com-

ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of soft-
ware components in the development of automotive products
[28], [29]. In [28], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [29]. However,
in both approaches a long-term minimization of erosion as well
as a long-term evolution is not considered.

III. BASICS

In this section we introduce our overall development cycle
for managed evolution of automotive software product line
architectures.

A. Overall Development Cycle
Our methodology for managed evolution of automotive

software product line architectures is depicted in Figure 2. The
left part of Figure 2 depicts the recovery and discovery activity
for repairing an eroded software (see Section IV). This activity
is performed once before the long term evolution cycle (right
side of Figure 2) can start. The latter consists of two levels of
development: The cycle on the top of Figure 2 constitutes the

206

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Eroded
Software

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Recovery &
Discovery

Product (P)

P-Design P-Plan

P-Check P-Implement

Figure 2. Overall development cycle

development activities for product line development, whereas
the second cycle is required for product specific development.
Not only both levels of development are executed in parallel
but even the activities within a cycle may be performed
concurrently. The circular arrow within the two cycles indicates
the dependencies of an activity regarding the artifacts of the
previous activity. Nevertheless, individual activities may be
performed in parallel, e.g., the planned implementations can
be realized from activity PL-Plan, while a new product line
architecture is developed in parallel (activity PL-Design).
The large arrows between the two development levels indicate
transitions requiring an external decision-making process: The
decision to start a new product development or prototyping
(activity PL to P), and the inclusion and generalization of
lessons learned during product development in the evolution
of the SPL (activity P to PL), respectively.

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned soft-
ware components, so-called modules. These modules contain
variability so that a project can be used for different vehicles.
A product on the other hand is a fully runnable software status
for a certain vehicle that can be flashed and executed on an
ECU and is based on a project in conjunction with vehicle
related parameter settings.

In the following subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 2. Table I gives a brief overview on the
objectives of each of the 13 activities, including inputs and
outputs.

Software system and software component requirements
from requirements engineering (PL-Requirements) and
artifacts of the developed product from the product cycle in
Figure 2 (P to PL) serve as input to the management cycle
of the PLA. Activities PL-Design and PL-Plan aim at
designing, planning and evolving product line architectures and
are explained in detail in this paper (see Section VI).

The planned implementation artifacts are implemented
in PL-Implement on product line level whereas in
P-Implement product specific implementation artifacts are
implemented. For the building of a fully executable soft-
ware status for a certain vehicle project, the project plan
is transferred (PL to P) containing module descriptions
and descriptions of the logical product architecture inte-
gration plan with associated module versions. In addition,
special requirements for a specific project are regarded

(P-Requirements). The creation of a new product starts
with a basic planned product architecture commonly derived
from the product line (P-Design). The product planning in
P-Plan defines the iterations to be performed. An iteration
consists of selected product architecture elements and planned
implementations. An iteration is part of a sequence of itera-
tions.

Each planned project refers to a set of implementation
artifacts, called modules. These modules constitute the product
architecture. The aim of PL-Check and P-Check is the
minimization of product architecture erosion by architecture
conformance checking for automotive software product line
development. Furthermore, we apply architecture conformance
checking to check conformance between the planned product
architecture and the PLA in P-Design.

B. General Structure and Definitions

The relation between PLA, products, and modules is illus-
trated in Figure 3. We indicate the development points t ∈ N
by the timeline at the bottom. Next, we give brief definitions
of the terms PLA, product, and module.

PLA: On the top of Figure 3 the different versions of the
PLA are illustrated. A PLA consists of logical architecture
elements l ∈ LAE (cf. A, B, C in Figure 3) and directed con-
nections c ∈ C between these elements. At each development
point t exactly one version of the PLA exists. A certain PLA
version is denoted by plax ∈ PLA, with x ∈ N to distinguish
between PLA versions. The sequence of PLA versions is
indicated by the arrows between the PLAs in Figure 3.

Product: A product pi j ∈ P has a product identifier i and
a version index j, with i, j ∈ N. The sequence of versions is
indicated by the flow relation between products in Figure 3. We
assume a distinct mapping of pi j to a certain plax ∈ PLA.
A product pi j contains a product architecture pai j ∈ PA,
where pai j is a subgraph of the corresponding plax. The set
of corresponding modules of a product is indicated by the
dashed arrows in Figure 3.

p1_1

m1_1

p2_1

p1_2

p2_3

time1 2 3

M
o

d
u

le
s

m3_2

m1_2

m2_1

m1'_1

m1_3

m3_1

P
ro

d
u

ct
s

A

P
ro

d
u

ct
 li

n
e

ar

ch
it

e
ct

u
re

B C

pla1

m2'_1

m2_2

p3_1

A B C

pla3

A B C

pla2

p2_2

m3_3

A B C

A

A B A B A B

A B

A

A

A

B B

B

C C C

A B C

Figure 3. Relation between products, modules and PLA

207

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. EXPLANATION OF THE ACTIVITIES IN FIGURE 2.

Activity Input Objective Output
PL-Design Software system / component require-

ments and documentation from product
development.

Further development of PLA with consideration of design prin-
ciples. Application of measuring techniques to assess quality of
PLA.

New PLA (called “PLA vision”).

PL-Plan PLA vision. Planning of a set of iterations of further development toward the
PLA vision taking all affected projects into account.

Development plan including the planned
order of module implementations and
the planned related projects.

PL-Implement Development plan for product line. Implementation including testing as specified by the development
plan for product line development.

Implemented module versions.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Check results.

P-Design Project plan and product specific re-
quirements.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Planned product architecture.

P-Plan Product architecture. Definition of iterations to be performed on product level toward
the planned product architecture.

Development plan for product develop-
ment.

P-Implement Development plan for product develop-
ment.

Product specific implementations including testing as specified by
the development plan for product development.

Implemented module versions.

P-Check Architecture rules and set of imple-
mented modules to be checked.

Architecture conformance checking between PLA and PA. Check results.

PL to P Development plan for product line. Defining a project plan by selecting a project from the the product
line.

Project plan.

P to PL Developed product. Providing product related information of developed product for
integration into product line development.

Product documentation and implemen-
tation artifacts of developed products.

PL-Requirements Requirements. Specification and validation of software system and software
component requirements by requirements engineering.

Software system and software compo-
nent requirements.

P-Requirements Requirements in particular from calibra-
tion engineers.

Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

Vehicle related requirements.

Recovery & Dis-
covery

Source artifacts (developed products). Recovery of the implemented PLA from the source artifacts
(developed products) and discovery of the intended PLA.

Implemented and intended PLA.

Module: A module mk l ∈ M has a module identifier
k and a version index l, with k, l ∈ N. The sequence of
versions is indicated by the flow relation between modules in
Figure 3. We assume a distinct mapping of mk l to a certain
l ∈ LAE ∪ {⊥}. By ⊥ we allow mk l not to be assigned to
a logical architecture element, called unbound mk l. A logical
architecture element can be assigned to several modules, but
a module can only be assigned to exactly one or no logical
architecture element. A module mk l ∈ M can belong to
several products pi j ∈ P .

As illustrated in Figure 3, we assume a high degree of
reuse: The same module version may be included in different
products. Branches of the development path are depicted by
the diamond symbol. Module m1′ 1 indicates a branch of the
development path concerning module m1 3.

IV. MAKING THE ARCHITECTURE EXPLICIT

With a high degree of erosion, a further development of the
software is only possible at great effort. Before approaches to
minimize erosion can be applied, the architecture must first
be repaired. In this section, we investigate how approaches
for architecture extraction can be adapted to be applied to
automotive software product line architectures. First, we pro-
pose methods used to extract initial architectures. Next, in the
second subsection, we give results and our experiences gained
from a real world example.

A. Methods Used to Extract Initial Architectures and their
Application

In this section we propose an approach for repairing an
eroded software consisting of a set of product architectures
(PAs) by applying strategies for recovery and discovery of
the PLA (see left part of Figure 2). Recovery uses reverse

engineering techniques to extract the implemented architecture
from source artifacts, and discovery hypothesizes its intended
architecture [6]. The proposed approach constitutes a substan-
tial extension of the work presented in [30], where only a brief
idea of the approach is introduced without any experimental
results.

An explicit PLA definition constituting the top level ar-
chitecture is important to coordinate the shared development
between the OEM and the suppliers. Each product that is
developed has a PA whose structure should be mapped onto the
top level architecture. This top level architecture describes the
structure of all realizable PAs. However, because of software
sharing an overall assignment of top level groups to modules,
and their interface, is missing. The knowledge of the overall,
product independent structure is not explicitly documented,
and therefore exists only implicitly in the minds of the par-
ticipants. Further development of existing products and the
development of new products lead to eroded PAs as an initially
demanded structure is not available.

As a major challenge, we have to deal with product line
development where a set of software components - so called
modules - constitutes the basis for deriving a huge number of
products. Therefore it is necessary to know about the derivable
PAs from a given PLA. Two PLAs are distinguished: Current
derivable PAs are captured by the actual PLA (APLA). All
planned PAs for future development are captured by the target
PLA (TPLA). In the Recovery & Discovery activity we recover
the APLA and discover a TPLA candidate.

