
189

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Patterns to Inform a Study Setup for Biometric Image Data Capturing

Artur Lupp∗, Alexander G. Mirnig∗, Thomas Grah∗, Andreas Uhl† and Manfred Tscheligi∗

∗Center for Human-Computer Interaction, University of Salzburg, Austria
Email: name.surname@sbg.ac.at

†Department of Computer Sciences, University of Salzburg, Austria
Email: uhl@cosy.sbg.ac.at

Abstract—This paper presents an application of the contextual
user experience (cUX) pattern approach for refining a study
concept involving biometric image data. The study was concerned
with the acquisition, inspection, and quality evaluation of Near
Infrared (NIR) iris biometry images. After creating the initial
draft of the study setup and during the design of the detailed
study procedure, a number of questions arose, e.g., how to deal
with the environmental light during image acquisition, which
material to use for 3D printing, how to solve the problem of
picking the right questionnaire, how to record high quality videos
with mobile phones or even the differences between certain image
formats. In order to capture and make these solutions more easily
accessible, we used an adapted cUX pattern approach to provide
the found solutions in the form of seven study design patterns.

Keywords–design patterns; pattern reuse; study setup optimiza-
tion.

I. INTRODUCTION

This paper is an extension of a full paper presented at PAT-
TERNS 2017 [1]. Patterns, in general, are a well acknowledged
method in Human-Computer Interaction (HCI), providing reli-
able and reproducible solutions for specific problems. They can
be advantageously used to ease the communication between
experts with different levels of expertise or even alternate
disciplines. This is particularly useful in interdisciplinary areas
and academic settings, where often a wide variety of levels of
expertise are represented. During the design of an academic
study with image recognition, we encountered a number of
problems, which we found nontrivial and difficult to solve via
standard literature, due to their specific nature. Since knowl-
edge on pattern use and writing was available, we decided to
capture the found solutions as patterns, in order to share them
in an easy to access format.

The aim of this paper is to provide a more detailed
description of the pattern writing process, a greater number of
patterns than the original publication and finally an extended
discussion. The already provided patterns, “Choosing the Right
Light Sources to Examine NIR-Images Differences”, “Lens
Holder Construction for a Mobile Phone” and “Finding and
Adjusting the Right Usability Questionnaire” covered the first
steps of the study routine, whereas the more complex image
acquisition and processing part had not been covered via
patterns at that point. We took the opportunity to provide more
solution patterns covering image acquisition and processing
topics. Patterns (i.e., local binary patterns) in image application
are commonly used to improve face detection and recognition.
However, this type of patterns is not comparable to the solution
patterns provided in this work. The solution patterns presented
in this paper, aim to provide aid and helpful solutions for

problems that may occur in the image application domain.
With the addition of five new generated patterns covering
the image application domain, this work now presents seven
patterns in total.

Section II will give some insight into patterns and certain
areas in the image application domain. A detailed explanation
of the cUX pattern approach is presented in Section III. This
section will describe the pattern generation process, starting
from the context analysis and problem definition, whilst ex-
plaining all in-between steps until the finalization of a pattern.
After the explanation of the pattern generation process, Section
IV will provide an insight into the to be improved study setup.
Section V will illustrate the seven solution patterns with the
following Titles:

1) Choosing the Right Light Sources to Examine NIR-
Images Differences

2) Lens Holder Construction for a Mobile Phone
3) High Quality Video Acquisition with the Nexus 5
4) Extract Media Information from Videofiles
5) Still Image Extraction from h264 Videos
6) Comparison Between Bitmap, Portable Network

Graphic, and JPEG Images
7) Extraction of the Eye Area from Frontal Face Images

We will discuss our new findings, especially how to handle
the new problems and the associated solutions in Section VI
and conclude the paper in Section VII.

II. RELATED WORK

This section will first provide a brief overview of patterns,
their history, and pattern approaches. After that, a summary
of relevant information and literature on image detection is
provided.

A. Patterns
Patterns were first introduced by Christopher Alexander

[2][3] as a means to capture working solutions for reoccurring
problems in the field of architecture. His initial idea was to
consider the act of constructing a building as the sum of a
number of many individual problem solutions. These solutions,
when described individually, can then be “rearranged” when
constructing new or different buildings and not requiring the
same problems be solved anew every time a new building
is constructed. His ideas and methodology was adopted by
Gamma et al. [4] for Software Engineering and related disci-
plines, and has been used as a tool in these domains since.

Patterns are nowadays considered less as an alternative to
guidelines and other general means of guidance, and more as a

190

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supplement. This is because general documentation approaches
are often either simplistic or high level [5][6]. Pattern solutions,
on the other hand, are firmly embedded in the context their
problems occur in. This makes a specific pattern less generally
applicable – only when the problem contexts match to a
sufficient degree. But it also makes the solutions they describe
more specific, as well as practice relevant, and lends them to
be used by novices and experts alike [7]. Patterns have been
adopted by other domains as well, such as Web Design and
HCI [8][9][10] and have also been suggested as a general,
discipline-independent knowledge transfer tool [11].

B. Image Application

The mobile phone domain made huge advancements in
terms of hardware technology over the last decade. Software,
however, does not keep up this trend, especially when looking
into image acquisition with mobile phones. The commonly
used format for images is JPEG [12], which offers a decent
image quality while maintaining a small file size. Videos
are saved within a MPEG4 [13] container format housing a
H.264/MPEG-4 AVC [14] video stream. H.264/MPEG-4 AVC
is typically used for compressed (i.e., lossy) recording to save
bandwidth, it is possible to create lossless-coded regions by
choosing a special profile. However, there is currently no
mobile phone available that is capable of using this special
profile, thus all videos recorded with a mobile phone are lossy.
Fortunately, object detection in the compressed domain is com-
monly applied [15][16][17][18][19], thus, face detection on
compressed images or videos should not prove too challenging.