In the Recovery & Discovery activity we are using domain
specific expertise and architecture related data from a reposi-
tory to create the two PLAs. Figure 4 shows how the TPLA
(step d)) and APLA (step e)) are created. For this purpose
the APLA relevant elements are described by the recovered

208

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

structure from data mining (step b)) and from functional
analysis (step c)) using a set of PAs. The PAs are provided by
step a). Due to the ease of handling in the first iteration of step
a) only some products are selected from the data dictionary.
The following iterations extend the scope to more products. In
the following all steps are summarized.
a) Select products from data dictionary: The aim of this
step is to derive a small set of PAs to create common PLAs.
Due to the huge number of products and their variants in
the data dictionary, a selection is crucial for the creation of
the initial APLA. A product is based on a software project.
A software project defines the scope of modules, groups of
modules, groups of groups (hierarchy) and interfaces reused for
integration. The interface is described by modules and contains
references to globally available variables. The required type
and the provided type of references are distinguished. To
realize a communication between two modules, it is necessary
that one of the two modules provides the variable and the
other consuming module requires the variable. We call this a
dependency. Variables themselves store valuable data for the
communication. A provided variable must also be declared
(ANSI C like) and is therefore owned by the declaring module.
PAs consist of modules, groups, and associated dependencies.
All those elements have a set of data dictionary related
attributes with a special meaning, which are considered to
determine the initial selection of PAs. A problem arises when
the exploration of extracted information is not manageable
because of the big data set. Therefore we define selection
criteria to extract a smaller set of PAs from the data dictionary.
The following items describe examples for selection criteria in
details:

• Projects and modules that have the release status. A
project in release means that it is already integrated by
TIER 1. A module in release means that it is already
realized and positive tested by OEM.

• Modules that are referenced by selected projects.
• Projects that are related to one of the required engine

control unit (ECU) generations.
• The most recent created modules and projects.

b) Recover PLA candidates using data mining: A very
common approach to recover patterns and structures in large
data sets is to use data mining methods and techniques. Many
various techniques exist and are used in practice with different
advantages and disadvantages for recovering an APLA. In this
methodology we chose an approved approach, which provides
good results in the field of recovery structures in information
systems. The approach is called Spectral Analysis of Software
Architecture (SPAA) [31], [32], [33] and is a generic approach
to cluster software elements by their dependencies.

The SPAA approach is divided into three steps as visualized
in Figure 5. First, all dependencies between all elements within
the scope have to be identified. The type of dependency varies
and depends on the kind of system, e.g., for object orientated
information systems dependencies like classical call, extends,
or implements relations are useful [32]. In the next step the
constructed directed graph has to be weighted - the higher the
edge weight value the lower the probability of cutting this edge
in the clustering step. The weighted graph is clustered with a
Spectral Clustering algorithm considering that this is a good

heuristic to solve this NP-hard graph cut problem as described
in [31] and [32].

As input data for the SPAA approach we choose all mod-
ules, which are contained in the selected products. Between
these modules we determine dependencies depending on the
provided and declared variables (see step a)). In this case the
edge weight is defined as the sum of shared variables of the
corresponding modules.

Often a heuristic is used to suggest the number of clusters.
The preferred heuristic for Spectral Clustering is the eigengap
heuristic, due to the fact that Spectral Clustering determines
the eigenvalues of the normalized Laplacian, which are also
used for this heuristic - described in detail in [31] and [32].
The application of Spectral Clustering results in a cluster
separation of the weighted graph, as presented in [32] the
modules can be clustered in a hierarchical way. Therefore
the clusters have to be used as input data for the Spectral
Clustering algorithm again. These procedure can be repeated
with each generated cluster until the level of partitioning is
satisfying. Summarizing, the elected data mining technique
creates a PLA candidate of the selected products including
a hierarchical grouping of modules and indicating the inter
group dependencies.

c) Recover PLA candidates using functional analysis: The
aim of this step is to recover a PLA candidate using a technique
considering the functionality aspects. In the ECU software
development most of them are open/closed control loop related
functions [34], [35]. At first we create a number of process-
ing function related groups, which are determined by expert
knowledge. For each group a set of modules is referenced using
the product scope. The references enable the tracing between
PA elements and data dictionary modules. In the next step, the
dependencies between the groups are created. Thereby only
variables are considered that need to be shared between groups.
The scope of other variables remains restricted. Some of the
created groups may have a similar but more coarse grained
function scope. Those can be again aggregated together, which
leads to a hierarchical structure. Applying the above technique
results in another PLA candidate, which consists of several
hierarchical groups and group dependencies.

d) Integrate APLA from PLA candidates: The steps b),
c) produce PLA candidates by different recovery techniques.
Instead of steps b) and c), other techniques from the field of
architecture recovery could be used. But exactly one APLA is
required for the following managing activities (see Section III).
Therefore the integration of all available PLA candidates is
necessary. We propose two essential steps for integration: At
first groups are created, which represent the leafs of the APLA.
Therefore the appropriate groups of the PLA candidates are
compared and evaluated for reuse. Next the dependencies
between groups in the APLA are determined. In the second
step the aggregation of the leaf groups is created reusing
groups of the appropriate level from the PLA candidates. The
resulting groups are determined again by a comparison in an
evaluation step. The second step is applied iteratively for each
available PLA candidate level.

e) Discover TPLA candidate from automotive domain
knowledge: As an initial starting point for the following
managing activities (see Section III-A) a TPLA is needed.
A TPLA contains at least the planned structure compared to

209

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Overview of activity Recovery & Discovery

Figure 5. Overview: SPAA approach

the APLA. This knowledge has to be identified from product
experts. As the architecture documentation is only available
for individual projects, the knowledge for planned changes
considering a PLA must be imposed using domain knowledge.
To create the structure of a desired TPLA, group candidates
and dependency candidates are identified from standardized
automotive specific reference architectures [36], [37]. The
TPLA is created iteratively considering the knowledge of
experts.

B. Results from Real World Example
We have applied the methodology for extracting initial

architectures on a real world example, the engine control
unit software at Volkswagen. Next we show how we applied
step a) to step e) to the example. We need to introduce the
concept of the function package for further consideration.
A function package references a set of modules or further
function packages and serves for functional grouping.
a) Select products from data dictionary: As a starting point,
we use the software repository of the engine control unit
software at Volkswagen. The analysis was carried out in July
2015. At the time, the repository contained 21,734 versions of
modules. First, the projects to be considered were selected. We
wanted to consider a wide range of different projects. Thus,
we have selected projects from two different suppliers and
for different types of engines: From the first supplier a diesel
and otto variant, respectively, and from the second supplier
a diesel, otto, and otto-hybid variant. The following selection
criteria were used to reduce the number of module versions:
Only modules and function packages are selected

• that are not contained in a further function package,
• that are referenced by the selected projects,
• that have the release status, and
• that are the most recent created versions.

After applying the selection criteria, 162 modules and 43
function packages were selected.
b) Recover PLA candidates using data mining: We ap-
plied Spectral Clustering resulting in a cluster separation of
the weighted graph. The procedure was repeated with each
generated cluster until the level of partitioning was satisfying.
A number of clusters with 16 or 18 clusters has turned out
to be satisfying for all selected projects. Although the degree
of cross-linking between the given modules is very small, the
coupling between the clusters is relatively high. The cause of
the high coupling may have various reasons, e.g., unsuitable
parameterization or poor modularity.
c) Recover PLA candidates using functional analysis: From
the study of the selected 43 function packages, abstract groups
were identified by expert knowledge. Non-grouped elements
are too complex for a manual, professional investigation. How-
ever, the generated groups have a high degree of interpretation
(structural and technical).
d) Integrate APLA from PLA candidates: In this step, we
first looked at the similarities and differences between the two
PLA candidates from step b) and step c). The aim was to
derive a common APLA from the two PLA candidates. We
built an integrated APLA for selected parts of the given PLA
candidates. Here a lot of manual work is necessary. For the
scope of the engine control software, the approach of step d)
has ultimately not scaled. We could not provide the necessary
manual work for building the integrated APLA for the entire
engine control unit software with the two doctoral students
working in the project.
e) Discover TPLA candidate from automotive domain
knowledge: We analyzed several standardized automotive
specific reference architectures [36], [37] to create a TPLA.
There are recurring structures for combustion engines, for
example: air system, fuel system, combustion model, etc.

210

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, there is a systematic structure of the hierarchies
and dependencies, for example: driver’s request, propulsion
request on the power train, and power train units. We used
this information to create a first draft of a TPLA for the engine
control unit software. The TPLA is not specialized to a certain
kind of engine like otto, diesel or hybrid. This draft TPLA was
then discussed with experts from Volkswagen. Some minor
adjustments were necessary until we had a final version of the
TPLA.
Summary: By applying the proposed methodology, we could
recover an APLA and discover a TPLA candidate. As shown
in step d), however, difficulties have arisen in building an
integrated APLA due to the size of the selected system. To
handle such huge systems an automated process must be
developed by further research. Even without performing the
integration step, the two PLA candidates created are a useful
basis for analyzing the current eroded system architecture. The
essential structures could be made explicit by our approach.

The TPLA candidate and the APLA are then used in activ-
ity PL-Design and the subsequent activities (see Figure 2):
The alignment of both PLAs is planned and implemented in
order to repair the eroded architecture. Finally, the repaired
architecture is further developed by the long term evolution
cycle as described in Section III-A.

V. AN APPROACH TO EXTRACT CONCEPTS FROM
SYSTEM REALIZATIONS

For the specification of software architectures design pat-
terns, architectural patterns or styles are an important and
suitable means, also in other engineering disciplines [17].
We subsume these under the term of architectural concepts.
An architectural concept is defined as: “a characteriza-
tion and description of a common, abstract and realized
implementation-, design-, or architecture solution within a
given context represented by a set of examples and/or rules.”

At the architectural level, these are often associated with
terms as a client-server system, a pipes and filters design,
or a layered architecture. An architectural style defines a
vocabulary of components, connector types, and a set of
constraints on how they can be combined [17]. To get a better
understanding of the wide spectrum of architectural concepts
typical samples of concepts are listed in the following:

• Conventions: naming, package/folder structure, vo-
cabulary, domain model . . .

• Design Patterns: observer, factory, . . .
• Architectural Patterns: client-server system, layered

architecture, . . .
• Communication: service-oriented, message based,

bus, . . .
• Structures: tiers, pipes, filters, . . .
• Security: encryption, SSO, . . .

Based on this and our experiences made during the appli-
cation of our approach described in the previous Section IV,
the development of a new approach focusing the architectural
concepts was part of the ongoing research activities.

In this section we will introduce this new approach with
the aim to support the Recovery & Discovery activity. In
Section VIII we will give an outlook on how this approach

can be integrated into an evolutionary incremental development
process and how a knowledge based process for architecture
evolution and maintenance for architectural concepts can be
implemented.

A. Introduction of the Approach
Based on the experience made during the practical project

work, it became apparent in the Recovery & Discovery activity
that an important issue to get a substantiated comprehending
of a product architecture is to make not only the architec-
ture explicit, but also the architectural concepts. Looking at
different products and their architectures, the concepts are
very helpful to create a common product line architecture. For
this reason, the following research question (RQ) was focused
in the ongoing research process: ”How can developers’ best
practice be identified and reflected to the architecture level?”
- From this general research question the following three
research questions were derived:

RQ 1: How can a concept be represented with regard to

(a) composition to higher and usually unknown abstract
concepts and

(b) the transferability of knowledge to or from other
systems?

RQ 2: How can architectural concepts be algorithmically
extracted and identified with regard to

(a) the large number of different concepts and
(b) their variations on different abstraction levels and

contexts?

RQ 3: How can a tool support be realized with regard to

(a) false positive results respectively concept candidates
and

(b) the huge amount of source code (scalability) ?

The outcome of this research activity is the approach shown
in Figure 6. In this and the following section the research
questions will be answered in detail.

We start with some general definitions. A Concept C is
described by a set of Properties P . For an Element E a so
called Detector D is defined as the binary function dpj ∈ D
for a concrete property pj ∈ P and a concrete element ei ∈ E:

dpj
(ei) =

{
1 , iff the Element ei fullfills the Property pj
0 , otherwise

(1)
An element can be a system artifact like a class, a function

or a dependency between two elements as well as a subset of
artifacts and their dependencies of the realized systems.

As shown in Figure 6 the input for the extraction cycle is
the realization of the systems. The system artifacts respectively
the source code elements are transferred to the so called
System Snapshot S. It represents the realization of a software
system as a language independent model representation, but
including the links to the original source code elements. The
used meta-model is a further development of the model used
in [5], [38] and [39].

Another data pool is the Factbase F, which represents the
fulfillment of concepts for the concrete elements. It is divided

211

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Approach to extract architectural concepts from system realizations

into three parts, two data-structures, which are organized in a
table-structure, listing facts referring to elements respectively
to dependencies and one data-structure describing facts about
elements and the dependencies between them. These facts are
organized in a graph-data-structure.

The last of the three data pools is the Concept Space Ω.
It stores all known concepts, whereby a concept is represented
as a named element and linked to its detector and examples,
which fulfill this concept.

Altogether the defined process for extracting architectural
concepts consists of three activities (blue boxes in Figure
6), which are performed iteratively and is called Extraction-
Cycle. The connecting element between these activities is the
Configuration Σ. Per iteration one configuration σi ∈ Σ is
created and used for the information exchange between the
activities. Therefore, it includes all decisions that are made in
an activity.

As shown during our studies it is not that difficult for an
expert to decide, which system parts are relevant for a concrete
analysis, as well as to validate if a concept is a ”real” concept
or not. Because of this finding we integrate an expert to support
two activities.

The output of the approach is the so called Concept
Performance Record. This record informs about the concepts
that are found in the analyzed system realization.

In the following the three activities are introduced in detail.
1) The Selection Activity: In this step an expert decides,

which parts from the system should be analyzed and what is the
initial set of concepts, which should be used for it. The expert
will be supported by typical tools presented in Section IV like
SPAA, to get a system decomposition, which is performed
on the System Snapshot for example. On the other hand it is
possible to reduce the number of concepts from the Concept
Space, because of some basic knowledge of the system, like
if it is object orientated or not.

The selected sub set of the system and the selected set of
concepts, which are represented by its detectors, are stored in
the Configuration and used as input for the next step.

2) The Extraction Activity: This step is fully automated and
generates first the Factbase based for the selected elements
by executing each detector for each element. Next different
algorithms from the field of machine learning and neural com-
putation are used, which are named in detail in the following
Section V-B, to extract potential new facts and/or combinations
of them. These so called Concept Candidates Ĉ are added
as non-valid concepts to the Factbase. This includes also the
Representatives R of this concept candidate thus elements,
which fulfill this new extracted concept.

If this extension step is completed, the transition to the
generalization step takes place.

3) The Generalization Activity: After the Factbase has been
enriched with new facts receptively potential new concepts, a
validation of these facts is carried out in this activity by an
expert. The expert decides on the basis of the representatives
of this concept candidate, whether the concept is a real concept
or not. These decisions are stored also in the configuration.
Thus the configuration includes the information about selected
detectors and system artifacts and the concepts newly extracted
and validated on this basis.

Based on this decision making process new detectors are
generated. This can be done manually or automated by training
a so called neural-network detector with the representatives
in order to detect these concepts in the future. Finally, this
new knowledge has to be integrated into the Concept Space,
thereby it will be checked whether the new extracted concepts
are already contained in the Concept Space and have not been
selected in this iteration. In this case, the expert has to decide
if it is the same or a different concept, i.e., whether it should
be added as new or the already existing detector is re-trained
with the new representatives.

Furthermore, the expert has to decide whether the Extrac-
tion Cylce should be terminated or a further iteration should be
executed. In the next iteration new concepts can be extracted,
which are based on concepts learned in the previous iteration,
or by selecting other system artifacts.

212

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Implementation of the Approach
In this subsection a concrete implementation of the pro-

posed approach will be described. The chosen algorithms
are not fixed for the individual steps and can be replaced
by algorithms, which perform better. In the following the
algorithms are listed, which are used to fulfill and support
the individual actions.

Within the Selection activity the SPAA approach, illus-
trated in Figure 5, is used to create different views of the
system decomposition to support the expert by selecting rele-
vant elements and detectors.

For the extracting of new concept candidates within the
Extraction activity different clustering algorithms and a statis-
tical analysis were implemented and benchmarked. The input
for all algorithms is the generated Factbase. Statistical analysis
based on the frequency analysis of occurring patterns gave
first indication for potential concept candidates but was not
practicable for a good automation of the extraction process.

Therefore, different clustering algorithms were used to
group similar elements and to derive concept candidates from
this clusters: Neural Gas [40], Growing Neural Gas [41], and
a Self-Organizing-Map (SOM) [42] orientated on the work of
Matthias Reuter [43], [44]. These algorithms are used to find
concepts on the system element level to detect special data-
objects like TransferObjects [45], for example. In addition,
they are used to extract similar properties for the dependencies
between elements to define different types of dependencies like
special communication channels or different kinds of relations
like an inheritance relation between two elements, which is
typical for an object orientated realization, for example.

To extract new facts from the facts represented in a graph-
structure, we use the following algorithms to find similarities
and anomalies within the graph:

1) Graph Kernels [46],
2) Graph Clustering approaches like SPAA [31], [32],

[33], and
3) t-SNE [47].

For the creation of new detectors by training them with the
representatives, a SOM is used. The selection, parametrization
and evaluation of suitable algorithms are an ongoing process
and will be focused in future work.

C. Supporting Recovery & Discovery
In the introduction of this section three research questions

were derived, which can be answered by the presented solution.
The answers can be summarized as follows:

RQ 1: (a) Concepts can be represented by their characteris-
tic properties, whereby they can be organized in a hierarchical
way, so it is possible to define higher respectively even more
complex concepts. Because of detector mechanism and the
possibility to create new detectors by training them with the
representatives of this concept, it is possible to abstract from
concrete instances. (b) So it is possible to check any element,
also from other systems, if it is fulfilling a concrete concept
or not.