Object detection is the basis for face detection, which is
picked as the central theme in one pattern, and can also be
applied on compressed images and videos [20]. Viola and
Jones [21][22] described a method for rapid object detection
by using simple distinctive features called Haar-like features
and a cascade of classifiers. This method distinguishes the
area where the face is detected from the background, thus
providing the area of interest. However, as the set of classifiers
is pretty simple, the general error rate is high. To improve the
detection rates, it is possible to use an extension [23] of the
before mentioned Haar-like features in form of an improved
cascade set, specially trained to decrease the general error rate.
OpenCV [24] offers a good library to utilize this feature set
for face and eye detection.

III. APPROACH

Generating patterns is a process over multiple stages that
involves individuals (in this case researchers) working together
in collaboration to create high quality patterns. This section
will describe our approach, as well as the overall pattern
creation process. The first step is the context analysis, followed
by the problem definition. During the context analysis, we
looked at the underlying study setup we wanted to improve,
identifying possible problems that may occur and how the
overall process could be refined. In a following discussion
session, we collected the results from the context analysis
by defining the overall issues and problems. After collecting
all problems and ideas, the identified items were rated on a
priority scale and compiled into list at the end of the discussion
round. Thereafter, the compiled items were arranged in the
sequence of the study setup routine to allow a fluid workflow.

1) Initial Pattern Mining & First Iteration: The compiled
list serves as a basis for the initial pattern mining and is
completed by the previously mentioned researchers. Each re-
searcher is assigned several problems. The number of assigned
problems or items per researcher varies and depends on the
number of participating researchers, time constraints (if any)
and the priority of the problem. Commonly, three to five
problems per researcher was the aim, as a problem statement
might result in more than one pattern. Therefore, it is advisable
to not exceed the recommended number of problems, to ensure
that the researchers have a manageable level of workload.
Apart from that, the researchers should be competent and well-
versed regarding the academic side of the problems they work
on. In the case of optimizing a study setup that mostly focuses
on video acquisition, image extraction and image processing,
this meant that all of the participating researchers should be
at least familiar with video recording and processing with
image data, with added benefit if they had specialization in
face detection and feature extraction.

The next step during pattern mining is the decision whether
the problem statement is a high or a low level problem and if
its level of granularity is such that it requires a single pattern
or needs to be split into several patterns. Each researcher
is then instructed to mine publications, presentations, demos,
prototypes, books and other useful and available sources for
solutions to the problem in question. The next step is the
combination of the partial solutions and references into one
full solution for the draft pattern. A draft pattern is written,
beginning with a self explanatory Title. Then, each pattern is
divided into six sections.

1) The Intent provides a short description and is fol-
lowed by the

2) Problem statement, which is, in this case, a question.
3) After stating the problem, a Scenario is presented that

is used as an example,
4) for which a Solution is provided.
5) The solution is backed up by Examples, usually

illustrated with images.
6) The pattern ends by providing Keywords, matching

the subject of the pattern.

The draft is then handed to another researcher for a first
internal iteration, completing the initial pattern.

2) First Iteration Workshop: The first iteration workshop
ideally consists of some or all participants that took part in
the context analysis, as well as participants not previously
involved, with the aim of introducing new viewpoints. The
initial patterns are then read thoroughly by each participant.
Each subcategory of a pattern (Title, Intent, Problem, etc.)
is rated individually on a 5-point scale via a rating system
provided by Wurhofer et al. [25]. If a pattern is rated 3 or
lower in any subcategory, it is marked for iteration. After rating
each pattern, the participants participate in a discussion session
and conclude the workshop. The main goal in this round is
to discuss the general pattern quality, as well as the overall
impression of the collection, to identity problematic patterns.

3) Second Iteration & Workshop: The feedback and ratings
gained from the first iteration workshop are worked into the
patterns during the second iteration. This time, each pattern
is iterated by at least two researchers, who are versed in
the specific topic address by the pattern(s). The focus is on

191

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Graphical representation of the Pattern Generation Process adapted from [26].

improving and ensuring the practical relevance of the pattern
by providing, e.g., additional implementation examples and
best practices. As in the initial pattern creation, each pattern
is cross-iterated again by a different researcher for typos,
errors, etc., in order to provide a full and complete solution
after this iteration. All additional iterations should only be
targeting structure improvement, readability, and comprehen-
sibility. Upon completion of this iteration, a second workshop
following the same routine as the first one is conducted. It
is advised to include new participants who were not part of
the first workshop to provide an unbiased view in order to
help to identify issues that might have been missed in the first
workshop.

4) Final Iteration and Validation: Each pattern is again
reworked with respect to the feedback and ratings gained in
the second workshop. At this point, most minor issues should
have been identified; however, it is still possible to encounter
major issues. When a major issue is found in a pattern, it
reenters the the reworking loop for another iteration workshop.
Usually patterns that reenter the loop are put aside temporarily
to ensure a fluid workflow. These patterns are taken up again,
if either a new batch of patterns is created, the appropriate
iteration phase is reached, or the rest of the patterns are
finished.

Patterns with minor issues are corrected accordingly and
enter the final validation stage of the pattern creation process.
During this stage, each pattern is again rated using the same
rating system as before, but without the workshop setting. If a
pattern receives a rating of 3 or below in this stage, it reenters
the same reworking loop as the patterns with major issues
mentioned before. This happens rarely, if ever, as problematic
patterns are usually identified before reaching this stage. All
ratings above 3 validate the pattern, marking it as finished.

IV. STUDY SETUP

We wanted to improve and optimize an existing study
setup, dealing with biometric images. These biometric images
had to be analyzed afterwards, with respect to image quality.
The setup was divided into several steps. During the first
step, study subjects have to capture videos with a customized
LG Nexus 5 mobile phone. The IR-blocking filter was re-
moved from the rear camera image sensor, to enable NIR
image capturing. The built-in rear camera image sensor is
a Sony Exmor R IMX 179. The sensor offers a Red-Green-
Blue (RGB) sub pixel layout with 3264x2448 (8 MegaPixel)
pixels and a sensor size of 5.68mm (1/3.2”), leading to an
effective pixel size of 1.4µm. The pixel size is decent for a
mobile phone released in 2013. Therefore, taking images or
videos in twilight conditions is possible. However, a brighter
environment is preferred due to less image noise. Each test
subject had to record three frontal face videos using the stock
camera lens and two different filters / lenses, which were
mounted on the mobile phone. Afterwards, the test subjects
had to fill in a questionnaire. Due to the time consuming video
capturing process, the questionnaire needed to be short, while
still maintaining a decent reliability.