RQ 2: (a) It is possible to define for each well known
concept a detector, but it is the goal of this approach to find
new concepts by clustering elements and extracting structures,
which may represent a concept. So it is easier for the expert to

decide if this is a kind of concept and what is the objective of it.
(b) Because of the Concept Space it is possible to find similar
concepts and also to merge them or to define explicit new
variants of an existing concept maybe for different contexts,
for example.

RQ 3: (a) Because of the validation step within the
Generalization activity recommended concepts, which are false
positive results, are marked as anti-concepts and they are also
stored in the Concept Space, so in the next iteration they can be
filtered. (b) To handle a huge amount of source code files a tool
supported decomposition process of the system was integrated
into the Selection activity. Furthermore, the extraction cycle
was designed as an iterative process, to focus step by step
on different aspects or parts of the system but take the so far
extracted knowledge into account.

With the help of this approach it is possible to integrate the
aspect of architectural concepts into the Recovery & Discovery
activity. For example, the Coordinator concept, which will
be introduced in detail in the following Section VI-A and
illustrated in Figure 8, can be determined with the presented
approach.

In Figure 7 an excerpt of the Factbase is visualized
representing elements and their dependencies. The different
properties for elements and edges can be mapped to colors, and
the edge weights are summing up the number of dependencies
of the same type. As a result of the Extraction step the
blue-green nodes (see Figure 7) are recommended as concept
candidates. During validation of this candidate the expert
looked to the representatives of this candidate and determined
that this element is only connected to green nodes, which are
Filters, by only one instance of a communication dependency
to each node, which allows only the transmission of state and
mode information. We call an element with such characteristic
properties a coordinator. So the extracted candidate is a valid
concept and can be integrated into the Concept Space including
the creation of a detector to have the possibility to check any
element if it is fulfilling the coordinator concept or not in the
future.

Figure 7. Excerpt of the Factbase

VI. PLANNING AND EVOLVING AUTOMOTIVE PRODUCT
LINE ARCHITECTURES

A. Concepts for Designing Automotive Product Line Architec-
tures

Architectural concepts can be described in the form of
classical patterns, by describing a particular recurring design
problem that arises in specific design contexts and presents

213

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a well-proven generic scheme for its solution. The solution
scheme specifies all constituent components, their responsi-
bilities and relationships, and the way, in which they will
collaborate [18].

In the same way, we will illustrate some examples that we
worked out in our automotive domain projects. Generally, the
central issue is the increasing complexity of software systems
with their technical and functional dependencies. A mapping
of these dependencies to point-to-point connections will result
in a huge, complex and difficult to maintain communication
network. This leads to a likewise huge effort in the field
of maintenance and further development for these software
systems - small changes result in high costs.

This problem of a not manageable number of connections
emerged in many industrial projects we explored for our field
study. In the following we will present architectural concepts,
which are addressing this problem in particular. Figures 8
and 9 show different components, whereby the components
Coordinator and Support are atomic components and the
components labeled as Filter are not atomic components,
i.e., they can be decomposable.

1) Architecture Design Principle “Coordinator - PipesAnd-
Filters - Support”: The complexity of a component increases
artificially with every new product, without integrating new
functions. The reason for this phenomenon is due to the
fact that each component has to calculate the system state
for itself and this for each existing environment and product
the component will be used in. In general, components are
analyzing system data like sensor values, for example, and
process them to realize their functionality. Thereby, it happens
very often that a processing function is implemented several
times. Besides, data from other components is used, but this
data can change over time, which can result in error states.

The design principle introduces a classification of data. If
it is possible to classify the data, than it is possible to establish
the typing of channels, as shown in Figure 8.

<<Coordinator>>

<<Support>>

<<Filter,

External>>

<<Filter>>

<<Filter,

External>>

<<Filter>>

States/Modes

Functional Data

Functional Data and States/Modes

Atomic Element

Hierarchical Element

Figure 8. Architecture design principle: External elements

Each component has to declare a port for states and
modes to uncouple the calculation of the system state from
the component. The mode in which a component is currently
located indicates the mode of execution of a certain function,
like “kickdown”, “emergency brake”, “active”, or“inactive”, in

the case of driving functions. A Coordinator component
determines the global state for a set of components and uses
the new defined port to coordinate the other components. The
coordinator provides only states/modes and no functional data.
A component in Figure 8 named as Filter, referring to
the classical Pipes-and-Filters architecture pattern, can react
to a state change automatically. Parameters are manipulated
directly with the states/modes without an additional calcula-
tion. Components can be directly activated or stopped. The
scheduling of the coordinator is independent from the schedul-
ing of the other components, as each Filter checks the
state/mode first. The functionality of the system is realized by
the Filter components. For them it is allowed to exchange
functional data as well as state and modes. Values required for
the calculation within different components are provided by a
so called Support component.

2) Architecture Design Principle “External Elements”:
Today it is customary that not all components are developed in-
house, some functions are implemented by external suppliers.
But OEM components have requirements resulting in changes
of interfaces, behavior or functionalities of theses externally
developed functions and components. It is not that easy to
identify these external components on architectural level, but
this information is essential for an economic development
process because changes of external components are very effort
and cost intensive.

Figure 8 shows a simple solution to handle external ele-
ments: Filter components developed externally are anno-
tated with Filter, External. By using this annotation,
one can identify with little effort, which component is external,
and which connections are affected.

so it is effortless to identify, which component is external,
and which connections are affected.

3) Architecture Design Principle “Hierarchical Commu-
nication”: Over the time more and more components and
functionality are added to a product. Different developers with
different programming styles are working on the same product.
Components without any reference to each other are organized
in the same package or other organizational and structural
units. Due to this accidental complexity it is not possible for a
developer, system integrator or architect to get a well-founded
knowledge of the whole system.

As presented in Figure 9, a Filter component can be
decomposable, a so called non-atomic component contains
a structure, which follows the design principle visualized
in Figure 8. It includes a Coordinator and Support
component and an arbitrary number of Filter components.
Whereby the inner Filter components have explicit defined
responsibilities.

By this design principle a repetitive structure on each
abstraction level is established, which enables an easy and
technical independent orientation in the whole system.

4) Architecture Design Principle “Anvil-like Component
Model”: Components require knowledge about the behavior
or the state/mode of the connected components. This results
in a high coupling of components and the processing time
increases, too.

As presented in Figure 10, a component consists of two
parts with different responsibilities - Execution control
and Function algorithms. Each part has a defined set

214

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

Figure 9. Architecture design principle: Hierarchical communication

of interfaces, types of communication channels, and exchange
data. Due to the separation into two distinct areas, components
are visualized as anvils (see Figure 10).

Function
algorithms

Execution
control

Function
algorithms

Execution
control

Function
algorithms

Execution
control

ES

FM

Ack

VS

TV

SV

ES

FM

Ack

VS

TV

SV

ES: Execution status VS: Value to set
FM: Functional mode TV: Target value
Ack: Acknowledgment SV: Set value

Figure 10. Architecture design principle: Anvil-like component model

The communication scheme is divided into two areas: the
execution control and the functional algorithms. The execution
control includes, on the one hand, the activation of the compo-
nent, which is represented by the execution status. In addition,
in the execution control, the functional mode (components’
internal mode) of the component is determined. The execution
control sends an acknowledgment to the predecessor compo-
nent when this component is active. The execution control
communicates only by states/modes.

The function algorithms are processed when the execution
status is set. Component specific values are calculated in the
function algorithms. As output, they supply a value to set (VS)
and a target value (TV). VS is the value to be set by the
actuator in the next computing cycle, e.g., the new torque value
for the next cycle. TV is the value, which is to be achieved in
the future, e.g., the torque value requested by driver. To achieve
TV a set of computing cycles is required. The set value (SV) of
the function algorithms is the value that is currently set by the
actuator and is transferred in the opposite direction compared
to VS and TV. The aim of SV is to inform the components
about the value currently set by the actuator. The functional
algorithms exchange only functional data with one another.

5) Architecture Design Principle “Feedback Channel”:
The complexity of component-based control systems is in-
creasing continuously, since there are more and more func-
tional dependencies between the individual components. A
mapping of these dependencies on point-to-point connections
between the components results in a complex, hard-to-maintain

communication network.
In component-based control engineering systems, control

cascades are generated by connecting several components
consecutively. The main data flow in this system is called
the effect chain. In more complex systems, there are several
effect chains that can partly overlap. In an effect chain, there
are functional dependencies between components that are not
directly connected one behind the other. To resolve these
functional dependencies, additional point-to-point connections
are added, which we call “technical dependencies” between
the components in the following. The additional direct point-
to-point connections between the components increase the
coupling between the components and lead to a deterioration in
the fulfillment of non-functional requirements, such as main-
tainability, understandability and extensibility. For example,
the technical dependencies have to be taken into account in
a further development. The worst case is a complete graph
with cross-links between all components.

As a solution to this problem we introduce feedback chan-
nels (patent pending): The introduction of feedback channels
enables the dissolution of functional dependencies without
the introduction of technical point-to-point connections (see
Figure 11). The feedback channel is parallel to the effect
chain. Thereby, the necessary functional information is passed
through the components of the effect chain. The feedback
is directed against the effect direction. Components of an
effect chain must provide feedback. This creates a technical
communication network, with which the functional informa-
tion can be exchanged. Thus, there are only technical depen-
dencies to neighboring components in the effect chain. The
maintainability is improved as only technical dependencies
on neighboring components in the effect chain have to be
considered. Figure 11 shows the architecture design principle
feedback channel.

Component 3

Functional Data and States/Modes

Component 4Component 1

Component 2

OutputInput

Input

Feedback InputFeedback Output

Feedback Output

Figure 11. Architecture design principle: Feedback channel

All information / data from the end of the effect chain
to the beginning of the effect chain are provided via the
feedback. Thus, a component can adapt itself to the current
situation in the effect chain without the necessity to create
an explicit connection to all components in the effect chain.
Furthermore, only the dependency of a component to the
adjacent components of an effect chain exists. If the processing
order of the components is selected s.t. all inputs are processed
first and then the feedback, all components of the effect chain
have the information on the current system state available in
the next computing cycle. The effect chain to Figure 11 then
looks as follows: The four components process their inputs
in the effect direction. The components are then processed
in the reverse order and the feedback is processed, i.e., from
Component 4 to Component 1. Here, components 1 and
2 can be interchanged in their processing.

215

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In summary, the overall system is more maintainable and
easier to expand by this architecture design principle. The
individual components do not have to be connected to all
components in order to know the system state. Through the
feedback channel there is an information exchange between
all components in the same computing cycle. Controllers
can adapt themselves directly to the current system state
without the necessity to have an explicit connection to the
corresponding actuator.

Summary
The presented architectural concepts in this section were

developed within different industrial projects in the automotive
domain involving different software architects and project
members. Nevertheless, there are similarities between the pre-
sented concepts, which become explicit by generalization and
the representation by a uniform description language. Thereby,
the projects focused the same as well as varying problem issues
and requirements. With this representation technique it was
possible to reuse the concepts in other projects to increase the
quality in an early phase of development and to economize
effort, because the projects start discussing about architectural
concepts.

The architectural concepts presented in this paper are
developed iteratively and in some cases the development time
took over one year. As a result from our field study we
can outline that there are similarities between the architec-
tural evolution of product lines and the abstract and generic
development process of concepts, which is not surprising.
The evolution of an architectural concept looks like the same
- reuse and adaptation in other projects, which sometimes
results in a new concept. Besides we can observe that the
different levels of abstraction we have for architecture de-
scriptions, we can find for concepts, as well. For example,
the architecture design principle VI-A4 (Anvil-like Component
Model, Figure 10), describes coordinating functionality, status
and mode information and functional data connections. All
these aspects we can find in the design principle VI-A2
(Coordinator, PipesAndFilters, Support, Figure 8), too. With
the difference that the Anvil-like Component Model
concept is for low level control functions, whereas the other
concept deals with components on another abstraction level -
to clarify the Anvil-like Component Model principle
can be applied for a Filter, for example.

Architectural concepts like the ones presented before and
all other aspects mentioned in the introduction of this section,
especially the specification of wording and naming conven-
tions help to build a collective experience of skilled software
engineers. They capture existing, well-proven experience in
software development and help to promote good design prac-
tice [18].

The result of making these concepts explicit on this ab-
straction level leads to discussions about architectural problems
and generic solution schemes. In particular at the product
line architecture level the focus is shifted from the more
technical driven problems upon the more abstract and software
architecture oriented issues. Over time this leads to new ar-
chitectural concepts, which are documented, evaluated, maybe
extracted from existing products, but making them explicit and
integrating them at the right places in the further development
process.

Another very important aspect dealing with architectural
concepts is the monitoring of the concrete realizations of them.
In our approach the Check activity takes care of it. All the
presented concepts can be represented by a logical rule set, as
described in [5]. Related to the fact that all elements of the
software are subjects to the evolution process, architectural
concepts can change or had to be adapted over time. This
means that the violation of an architectural rule indicates not
always a bad or defective implementation, it can additionally
give the impulse to review the associated concept and the
context. In our approach the assessment of the rule violation
is included in the Check activity and if there is an indication
for a rule adaptation this will be analyzed and worked out
in detail in the next Design activity. Overall it leads to a
managed evolution.

B. Understanding of Architecture and Measuring of Architec-
ture Quality

Software development is an evolutionary and not a linear
process. The costs caused by errors in software in the last
years, especially in the automotive industry, are very high
(15-20% of earnings before interest and taxes [48]). Thus,
it is necessary to understand and evaluate the architecture to
support further development. In a vehicle, software will occupy
a larger and larger part and the costs caused by errors will
be rising. Therefore, it is important to control the quality of
the software continuously. Problems/Errors can be detected
early so that the quality of the software increases. The quality
of the software depends in particular on the quality of the
corresponding software architecture. In our approach, we use
PLAs for automotive software product line development. PLAs
are special types of software architectures. They do not only
describe one system, but many products, which can be derived
from this architecture. Variability of the architecture, reuse of
products, and the complexity are important values to assess
the quality of this architecture.

Today, metrics mainly focus on code level. The most
common metrics are Lines of Code, Halstead, and McCabe. In
object-oriented programming (OOP), MOOD metrics and CK
metrics are used. However, these metrics are not suitable for
measuring PLAs. For assessing a PLA, the most important
value is variability, as the degree of variability increases
complexity in PLAs. Further important values are complexity
and maintainability of the possible products and the PLA.
As modules of products shall be reused for other products, a
high reuse-rate on the product level is an important objective
of the PLA. A high reuse-rate also implies a high focus on
maintainability of the products.

In our approach, we assess the modification effort, reuse
rate and cohesion of a PLA, since we can thus evaluate
the properties discussed above. In the following, we give
formulas for the calculation of modification effort, reuse rate
and cohesion. Here, we refer to the definitions of Section III-B,
and the system structure depicted in Figure 3.

1) Modification effort: The modification effort measures
the effort caused by the planned changes in the PLA: How
many logical architecture elements (LAE), and products are
affected by the change? The calculated result value is between
0 (no elements have to be changed) and 1 (all elements have
to be changed). Simple changes can have a high impact to
products and modules. The value supports the architect to

216

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

improve understanding the architecture. Maybe there is a better
solution to design the new PLA with less modification effort.
The modification effort E to develop a new PLA version
plax+1 for a given PLA plax is calculated as follows on the
level of PLA and products:

EPLA =
number of concerned LAE

number of all LAE
(2)

EP =
number of concerned products

number of all products
(3)

where concerned LAE/products denote the logical ar-
chitecture elements/products that have to be modified or
added/deleted when introducing the new PLA version. In
Table II we apply E on the example in Figure 3.

TABLE II. MODIFICATION EFFORT FOR THE EXAMPLE OF FIGURE 3.

E pla1 → pla2 pla2 → pla3

EPLA |{A,C}|
|{A,B,C}| = 2

3
|{B,C}|

|{A,B,C}| = 2
3

EP |{p1,p2}|
|{p1,p2}| = 2

2 = 1
|{p1,p2,p3}|
|{p1,p2,p3}| = 3

3 = 1

Consider, e.g., step pla1 → pla2 in Table II: Note that each
module is assigned to only one LAE in this example. Hence,
modules are not considered in this example. In practice an LAE
can be assigned to several modules to realize functionality. In
this step the architect adds a connection between the LAE A
and LAE C on the PLA. The modification effort for the PLA
is 2

3 , because two of three LAE are affected by this change.
On product level the modification effort EP is 1: p1 1 and p2 1

contain LAE A and are thus affected. Note that for EP we do
not specify the version index in the calculation in Table II.

In this example, all products are affected by the modifica-
tion in both development steps. There is no other way to reduce
the modification effort. However, new product versions are not
released at each point in time even if the product is concerned
by the PLA modification (see product p1 at time = 2 in
Figure 3).

2) Reuse rate: To keep the vehicles cost efficient, modular
products with a high reuse rate cross different types of vehicles
are desired. The aim is to reuse modules in different products.
The reuse rate Rm of a module m in a certain PLA version
plax is calculated as follows:

Rm =
number of usage of m in all products of plax

number of all products of plax
(4)

Average reuse rate RM :

RM =

∑
Rm

number of all modules
(5)

In Table III we apply R on the example in Figure 3.
Consider, e.g., pla1 and Rm1 in Table III: Modules m1 1

and m2 1 are both used in products p1 1 and p2 1. Thus, the
reuse rate is 2

2 = 1 (100%). In the example the average reuse
rate for pla1 is 0.84 (84%). This value constitutes a high degree
of reuse. For pla3 and Rm1 the reuse rate has to take the new
product p3 1 into account. As m1 3 is used in two products
and the number of products is three, Rm1 = 2

3 (≈ 67%).

TABLE III. REUSE RATE FOR THE EXAMPLE OF FIGURE 3.