The Nexus 5 was chosen because it was easily available at
the time and it allows removing the IR-blocking filter, which
is often permanently integrated (i.e., nondetachable) in other
models on the market. Removing the filter is necessary for
enabling NIR image capturing via the described method. The
built-in rear camera image sensor is also integrated in, e.g., the
Google PIXEL smartphone as a front facing camera and the
approach described here is not limited to only this particular
smartphone. While technology changes and advances, in the
case of smartphone technology quite rapidly sometimes, the
method for capturing images via the described method is likely
to stay the same, barring differences in pixel size, pixel matrix

192

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the image sensor, pre- or post processing. None of these
impact the image making process in any significant way. Thus,
the described process should be relatively robust to future
technology advances, provided the models used allow removal
of the IR-blocking filter.

We proposed patterns to refine the study concept using an
approach similar to the pattern generation process for car user
experience patterns described in detail by Mirnig et al. [27],
with some minor changes. The first mandatory step in our
approach was to analyze the study concept and the associated
setup to extract the problem statements. This was done by
organizing a workshop with the person responsible for the
study concept and a group of HCI researchers accustomed
with the pattern generation process. During the workshop, the
study setup was explained as follows. Study participants have
to capture three frontal face videos, one for NIR and visible
light images without any lens, one with the IR-blocking filter
/ lens, and one with the NIR-only lens. As it is possible to
extract high quality images from high resolution videos, it
was decided to capture only videos instead of pure frontal
face images. The two different lenses forced the researcher
responsible, to change them after every recording, due to the
current lens mounting method. To ensure a variety of captured
videos, the test subjects had to record the videos in different
light environments, which where not yet defined. The final step
was the acquisition of data, relating to the usability of the video
recording process. As the video capturing procedure was time
consuming, the data acquisition had to be fast and reliable.
The first workshop brought up the following main problems:

1) Which light sources and ambient environments need
to be considered, to ensure a diversity of captured
image or video data usually acquired during real life
usage?

2) How can the lens / filter changing process be im-
proved?

3) Is it possible to record higher quality videos with a
LG Nexus 5?

4) Which tool can be used to extract media information
from video files?

5) How can still images be extracted from videos
recorded by a mobile phone?

6) Which file format should be used for an image when
its extracted from a mobile phone video?

7) How can the eye area can be extracted from a frontal
face image?

For each problem, a draft pattern was created. The draft
pattern initially did not provide any final solutions. Thus, it
was iterated and reworked until a working solution was found.
After that, the pattern was rated and reworked again until
it was finally validated. In the next section, we will present
the solution patterns we generated. Each pattern provides a
solution for a certain problem statement, previously mentioned
in this section.

V. SOLUTION PATTERNS

A. Choosing the Right Light Sources to Examine NIR-Images
Differences

Intent: There are several variables one needs to take into
account when taking pictures or videos with a mobile phone.
Due to the usually small built-in image sensor in mobile

phones, sufficient environmental light is a crucial point. In-
sufficient light leads to higher image noise, which is generally
not preferred. However, to analyze a wide area of possible
real life conditions, selecting different environments for image
capturing is important. This pattern presents three possible
scenarios covering the most important lighting conditions.
The scenarios were selected to provide images with a quality
sufficient for subsequent analysis in mind.

Problem: Which scenarios are needed in order to acquire
analyzable data, covering indoor and outdoor lighting condi-
tions that enable NIR image acquisition?

Scenario: The study needed special image acquisition
scenarios to reflect actual real life scenarios as closely as
possible. Additionally, the ambient light in at least one of
the scenarios had to cover the NIR wavelength (>= 700nm)
spectrum to enable NIR imaging.

Solution: To cover most real life scenarios of possible
image capturing conditions, we proposed three scenarios: one
outdoor scenario using indirect sunlight (e.g., via a glass
reflection in the background) to enable NIR imaging and
two indoor scenarios using different light environments to
challenge the imaging sensor of the mobile phone.

• Outdoor (variable ambient light conditions) - The
outdoor scenario is and should be variable. In this
condition, the sun is providing the ambient light.
Therefore, the image quality is depending on time,
weather, and location. To ensure the best possible
conditions for NIR image acquisition, daylight is nec-
essary. Therefore, image acquisition in this scenario
should be done during the daytime. An example of
the outside condition is shown in Figure 3.

• Indoor (dim light) - The indoor scenario using a
dim light source is intended to challenge the image
sensor. The indirect artificial light provides sufficient
luminosity for images to be taken, as pictured in
Figure 4. Nevertheless, the provided light is dark
enough to force the image sensor to use a higher
sensitivity setting (this is also referred to as “ISO”),
thus, resulting in more image noise. Note that image
noise is not desirable in general, but, if the main
concept of the study is to analyze the whole range
of possible image qualities, it is mandatory to include
this unfavorable condition.

• Indoor (bright light) - In contrast to the dim light
indoor scenario, the bright light indoor scenario uses
a very bright artificial white light source to illuminate
the frontal face area. This scenario complements the
previously mentioned scenarios. The bright artificial
light, covers the spectrum visible to the human eye
(from about 390 to 700nm) and provides a decent
environment needed to capture regular frontal face
images and can be observed in Figure 5. However,
conventional light sources are usually not suitable for
NIR imaging, as they do not cover the spectrum above
700nm (see Figure 2).

193

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Philips TL5 HO 49W 865 Lamp [28] - Photometric Data.

Examples: This section shows nine sample images. They
are grouped by the three proposed scenarios. Each group
consists of three images: NIR only, NIR & visible light, and
visible light only.

Figure 3. Outdoor - NIR only, NIR & visible light, visible light only (from
left to right).