R pla1 pla2 pla3

Rm1 2
2

1
1

2
3

Rm2 2
2

1
1

2
3

Rm3 1
2

0
1

1
3

Rm′
1 – – 1

3

Rm′
2 – – 1

3

RM 5
2/3 ≈ 0.84 2

1/3 ≈ 0.67 7
3/5 ≈ 0.47

In the example the average reuse rate in pla3 is 0.47. The
comparison between pla1 and pla3 shows that the reuse rate
has deteriorated. This is to be expected since new products
and modules are added. In the next planning activity of a new
PLA these new modules should be used in more products to
increase the reuse rate.

3) Cohesion: A high cohesion is preferable. The value for
cohesion denotes the rate, how many export values of the
modules are used inside a product. The higher the value, the
better the cohesion of the product. We call export and import
values of modules exports and imports in the following.
The cohesion Ap of a product p is calculated as follows:

Ap =
number of all exports of all modules used in p

number of all exports of all modules in p
(6)

The average cohesion AP of products of a PLA version is
calculated as follows:

AP =

∑
Ap

number of all products
(7)

The cohesion of the PLA APLA is calculated as follows:

APLA =

number of all exports of modules used in all products

number of all exports of all modules of all products
(8)

In the following Table IV, we set randomly chosen values
for exports and imports at time = 1 for the modules. We
assume that the architect has access to the whole information
of LAE, all products, and all modules at this time.

TABLE IV. EXPORTS AND IMPORTS AT TIME=1 IN FIGURE 3.

Module Number of export values Number of import values
m1 1 3 1
m2 1 4 3
m3 1 2 3

TABLE V. COHESION FOR THE EXAMPLE OF FIGURE 3.

A pla1 pla2 pla3

Ap1 1+1+0
3+4+2 ≈ 0.22 – 2+0+0

3+4+2 ≈ 0.22

Ap2 1+0
3+4 ≈ 0.14 1+0

3+4 ≈ 0.14 1+0
3+4 ≈ 0.14

Ap3 – – 1+0
3+4 ≈ 0.14

AP ≈ 0.18 ≈ 0.14 ≈ 0.17

APLA 1+1+0+1+0
3+4+2+3+4 ≈ 0.19 1+0

3+4 ≈ 0.14 2+0+0+1+0+1+0
3+4+2+3+4+3+4 ≈ 0.17

217

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consider, e.g., pla1 and Ap1 in Table V: Product p1 1 has
three modules (m1 1, m2 1, m3 1). In product p1 1 LAE A has
a connection (export) to B and B has a connection (export)
to C. In Table IV all export values are listed. The cohesion is
calculated as follows:∑

used exports of m1 1,m2 1,m3 1∑
all exports of m1 1,m2 1,m3 1 = 1+1+0

3+4+2 ≈ 0.22

For a whole PLA all used export values of modules in
all products are aggregated. The result for pla2 shows that
the change operation concerns all products and a part of the
LAE and modules. The expected cohesion in pla3 is worse
compared to pla1. The quality of the PLA has slightly dete-
riorated. Modules realize more than one functionality because
they are used in more than one project. Therefore, cohesion
is competing to the reuse rate. It is planned to evaluate these
metrics and determine the intervals of the values for “good”
and “bad” with the help of experts in one of our industrial
projects.

4) Applying change operations on a PLA: A software
architect changes the PLA to fulfill new requirements. The aim
is to implement the new requirements with the least possible
adaptation on the product/module level.

Figure 12 exemplarily describes the procedure of applying
change operations on a PLA. The procedure starts with the
current PLA and all products and modules at time = 1. To
make change operations, the software architect performs the
following steps:

1) The architect adds a new change operation to the
PLA.

2) The above metrics are performed on the intermediate
PLA b. The results are considered as bad by the
architect and the changes are rejected.

3) The architect adds a new change operation to the
PLA. The above metrics are performed on the in-
termediate PLA. The results are evaluated as good
and the PLA c serves as the basis for the next step.

4) The architect adds a new change operation to the PLA
c.

5) The above metrics are performed on the intermediate
PLA d. The results are considered as bad by the
architect and the changes are rejected.

6) The architect adds a new change operation on the
PLA c resulting in PLA e. Again, the metrics are
applied. The results are rated as good. As all require-
ments have been implemented, PLA e is the new PLA
vision and serves as input for the planning.

C. Planning of Development Iterations and Prototyping
In our case the planning of the further development in-

volves several activities, e.g., performing planning of each
modification of PLA and PA. The problem arises when
PL-Requirements or P-Requirements needs to be
realized within certain development time and within certain
development costs. Planning solves the problem by defining
timed activities considering the effort limitations.

Planning consists of a sequence of iterations. Iterations
are defined as a number of architecture elements that must
be realized in a time period bounded by tstart and tend
with tstart, tend ∈ N, tstart < tend. Within each time period
the activities Design, Plan, Implement and Check are

a

b

c

d

e

Change operation on PLA

Go back, as measurement is evaluated as bad

PLA with conducted change operations

start PLA vision

1

2

3

4

5

6

Figure 12. Example: Applying change operations on a PLA

ordered. The iteration is completed when all modifications
are realized by Design, Implement, and checked to be
conform to architecture rules by Check. An example of a
sequence of three iterations is shown in Figure 3. In Figure 3,
the expected result of modifications on PLA at several time
points is defined, which corresponds to PL-Plan. Moreover,
the expected result of modifications on PA are defined where
products, modules and their mapping for three time points is
shown in Figure 3.

The effort caused to realize the planned number of archi-
tecture elements is estimated by the activities Design and
Implement, to achieve the PLA and PA development within
given effort limitations. In case of a deviation between planned
and actual estimations the initial plan is modified. Therefore,
effort estimations are made by considering the necessary
effort of PLA or PA modifications from Design and from
Implement. In the following, details about effort estimations
according to PLA and PA modifications are presented to
achieve estimation based planning.

The first estimation concept is based on metrics to evaluate
the modification effort. For example, modification effort ac-
cording to connection structure and component structure is es-
timated by rating cohesion of components. Another estimation
concept is to evaluate the effort based on modification realizing
a new pattern in the appropriate PLA or PA. Hence, simple
connection or component related modifications are lightweight,
pattern based structure modifications are heavyweight. Mod-
ifications rated as heavyweight often involve a huge number
of architecture components and products. Therefore, in such a
case our methodology suggests to outsource such heavyweight
modifications into a prototype projects. This special case is
enclosed by the activity PL to P of our methodology.

VII. CASE STUDY

In this section we introduce a real world example, a longitu-
dinal dynamics torque coordination software, from automotive
software engineering. We apply our methodology for planning
and evolving automotive product line architectures on this
example and present the results of a corresponding case study.

A. Real World Example: Longitudinal Dynamics Torque Co-
ordination

Our approach for designing the logical architecture de-
scribed in the previous sections is based on our experience
in the automotive environment. In numerous projects with
the focus on software development for engine control units,

218

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

we have developed architectural principles and concepts for
architectural design and tested them on real sample projects.
The following example shows frequent problems that arise as
a result of strongly increasing accidental complexity.

In our example, we consider the control of the acceleration
and braking process, which is controlled by the driver via the
accelerator and brake pedal, respectively. The implementation
of these controls was originally carried out on completely sep-
arate developments. In the course of time, however, additional
functions have been added: Not only the driver can act here
by actuating the throttle or brake pedal. There are a number
of additional functions, such as the electronic stability control
(ESP) or the adaptive cruise control (ACC), which can act as
accelerator and decelerator. In the case of longitudinal dynam-
ics torque coordination (see Figure 13), both acceleration and
braking processes must be coordinated with one another since
there are mutual interdependencies. A drive train coordinator
(DTC) was introduced for the coordination of the acceleration
path.

ABSESP

Driv. BehaviorDTC

Mutual coordination

Figure 13. Automotive powertrain example: Mutual coordination

As a solution to the coordination problems, point-to-point
connections between the software components were intro-
duced, which however led to a strong increase in the accidental
complexity: The realization of the reciprocal coordination
of the requesters was implemented in the example by the
addition of a new explicit communication for the solution of
coordination problems (see Figure 13, “mutual coordination”).
In addition, existing functions had to be replicated in another
context for the realization of the explicit communication. As a
result, redundancies were created in the software components.
Furthermore, accidental complexity has increased dispropor-
tionately because of the wide interfaces and strong coupling
within the architecture of the system.

Next, we describe how we applied the approaches intro-
duced in the previous sections to manage the complexity of the
example system. This paves the way for long-term maintenance
and extensible architectures.

B. Origin of the Growing Accidental Complexity
In the following, the problems outlined above are explained

in more detail using the real example. Later, we will show
how by using different architectural principles, a significantly
improved product line architecture with low accidental com-
plexity can be build. This example is based on real industrial
projects, but these have been simplified in this paper in order
not to disclose business secrets.

The example consists of two systems that existed separately
from each other in the past. The systems are, on the one

hand, the acceleration path to the engine, where the driver
generates a positive torque request to the engine by actuating
the accelerator pedal. The other system is the braking path,
on which the driver transmits a negative torque request, the
so-called deceleration request, to the brake by actuating the
brake. In both systems, the pedals were connected directly to
the engine or the brake by a bowden cable.