As mentioned in the solution section, the outdoor scenario
provides sufficient light. This scenario provides the best NIR
image quality, as the sunlight covers a wider spectrum com-
pared to conventional light sources.

Figure 4. Indoor (dim light) - NIR only, NIR & visible light, visible light
only (from left to right).

The indoor scenario with a dim indirect light source tends
to induce image noise and is not optimal for NIR imaging.

Figure 5. Indoor (bright light) - NIR only, NIR & visible light, visible light
only (from left to right).

The last scenario provides a direct illumination of the facial
area. It is very favorable for images captured in the visible
spectrum, e.g., due to reduced image noise.

Keywords: NIR, visible light, wavelength, spectrum, image
acquisition, illumination

B. Lens Holder Construction for a Mobile Phone
Intent: This pattern describes steps-by-step the construc-

tion of a lens holder for the Nexus 5 mobile phone.
Problem: Is it possible to create a method or item to

reduced the lens change time and make the whole process
more comfortable?

Scenario: Two different filters / lenses are each to be
mounted on the mobile phone using a clip. This is very time
consuming and elaborate. To ease the transition from one lens
to another, they had to be mounted on a movable holder with
the possibility to be mounted on the mobile phone.

Solution: A custom made movable lens holder mounted
on a hard shell mobile phone case. The following points are
describing a step-by-step guide to construct a lens holder for
a mobile phone case:

• First, get a hard shell mobile phone case to work
with. The case should be made of a robust material,
e.g., polycarbonate. The easiest way to obtain a good
mobile phone case is either by buying it or by printing
one using a 3D printer. Note that the camera lens of
the mobile phone should not stick out of the case,
when it is mounted on the phone, as it will be tough
or impossible to rotate the custom made lens changer
afterwards.

• Measure the phone case and the lens width, length, and
depth. Measurements should be taken as precisely as
possible.

• Sketch the available items (i.e., lenses and phone case)
with the measurements from the previous step.

• The sketch is then used to figure out, how to arrange
the lenses in a way that allows them to cover the
camera lens of the phone when the lens changer is
being rotated.

• With the lenses arranged, pick a focus point between
them. This is the pivot point of the lens changer. In
our case, this point is the small circle in between the
two bigger ones, illustrated in Figure 7.

194

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Craft a paper prototype of the lens holder. Sketch the
lens changer with the exact measurements and cut
it out. This prototype can be used to simulate the
finished product. Try it out, and see if it fits your
expectations, as depicted in Figure 6.

• Digitize the sketch and construct a 3D model. Note
that it may be beneficial to add some room to move,
especially if using a 3D printer that is not 100% ac-
curate. An example of the digitized model is pictured
in Figures 7 and 8 (left).

• Print the 3D model with a material that allows editing
with tools (i.e., a file or a multifunction rotary tool)
later on. In this case, PVC was used.

• Deburr the edges whilst occasionally trying to fit in the
lenses. When everything fits accordingly, proceed with
the next step. If anything is odd or needs refinement,
redo the 3D modeling and print the item again.

• Drill the pivot point holes into the 3D printed item, as
well as in the phone case, to combine them later on.

• Temporarily mount the printed lens holder to the
phone with a screw, as shown in Figure 8 (right).

• Double check if everything is according to your needs.
• Finally, install the lenses into the lens holder and

mount it to the phone case. See Figure 9 for the final
result.

Figure 6. Sketch of the lens holder with exact measurements and radius.

Figure 7. Digitized 2D model of the sketched lens holder.

Figure 8. Lens holder 3D model (left). Printed lens holder with installed
lenses/filters (right).

Figure 9. Final lens holder mounted on the phone case.

Examples: Figure 10 holds a QR Code that is linked to a
video showing the lens holder in action. Figure 11 is picturing
the effect of the different lenses on image acquisition.

Figure 10. YouTube Video - Nexus 5 Lens Holder Case [29].

Figure 11. NIR, NIR and visible light, visible light only by using
IR-blocking lens (from left to right).

Keywords: NIR, lens holder, phone case, PVC, polycarbon-
ate, 3D modeling, 3D printing

C. High Quality Video Acquisition with the Nexus 5
Intent: This pattern describes the best way to record high

quality videos on a Nexus 5 mobile phone.

195

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Comparison of available video resolution options for the LG Nexus 5 using SnapCam.

Problem: Out of the box video recording with mobile
phones using the pre-installed video recording applications
have certain limitations. Usually, the applications offer only
a handful of pre defined resolution options to record videos in
certain qualities, e.g., 1080p (1920x1080 pixel) for FullHD or
720p (1280x720 pixel) for HDReady. However, these options
are usually not the highest technically possible video quality
options the phones built-in image sensor might provide.

Scenario: For post-processing reasons, high quality still
images have to be extracted from recorded video. Thus, the
videos have to be recorded in the highest quality possible.

Solution: To enable the best possible video capturing
quality on the Nexus 5, it is necessary to use a special
application that is capable of exploiting the phones image
sensor. Currently, the only app capable to do this using the
Nexus 5 mobile phone is Snap Camera [30]. Snap Camera has
a feature [31] that enables the recording of higher resolution
videos with the built-in Nexus 5 image sensor (Sony Exmor
R IMX 179).

The highest resolution with progressive video recording
(i.e., each recorded frame is a full picture) provided by the
application is 1440p (1440x2560 pixel).

Choosing the 1440p option has certain advantages:

• Higher resolution (compared to 1080p or 720p).
• No interpolation (compared to 4K).
• Progressive video recording (compared to 3.4K or

4K).

However, there are some points to take into consideration:

• Using a higher resolution during video recording
increases energy consumption. The battery will dis-
charge faster.

• Snap Camera is not free; the app needs to be purchased
for full use.

Examples: As you can see in Figure 12, the native res-
olution of the Nexus 5 image sensor is 3264x2448 pixel.
By choosing the available recording options provided by the
google stock camera application 1080p or 720p , the video
would only use a fraction of the available resolution. The best
choice for motion videos is 1440p. This option records full
pictures for each video frame. Thus, it is possible to extract
single frames yielding the best possible image quality.

To enable the higher resolution video recording options in
Snap Camera, it is necessary to toggle the Google Camera2
API and OpenGLES 2.0 settings in the ”Other” menu from the
application, as shown in Figure 13. Thereafter, it is possible to
select 1140p, 3.4K, and 4K UHD as recording options (see
Figure 14).

Figure 13. This Figure shows the adjustments that have to be made in
SnapCam to enable video recording with higher resolutions on the Nexus 5.

196

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Listing of the available video recording options SnapCam is
offering after unlocking higher resolutions.

Keywords: video recording, video acquisition, resolution,
Nexus 5

D. Extract Media Information from Videofiles
Intent: This pattern describes the extraction of media

information from video files with the help of FFmpeg or
FFprobe.

Problem: Working with video files may prove as chal-
lenging, particularly if there is only limited knowledge on
the settings (i.e., frame rate, codec, interlaced or progressive
recording) used. However, this knowledge is vital for post
processing video files and should, therefore, be brought to
knowledge as soon as possible.

Scenario: In order to work efficiently with video files, the
video specifications have to be acquired before even starting
the post processing.

Solution: The first step is the installation of the FFmpeg
[32] multimedia framework. The framework offers a variety of
functions apart from scanning media files or extracting frames
from video files and, therefore, is recommended for this task.

To scan a video file recorded with a common device, such
as mobile phones or video cameras with FFprobe or FFmpeg,
type in the following in a command window:

ffprobe <video_filename>

or

ffmpeg -i <video_filename>

Note that using FFmpeg / FFprobe to scan a file may take
some time, depending on the input file duration and decoding
complexity.

Examples: An example output for scanning the file
“video.mp4” with FFmpeg / FFprobe:

ffmpeg -i video.mp4

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from
’video.mp4’:

Metadata:
major_brand : mp42
minor_version : 0
compatible_brands: isommp42
creation_time : 2016-04-15T12:42:54.000000Z
com.android.version: 6.0.1

Duration: 00:00:06.64, start: 0.000000,
bitrate: 23292 kb/s

Stream #0:0(eng): Video: h264 (Baseline)
(avc1 / 0x31637661), yuv420p,
2560x1440, 23857 kb/s, SAR 1:1 DAR
16:9, 30.72 fps, 90k tbr, 90k tbn, 180k
tbc (default)

Metadata:
rotate : 90
creation_time :

2016-04-15T12:42:54.000000Z
handler_name : VideoHandle

Side data:
displaymatrix: rotation of -90.00 degrees

Stream #0:1(eng): Audio: aac (LC) (mp4a /
0x6134706D), 48000 Hz, mono, fltp, 96
kb/s (default)

Metadata:
creation_time :

2016-04-15T12:42:54.000000Z
handler_name : SoundHandle

The second line mentions the video file (i.e., video.mp4)
used to generate the output. The relevant video information is
found in the Stream section of the video Metadata part.

This Stream holds the following important information:

• Stream Number: The first video stream here is de-
clared as #0.0, whereas the audio stream is declared
as # 0:1 and followed by the language flag.

• Video Codec: In this case, the video was coded
with “h264” using the “baseline” profile. Baseline is
commonly applied for lower cost applications with
limited hardware resources, e.g., for video conferences
or mobile applications. Regarding the information
within the parentheses, “avc1” is a different name
for the H.264 codec, whereas “0x31637661” is a four
character code (Hex to ASCII) equivalent: 0x61 = “a”,
0x76 = “v”, 0x63 = “c”, 0x31 = “1”.

• Colorspace: YUV420P is used for storing raw image
data at a ratio of 4:2:0, meaning there is one color
sample for every 4 luma samples. Thus, the color in-
formation is quartered (i.e., saving video bandwidth).

• Resolution: The file was recorded with the resolution
of 2560x1440 pixel.

• Storage Aspect Ratio: The SAR defines the ratio of
pixel dimensions. Square pixels are 1:1, whereas 1:2
for example would describe a rectangular pixels.

197

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Display Aspect Ratio: DAR defines the ratio of the
width to height of a video file. The ration 16:9 is
commonly known as Widescreen.

• Frame Rate: The Frame rate, expressed as frames per
second or fps, is the rate at which consecutive frames
(i.e., images) are displayed during video playback.
In this example, the video has 30.72 frames that are
displayed every second.

• tbr, tbn and tbc: These three values are three different
timestamps FFmpeg / FFprobe provides.

Keywords: H.264, metadata, FFmpeg, FFprobe

E. Still Image Extraction from H.264 Videos
Intent: This pattern describes one of the best ways to

extract high quality still images from H.264 videos.
Problem: There are several ways to extracting still images

from a video e.g., with the highest quality possible. One option
is taking screenshots by using common video player software
(e.g., VLC [33][34]). However, this solution yields a low image
quality.

Scenario: For post-processing reasons, high quality still
images needed to be extracted from pre-recorded videos. After
assuring that the recorded videos had the best possible quality,
still images have to be extracted with the least loss of quality.

Solution: The first step is to extract the media informa-
tion, as explained in Pattern Extract Media Information from
Videofiles. It is vital to know the video codec and the frame
rate, which was used to record the video, in order to extract the
images. Finally, FFmpeg is used with the acquired information
to extract the still images with the code provided in the
example section.

Examples: In this example, the video was recorded on a
LG Nexus 5 using the Snap Camera application with the 1440p
option:

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from
‘‘video.mp4’’:

Metadata:
major_brand : mp42
minor_version : 0
compatible_brands: isommp42
creation_time : 2016-04-15T12:42:54.000000Z
com.android.version: 6.0.1

Duration: 00:00:06.64, start: 0.000000,
bitrate: 23292 kb/s

Stream #0:0(eng): Video: h264 (Baseline)
(avc1 / 0x31637661), yuv420p,
2560x1440, 23857 kb/s, SAR 1:1 DAR
16:9, 30.72 fps, 90k tbr, 90k tbn, 180k
tbc (default)

Metadata:
rotate : 90
creation_time :

2016-04-15T12:42:54.000000Z
handler_name : VideoHandle

Side data:
displaymatrix: rotation of -90.00 degrees

The important variables are:

• Filename: video.mp4
• Duration: 00:00:06.64
• Video Coced: h264

The following code shows how to extract still images from a
“video.mp4” file using FFmpeg in a terminal (in this example,
the command is executed in the same folder as the video file):

ffmpeg -ss 00:00:04 -t 00:00:00.04 -i
video.mp4 -qscale:v 2 -r 30.72
frontal\%4d.jpg

• [-ss 00:00:04]
◦ This part of the command defines the start time

of the image extraction. Ideally, this should
be done during a frontal face scene with open
eyes. In this case, the starting time is 00:00:04.