With the development of increasingly better and more cost-
effective electrotechnical systems, both systems have been
further and further electrified. In the braking path, assistance
systems were introduced to increase safety, such as the anti-
lock braking system (ABS) and later an ESP. A control unit,
the engine control unit, was introduced into the acceleration
path, which led to the electric accelerator pedal in the 90s.
This resulted in the elimination of the direct bowden cable
to the engine. Furthermore, assistance systems have been
developed, which optimally transfer the driver’s request torque.
By introducing electric motors, it is now also possible to set
negative torques on the drive path. Thus, it was necessary
that both systems exchange information with each other. As a
result, all systems had to be connected to each other in order
to be able to match the desired values with the real values of
the motor and brake, respectively.

Architecture recovery: As outlined above, further devel-
opments have led to an erosion of the originally planned
architecture. The implementations in the individual products
have increasingly deviated from the planned product line
architecture. Finally, the existing system was very difficult to
handle in further developments. For this reason, the system
had to be revised and, in particular, the architecture had
to be repaired. Thus, we applied architecture recovery as
described in Section IV. Recovery uses reverse engineering
techniques to extract the implemented architecture from source
artifacts. Figure 14 illustrates the recovered architecture. The
black arrows show the data flow along the two paths. In
addition to the physical set values, this data also contains
information about the state of the assistance system as well
as the information about the mode (kickdown, emergency
brake, active, inactive, etc.), in which it is currently located.
The blue arrows convey the changes of the values for the
torque requests. These connections are required, since there
are controllers in all systems, which are integrated over time
if the behavior of their control loop is not known.

Anti-lock

braking

system

(ABS)

Electronic

stability

program

(ESP)

Driver

Behavior

Emergency

brake

assistant

Figure 14. Automotive powertrain example: Recovered architecture

219

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Applying our Approach on the Example

Design of the new PLA - Iteration 1: After the analysis of
the system, it became clear that the coordination information
had to be reduced. The first step was the introduction of a
coordinator component with the architecture design principle
Coordinator-PipesAndFilters-Support, which enabled the coor-
dination of both torque paths (acceleration/brake). The result
of this change is depicted in Figure 15.

Measuring of architecture quality - Iteration 1: The data
flow was not changed by the introduction of the coordinator,
s.t. the functional behavior of the assistance systems remained
unchanged. However, many interfaces necessary for the co-
ordination information could be removed. This has reduced
the complexity of many assistance systems. The complexity
of the ESP, e.g., could be reduced to the level of the essential
complexity. However, the ABS assistance system has risen in
complexity since a further interface for the coordination had to
be added here. The coordinator is also a very complex system
since the coordinator now contains the entire coordination
effort, which was previously distributed to the individual
assistance systems.

Anti-lock

braking

system

(ABS)

Electronic

stability

program

(ESP)

Driver

Behavior

Emergency

brake

assistant

Coordinator

Figure 15. Reducing complexity by architecture design principle coordinator

Design of the new PLA - Iteration 2: In order to
ensure that no additional coordination information interfaces
are generated, the architecture design principle feedback chan-
nel (see Section VI-A5) is introduced for all components
in the system. This ensures that all controllers are informed
of the current situation in the system, without the need for
additional interfaces to all components. The feedback interface
has only to be added to the ESP assistance system. To optimize
the information processing in the individual components, the
architecture design principle anvil-like component model was
introduced. Due to the division into the execution control and
functional algorithms, the components became much more
structured and readable. In the part functional algorithms, only
all the technical complexities, which concern the function
itself are contained. The part of the execution control contains
all relevant system-dependent contents. This facilitates the
development of each individual component, since adaptations,
which have to be carried out solely because of a system
change, only take place in the execution control. All tests
regarding the functionality of the component can usually be
adopted unchanged, since the functionality is implemented
exclusively in the functional algorithms. The resulting product
line architecture is shown in Figure 16.

Measuring of architecture quality - Iteration 2: By the
new design the modification effort of a PLA could be improved
significantly with regard to further development. If, e.g., a new
assistance function is to be introduced, only few adaptations
to the existing architecture are necessary. The evaluation of
cohesion and reuse rate according to Section VI-B can not be
carried out at this point because currently only a prototypical
product version exists. It is, however, to be expected that the
reduction of mutual interdependencies will lead to a significant
increase in cohesion. In addition, the current implementation
of the modules includes a high degree of variability, which
increases the reusability in different products. Furthermore, the
improved modification effort also contributes to an increased
reusability over several subsequent product versions since
adjustments are only necessary in a few places when new
functions are introduced.

Planning of development iterations and prototyping:
As shown in the example, the development was carried out
in two iterations. Both iterations resulted in an executable
prototype, which was tested extensively. The functionality was
tested by means of the tool Time Partition Testing (TPT). TPT
suits particularly well due to the ability to describe continuous
behavior [49]. As a starting point for the tests, a simple
environment model was created. The module and composite
tests were carried out taking into account previously defined
scenarios. The signals were then evaluated and compared with
the scenarios.

As a result of the tests, neither errors were found in the
module tests nor in the composite tests. The case study has
demonstrated that the migration of the existing functionality
into an improved architecture is possible by means of our
approach.

Driver

Behavior

Electronic

stability

program

(ESP)

Emergency

brake

assistant

Coordinator

Anti-lock

braking

system

(ABS)

Figure 16. Reducing complexity by architecture design principle feedback
channel and anvil-like component model

VIII. KNOWLEDGE-BASED ARCHITECTURE EVOLUTION
AND MAINTENANCE

In this section we will outline how the approach introduced
in Section V can be extended to a holistic solution for
managing architectural concepts during the evolution of the
system life-cycle. As visualized in Figure 17 the approach can
be embedded into an evolutionary incremental development
process. After each implementation step the realization can be
analyzed.

Thereby the generated Concept Performance Record can
support the system architect to get a comprehension of the

220

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Overview of the approach to extract architectural concepts embedded into an evolutionary incremental development process

realized concepts. This information can be combined with
the results from the PL-Check and P-Check activity (see
Section III). As described the aim of the checking activities is
to reduce the erosion of a product architecture by architecture
conformance checking. The output of these activities are a
list of violations. If the developer was not familiar with
the architecture, for example, and this is the reason for the
violation, it can still be fixed during the next implementation
step by the developer, so that no erosion occurs. On the other
hand it can be decided that the reason for the violation is
reasoned by a not suitable architecture. In this case the Concept
Performance Record can support by planning the architectural
changes by making the aspects the developer has in mind
explicit on the architectural abstraction level.

An additional issue is the improvement of the evolution
and maintenance process by the monitoring of concepts. We
can assume that the configuration and all data pools are stored
in a repository and will be versioned. So we can answer
the question: ”What might happen with architectural concepts
over time?” - they can be adapted to new requirements or in
consequence of new technologies, frameworks or programming
paradigms, for example. This can also lead to new concepts,
which maybe replace old concepts, so it might be possible that
extracted concepts will disappear over time. But these changes
can be detected with the help of the detector mechanism,
too, or in other words comparing two Concept Performance
Records from different versions of a product will lead to
indications of mutations and/or displacement of concepts.
What on the other hand can help to detect product architecture
erosion at an early stage.

IX. CONCLUSION

We introduced a sophisticated approach for extracting, de-
signing and managing architectural concepts and thus enabling
long-term evolution of automotive software systems. The ap-
proach aims to close the gap between product architectures and

the product line architecture in the automotive domain. Thus,
we used adapted concepts like architecture design principles,
architecture compliance checking, and further development
scheduling with specific adaptations to the automotive domain.

With a high degree of erosion, a further development of the
software is only possible at great effort. Before approaches
to minimize erosion can be applied, the architecture must
first be repaired. Thus, we investigated how approaches for
architecture extraction can be adapted to be applied to au-
tomotive software product line architectures. First, we pro-
posed methods used to extract initial architectures. Next, we
explained our experiences gained from a real world case study.
In the case study, we could recover a PLA for the engine
control unit software. However, difficulties have arisen in
building an integrated PLA due to the size of the selected
system. To handle such huge systems an automated process
must be developed by further research.

Furthermore, we integrated this recovery/discovery ap-
proach into an evolutionary incremental development process.
We focused on how the developers best practice can be
identified and reflected to the architecture level. In addition,
we showed how a knowledge based process for architecture
evolution and maintenance for architectural concepts can be
implemented.

Next, we proposed methods and concepts to create ad-
equate architectures with the help of abstract principles,
patterns, and description techniques. Such techniques allow
making complexity manageable. We presented architectural
concepts developed within different industrial projects in
the automotive domain involving different software architects
and project members. For example, we introduced feedback
channels enabling the dissolution of functional dependencies
without the introduction of technical point-to-point connection.

We suggested techniques for understanding of architecture
and measuring of architecture quality. With the help of numer-

221

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ical results of these measurements, we can make a statement
about complexity, as well as conclusions about a system.

Finally, we demonstrated our concepts by an industrial
case study from the automotive domain. We described how
we applied the approaches introduced in the previous sections
to manage the complexity of the example system. We have
shown that the application of the approach paves the way for
long-term maintenance and extensible architectures.