• [-t 00:00:00.04]
◦ This part of the command defines the length

of the timeframe in which images will be
extracted. Here, the extraction will stop after
0.04 seconds.

• [-i video.mp4]
◦ This command defines which input file should

be used. It is possible to point the full path. In
this case, the video is in the same folder and
named “video.mp4”.

• [-qscale:v 2]
◦ -qscale:v is responsible for the quality of the

extracted image. For .jpeg images, it is possible
to use values between 2 and 31. The higher the
number, the higher the .jpeg compression and,
therefore, worse image quality. For best results,
values between 2 and 5 should be used.

• [-r 25.0]
◦ This part defines the frame rate. In our case,

we are using 25.0 frames per second, i.e., one
frame every 1/25 seconds.

• [frontal%4d.jpg]
◦ This part can be divided in thee parts.

“Frontal” is the name of the image, whereas
the “%4d” part is a 4-digit automatically in-
cremented number with leading zeros. In the
case that multiple images are extracted from a
video, this may come in handy. The final part
is the file format “.jpg”. In this example, “.jpg”
image format is used to encode the extracted
images.

Keywords: H.264, image extraction, FFmpeg

F. Comparison between Bitmap, Portable Network Graphic,
and JPEG Images

Intent: This pattern shortly describes the differences, pros,
and cons of .bmp, .png and .jpeg images.

Problem: As described in Pattern Still Image Extraction
from H.264 Videos, still images can be extracted as .bmp, .png,
and .jpeg files from video files. Which format to use, however,
depends on certain characteristics the images have to meet,
e.g., for post processing.

198

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scenario: Still images have to be extracted from a video
file recoded with an android mobile phone. Now, it is a
question of which file format to use for the image extraction.

Solution: Taking three variables into consideration - speed
of extraction, image quality and file size, it is possible to
quickly decide on a specific file format for the image extrac-
tion.

Speed of Extraction: If the speed of extraction is the
crucial variable, .bmp is the best choice. Extracting frames
as uncompressed .bmp files is the fastest way, due to the
minimal processing power needed to extract the images from
a vide file. In terms of extraction speed, .jpeg files come after
.bmp. The .jpeg extraction is performance intensive, though,
still faster than .png. Concluding in terms of extraction speed:
.bmp > .jpeg > .png.

Image Quality: When image quality (e.g., no or less
artifacts) is the main factor for the decision which file format
to use, .bmp or .png files are the best choice. Both file formats
allow lossless saving of image data. During the extraction
process, .jpeg images always produce blocking artifacts, de-
pending on the quality parameter used for .jpeg encoding as
pictured in Figure 16. Concluding: .bmp = .png > .jpg in
terms of image quality.

File Size If a small image file size is targeted, then
.jpeg should be preferred. In general, images using the .jpeg
file format offer a small file size due the compression with
the tradeoff in terms of image quality. While .png files are
compressed as well, the compression is lossless and, therefore,
resulting in a bigger file size compared to .jpeg. .bmp files are
lossless as well, however, they are not compressed and yield
a higher file size. As a rule of thumb in terms of file size:
.jpeg < .png < .bmp.

Examples: This section shows a comparison of the differ-
ent file formats .bmp, .png, and .jpeg with respect to extraction
time, image quality, and file size. The extraction time (user
+ sys = cpu time used), in seconds, was acquired by inserting
the “time“ command before the FFmpeg extraction routine,
which is a variation if the command presented in Pattern Still
Image Extraction from H.264 Videos that extracts n frames per
second from a 7.57s long video. The results can be seen in
Table I for n = 1, Table II for n = 2 and Table III for n = 4
respectively.

time ffmpeg -i extract.mp4 -vf fps= n
-qscale:v 2 frontal\%4d.jpeg

TABLE I. Extraction time for n = 1

Extraction time t in seconds for 8 extracted images
.bmp 22.216s + 0.478s = 22.694s
.jpeg 22.515s + 0.327s = 22.842s
.png 27.560s + 0.414s = 27.974s

TABLE II. Extraction time for n = 2

Extraction time t in seconds for 15 extracted images
.bmp 22.445s + 0.677s = 23.122s
.jpeg 22.802s + 0.392s = 23.194s
.png 32.100s + 0.486s = 32.586s

TABLE III. Extraction time for n = 4

Extraction time t in seconds for 29 extracted images
.bmp 22.489s + 0.985s = 23.474s
.jpeg 23.525s + 0.395s = 23.92s
.png 41.358s + 0.591s = 41.949s

During encoding, .jpeg images produce blocking artifacts.
Depending on the quality settings, the artifacts can be quite
present as shown in Figure 16. To visualize the difference in
terms of image quality, a comparison was done by calculating
peak signal-to-noise ratio. Figure 15 shows the difference
between two extracted frames, one using .bmp and the other
.jpeg file format. The mostly red parts in the middle indicate
the variance between the images ,whereas the white dots point
out the identical parts. Typical PSNR values for compressed
images range between 30dB and 50dB, where higher is better;
this comparison has a PSNR of 42.7731dB for all color
channels.

Figure 15. Representation of image differences (middle) between an
extracted .jpeg (left) and .bmp (right) frontal face image.

Figure 16. .jpeg image saved with highest quality settings (left) and with the
lowest possible quality settings (right).

These are the file size differences of an extracted frame.
The image used is the same as in Figure15, from a H.264
coded video with a resolution of 3840x2160pixel.

• .bmp: 24.9MB
• .png: 6.2MB
• .jpeg: 448kB

Note that the size itself heavily depends on the resolution.
Therefore, this example shows the variance in file size between
the tree image formats.

199

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Keywords: H.264, still image extraction, extraction time,
image quality, file size, FFmpeg

G. Extraction of the Eye Area from Frontal Face Images
Intent: This pattern describes the detection of the eye area

in frontal face images with the help of the OpenCV library.
Problem: Detecting eyes in an image is not as simple as

it may seem at first. Object detection algorithms with the aim
of finding eyes, for example, can not distinguish whether the
detected area is a real eye or just something that the algorithm
interprets as an eye. Therefore, it is necessary to enhance
the detection rate by defining a certain region of interest by
detecting the face first, in which the eyes can be found, before
starting the eye detection routine.

Scenario: The eye area has to be detected and extracted
from frontal face images for post processing.

Solution: Before programming the eye detection and ex-
traction function, it is mandatory to prepare the following
things:

• Frontal face image(s) that will be used for eye detec-
tion and extraction.

• A working installation of the OpenCV library [24]
(installation guides for Windows [35], macOS [36],
Linux [37])

• Haarcascade files for Frontal Face and Eye detection
[38].

If needed, further information on Haar-like features can be
found in Viola and Jones [21][22]. If all the aforementioned
things are prepared, implement the eye detection, and extrac-
tion routine based on the following code example (C-Code
translated from Python with added comments; adapted from
[39]):

Pseudocode example for the extraction of

the eye area

program eye_extraction

Load a frontal face image and haarcascades

for face and eye detection

LoadFiles()

image =

cv.LoadImage(’frontal_face_image.png’)

faceHaarCascade =

cv.Load(’haarcascade_frontalface_alt.xml’)

eyeHaarCascade =

cv.Load(’haarcascade_eye.xml’)

Face and Eye Detection

DetectFaceAndEyes(image, faceHaarCascade,

eyeHaarCascade)

Convert the color image to grayscale for

post processing

grey = cv.CvtColor(image, gray)

Detect face

face = cv.HaarDetectObjects(image,

faceHaarCascade)

If faces is found

if face:

for ((x_pos, y_pos, width, heigh), n) in

face:

Create a bounding box around the face area

point1 = (int x_pos, int y_pos)

point2 = (int (x_pos + width), int (y_pos +

heigh))

cv.Rectangle(image, point1, point2)

Estimate the eyes position by setting the

region of interest and remove the lower

part of the face image to reduce the

probability for false recognition

The removal of the lower part can be seen

in the last devision ’int((point2[1] -

point1[1]) * 0.6))’.

The ’0.6’ in the last devision indicates

that approximately 1/3 of the lower

part of the face is cut out

cv.SetImageROI(image, (point1[0],

point1[1],

point2[0] - point1[0],

int((point2[1] - point1[1]) * 0.6)))

Detect the eyes

eyes = cv.HaarDetectObjects(image,

eyeHaarCascade)

If eyes were found

if eyes:

For each eye found

for eye1 and eye2 in eyes:

Draw a rectangle around the eyes (code

applies if eyes are horizontally

aligned)

point1 = eye1_x_pos, eye1_y_pos)

point2 = (eye2_x_pos + eye2_width,

eye2_y_pos+ eye2_heigh)

cv.Rectangle(image, point1, point2)

Reset the image region of interest for

the image to be drawn correctly

cv.ResetImageROI(image)

Extract the eye area and save it

eye_area = cut.Out(image, point1, point2)

save.Image(eye_area, ’eye_area.png’)

200

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Examples: A frontal face image like the one depicted in
Figure 17 should be loaded into the the program described by
the code example.

Figure 17. Frontal Face Image used for face and eye detection and feature
extraction.

Figure 18 shows a) a blue rectangle for the detected face
area, b) two orange rectangles for each detected eye, and c) the
final rectangle around both eyes covering the to be extracted
eye area. The final output after extraction should look like the
example image pictured in Figure 19.

Figure 18. Extracted Frontal Face Image.

Figure 19. Extracted Frontal Face Image.

Keywords: H.264, image extraction, FFmpeg

VI. DISCUSSION

Using the cUX pattern approach to create easy-to-use
solutions allowed us to adjust and improve the overall study
concept and setup in several ways. Apart from that, we also
acquired a deeper insight into the pattern creation process
overall. This gave us a chance to notice certain weak points
in the creation process, which, when improved, would help to
generate better patterns.

A. Pattern Generation Process
As mentioned at the end of Section III, each iteration and

the following rework phase refines the pattern. The pattern is
increasing in quality, with every feedback received during the
iteration process. Bottom line, the more iterations processes a
pattern runs through, the better it gets. In our case, we had
a constant collaboration during the creation process of the
patterns, which enabled us to get on demand feedback when
necessary. Due to active collaboration, we had the possibility
of continuous iterations, allowing us to interplay between
problem statements and solutions. Usually, problem statements
are defined in the beginning and changes can only be made
during workshops. Solutions, however, are provided during the
fist iteration, at the very earliest. Therefore, modifications can
be made only after receiving feedback. Until then, the work
on the pattern is on hold.

The interplay showed us a huge advantage, due to the
possibility to refine the problem statement while simultane-
ously adjusting the solution. This induced the improvement of
both the problem statement and the related solution leading
to a higher quality pattern. The problem, however, was the
recurring chance to rephrase the problem statement at any
time. Thus, it was tempting to rephrase the problem statement
to fit a certain solution, even when it was only covering a
part of the statement. This behavior is not desired at all.
Patterns are supposed to provide proven solutions. In the
beginning, after describing the problem statements, we did
not know if we could cover these criteria with our suggested
solutions. However, we evaluated our patterns regarding that
point through trial and error. Each and every solution we
provide in our patterns was tested before it was adopted into
the patterns. This was only possible due to the interplay and
instant feedback and, therefore, can not be generally applied.
However, we found that this way of verification improved the
provided solutions to a high degree.