REFERENCES
[1] A. Grewe, C. Knieke, M. Körner, A. Rausch, M. Schindler, A. Strasser,

and M. Vogel, “Automotive Software Systems Evolution: Planning
and Evolving Product Line Architectures,” in Special Track: Managed
Adaptive Automotive Product Line Development (MAAPL), along with
ADAPTIVE 2017. IARIA XPS Press, 2017, pp. 53–62.

[2] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10–19.

[3] J. van Gurp and J. Bosch, “Design Erosion: Problems & Causes,”
Journal of Systems and Software, vol. Volume 61, 2002, pp. 105–119.

[4] S. Herold and A. Rausch, “Complementing Model-Driven Development
for the Detection of Software Architecture Erosion,” in 5th Modelling
in Software Engineering (MiSE 2013) Workshop at Intern. Conf. on
Softw. Eng. (ICSE 2013), 2013.

[5] S. Herold, “Architectural Compliance in Component-Based Systems.
Foundations, Specification, and Checking of Architectural Rules.” Ph.D.
dissertation, Technische Universität Clausthal, 2011.

[6] L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132–151.

[7] I. John and J. Dörr, “Elicitation of Requirements from User Documen-
tation,” in Ninth International Workshop on Requirements Engineering:
Foundation for Software Quality. REFSQ ’03, 2003.

[8] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley
Professional, 2004.

[9] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison Wesley, 2001.

[10] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[11] H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70–73.

[12] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
“The Concept of Reference Architectures,” Systems Engineering,
vol. 13, no. 1, Feb. 2010, pp. 14–27.

[13] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference Architec-
ture and Product Line Architecture: A Subtle but Critical Difference,” in
Proceedings of the 5th European Conference on Software Architecture,
ser. ECSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 207–211.

[14] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Reference
Model for Reference Architectures,” in Proceedings of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 297–301.

[15] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. New York, NY, USA: ACM, 2013, pp.
157–161.

[16] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a Process for the Design, Representation,
and Evaluation of Reference Architectures,” in Proceedings of the
2014 IEEE/IFIP Conference on Software Architecture, ser. WICSA ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 143–152.

[17] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1996.

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

[19] J. Bosch, Design and use of software architectures: Adopting and
evolving a product-line approach. Pearson Education, 2000.

[20] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software,
vol. 74, no. 2, 2005, pp. 173–194.

[21] S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66–72.

[22] R. Flores, C. Krueger, and P. Clements, “Mega-scale Product Line En-
gineering at General Motors,” in Proceedings of the 16th International
Software Product Line Conference - Volume 1, ser. SPLC ’12. New
York, NY, USA: ACM, 2012, pp. 259–268.

[23] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and
G. Saake, “Measuring Non-Functional Properties in Software Product
Line for Product Derivation,” in Proceedings of the 2008 15th Asia-
Pacific Software Engineering Conference, ser. APSEC ’08. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 187–194.

[24] L. Passos, K. Czarnecki, S. Apel, A. Wasowski, C. Kästner, and J. Guo,
“Feature-oriented Software Evolution,” in Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems, ser. VaMoS ’13. New York, NY, USA: ACM, 2013, pp.
17:1–17:8.

[25] Gentzane Aldekoa and Salvador Trujillo and Goiuria Sagardui Mendi-
eta and Oscar Daz, “Quantifying Maintainability in Feature Oriented
Product Lines,” in Proceedings of the 12th European Conference on
Software Maintenance and Reengineering. IEEE, 2008, pp. 243–247.

[26] Zhang, T. and Deng, L. and Wu, J. and Zhou, Q. and Ma, C.,
“Some Metrics for Accessing Quality of Product Line Architecture,”
in 2008 International Conference on Computer Science and Software
Engineering, vol. 2, 2008, pp. 500–503.

[27] G. Holl, P. Grünbacher, and R. Rabiser, “A Systematic Review and an
Expert Survey on Capabilities Supporting Multi Product Lines,” Inf.
Softw. Technol., vol. 54, no. 8, Aug. 2012, pp. 828–852.

[28] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Dis-
tributed Embedded Automotive Systems,” in Proceedings of the 4th
ACM international conference on Embedded software. ACM, 2004,
pp. 203–210.

[29] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing PLA at Bosch Gasoline Systems: Experiences
and Practices,” in Software Product Lines. Springer, 2004, pp. 34–50.

[30] B. Cool, C. Knieke, A. Rausch, M. Schindler, A. Strasser, M. Vogel,
O. Brox, and S. Jauns-Seyfried, “From Product Architectures to a Man-
aged Automotive Software Product Line Architecture,” in Proceedings
of the 31st Annual ACM Symposium on Applied Computing, ser.
SAC’16. New York, NY, USA: ACM, 2016, pp. 1350–1353.

[31] M. Schindler, “Automatische Identifikation und Optimierung von
Komponentenstrukturen in Softwaresystemen,” Master’s thesis, TU
Clausthal, 2010.

[32] M. Schindler, C. Deiters, and A. Rausch, “Using Spectral Clustering to
Automate Identification and Optimization of Component Structures,”
in Proceedings of 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), 2013, pp. 14–
20.

[33] M. Schindler, A. Rausch, and O. Fox, “Clustering Source Code El-
ements by Semantic Similarity Using Wikipedia,” in Proceedings of
4th Intern. Workshop on Realizing Artificial Intelligence Synergies in
Softw. Eng. (RAISE), 2015, pp. 13–18.

[34] M. Körner, S. Herold, and A. Rausch, “Composition of Applications
Based on Software Product Lines Using Architecture Fragments and
Component Sets,” in Proceedings of the WICSA 2014 Companion
Volume, ser. WICSA ’14 Companion. New York, NY, USA: ACM,
2014, pp. 13:1–13:4.

[35] D. Claraz, S. Kuntz, U. Margull, M. Niemetz, and G. Wirrer, “Deter-
ministic Execution Sequence in Component Based Multi-Contributor
Powertrain Control Systems,” in Embedded Real Time Software and
Systems Conference, 2012, pp. 1–7.

222

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[36] K. Reif, Automobilelektronik - Eine Einführung für Ingenieure, 4th ed.
Vieweg + Teubner, 2012.

[37] R. Isermann, Ed., Elektronisches Management motorischer Fahrzeu-
gantriebe, 4th ed. Vieweg + Teubner, 2010.

[38] C. Deiters, Beschreibung und konsistente Komposition von Bausteinen
für den Architekturentwurf von Softwaresystemen, 1st ed., ser. SSE-
Dissertation. München: Dr. Hut, 2015, vol. 11.

[39] M. Mues, “Taint Analysis - Language Independent Security Analysis for
Injection Attacks,” Master’s Thesis, TU Clausthal, Institute for Applied
Software Systems Engineering, 2016.

[40] M. Cottrell, B. Hammer, A. Hasenfuß, and T. Villmann, “Batch and
median neural gas,” Neural Networks, vol. 19, no. 6, 2006, pp. 762–
771.

[41] B. Fritzke, “A Growing Neural Gas Network Learns Topologies,” in
Proceedings of the 7th International Conference on Neural Information
Processing Systems, ser. NIPS’94. Cambridge, MA, USA: MIT Press,
1994, pp. 625–632.

[42] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1,
1998, pp. 1–6.

[43] M. Reuter and H. H. Tadijne, “Computing with Activities III: Chunking
and Aspect Integration of Complex Situations by a New Kind of
Kohonen Map with WHU-Structures (WHU-SOMs),” in Proceedings
of IFSA2005, Y. Liu, G. Chen, and M. Ying, Eds. Springer, 2005, pp.
1410–1413.

[44] M. Reuter, “Computing with Activities V. Experimental Proof of the
Stability of Closed Self Organizing Maps (gSOMs) and the Poten-
tial Formulation of Neural Nets,” in Proceedings World Automation
Congress (ISSCI 2008). TSI, 2008.

[45] A. Rausch, R. Reussner, R. Mirandola, and F. Plášil, Eds., The Com-
mon Component Modeling Example: Comparing Software Component
Models. Springer, 2008, vol. 5153.

[46] A. Gisbrecht, W. Lueks, B. Mokbel, and B. Hammer, “Out-of-Sample
Kernel Extensions for Nonparametric Dimensionality Reduction,” in
Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN), vol. 2012,
2012, pp. 531–536.

[47] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, 2008, pp. 2579–
2605.

[48] M. Bernard, C. Buckl, V. Döricht, F. M., L. Fiege, H. von Grolman,
N. Ivandic, C. Janello, C. Klein, K.-J. Kuhn, C. Patzlaff, B. C. Riedl,
B. Schätz, and C. Stanek, Mehr Software (im) Wagen: Informations-
und Kommunikationstechnik (IKT) als Motor der Elektromobilität der
Zukunft. fortiss GmbH, 2011.

[49] E. Lehmann, “Time Partition Testing – Systematischer Test des kon-
tinuierlichen Verhaltens von eingebetteten Systemen,” Ph.D. disserta-
tion, Fakultät IV – Elektrotechnik und Informatik, TU Berlin, 2004.