B. Pattern Sections
The next discussion point is the use of a Topics section

proposed by the cUX pattern approach. Topics, in this case,
are predefined keywords used to show the scope of the problem
and, additionally, address one or more user experience factors.

201

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We willingly omitted that section, as we saw no need for them
in our created patterns. Topics may be beneficial to organize
a collection of patterns, providing a variety of solutions for
a large main field. Each pattern can be assigned to at least
one of the topics. However, in our case, we only had a limited
amount of problem statements that we wanted to address. Thus,
creating a system in which we want to organize our patterns
seemed unnecessary. Therefore, it was sufficient enough to
provide keywords only at the end of the patterns. The keywords
provide research topics and fields that may be related to the
pattern and may be used to get more insight into certain areas
covered or not sufficiently covered in the patterns.

C. More than one Solution
Patterns are by no means always the one and only possible

solution for a certain problem. This is especially noticeable in
problems concerning programming questions. The two main
issues regarding programming questions in patterns are, for
one, the programming language and, second, the implemen-
tation. Taking the pattern “Extraction of the Eye Area from
Frontal Face Images” as an example, there were several ways
to solve this problem. It is be possible to extract the eye area
from the frontal face images by hand, image by image. This
is very time consuming and inefficient, but it is a working
solution. Thus, to optimize the procedure, the detection of the
region of interest and the extraction needed to be automated,
ideally by a program. One of the more versatile tools to
accomplish that is the OpenCV library, which is supporting the
most operating systems, but only a handful of programming
language interfaces(i.e., C++, C, Python, and Java).

The problem is either to choose a certain language, prefer-
ably the most popular one, to provide a low-level solution or
to provide a high-level description of the solution using pseu-
docode. Naturally, a low-level solution would be predestined
to provide a copy and paste implementation that could be used
right away. However, this would limit the usage of the pattern.
To broaden the usage of the pattern, the decision was made to
use a high-level description utilizing pseudocode without going
far into the exact implementation. This is only one example
from many that shows that a) there are many ways to solve
a problem and b) the solution chosen heavily relies on the
pattern creation team.

D. Aid & Explanation instead of direct Solutions
Apart from having difficulties to chose the best way to

solve a problem, there are problems that can only be solved
by providing a couple of possible ways to handle certain
difficulties. “Comparison between Bitmap, Portable Network
Graphic, and JPEG Images”, for example, offers a solution in
the way of providing the reader with vital information as a
basis for deciding how to handle the problem of choosing a
certain file format for image extraction. Each image format has
its advantages and disadvantages. When compared to .png and
.bmp files, .jpeg files are smaller, but offer the worst quality, as
.jpeg files are automatically compressed. The extraction speed
is decent, but by far not as fast as .bmp extraction; .png and
.bmp files are lossless and offer the best image quality with the
tradeoff of file size and, in case of .png files, extraction speed
as well. Thus, there is no optimal solution without knowing
the actual terms of use. The pattern can provide a solution in
the form of aid and explanation to ease the decision of which

file format to utilize for extraction; however, there is no one
way solution for that kind of problems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented seven patterns to help design
and refine a study setup for biometric image data acquisi-
tion analysis. By adapting an existing cUX design patterns
approach, we were able to successfully document the study
setup and its optimization in question and document these for
future applications. The pattern structure and modular nature
allows for further expansion and setup variations in the future.
The presented patterns cover the most immediate problems for
the specific setup but should not be considered a full pattern
collection for biometric image data analysis. Nevertheless,
the goal of creating additional solution patterns to improve
the study setup, focusing on the image application domain,
was fulfilled. We provided four additional patterns answering
common problems in the image application domain.

Future work will have to focus on, not only reapplying
these patterns and refine them further, but also expand to-
wards related problems that could only be touched in the
patterns above (e.g., further details on compression formats
and artifacts, a wider range of file formats, more phone types
or image acquisition devices in general, etc.). The existing
patterns can already be used to inform future study setups with
solutions regarding (a) choice of the right lighting conditions,
(b) construction of a custom lens holder, (c) high quality video
acquisition with a mobile phone, (d) the extraction of media
information from video files, (e) extract still images from
H.264 videos, and (f) the extraction of the eye area with the
help of Haar-like features.

Further expansion will focus on providing more thorough
solutions and suitability for more instances and broader con-
texts, towards a more profound knowledge base on biometric
image analysis, suitable for an even wider range of users.

REFERENCES

[1] A. Lupp, A. G. Mirnig, A. Uhl, and M. Tscheligi, ”A Study Setup
Optimization – Providing Solutions with Patterns,” in PATTERNS
2017, The Ninth International Conferences on Pervasive Patterns and
Applications, 2017, pp. 11-16.

[2] C. Alexander, ”A Pattern Language: Towns, Buildings, Construction,”
Oxford University Press, New York, USA, 1997.

[3] C. Alexander, ”The Timeless Way of Building,” Oxford University
Press, New York, USA, 1979.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ”Design Patterns:
Elements of Reusable Object-Oriented Software.” Pearson, 1994.

[5] M. J. Mahemoff and L. J. Johnston, ”Principles for a Usability-Oriented
Pattern Language,” In Proc. Australian Computer Human Interaction
Conference OZCHI ’98, IEEE Computer Society, 1998, pp. 132-139.

[6] A. Dix, G. Abowd, R. Beale, and J. Finlay, ”Human-Computer Inter-
action,” Prentice Hall, Europe, 1998.

[7] D. May and P. Taylor, ”Knowledge management with patterns,” Com-
mun. ACM 46, 7, July 2003, pp. 94-99.

[8] J. Borchers, ”A Pattern Approach to Interaction Design,” AI & Society,
12, Springer, 2001, pp. 359-376.

[9] A. F. Blackwell and S. Fincher, ”PUX: Patterns of User Experience,”
Interactions, vol. 17, no. 2., NY, USA: ACM, 2010, pp. 27-31.

[10] M. Obrist, D. Wurhofer, E. Beck, A. Karahasanovic, and M. Tscheligi,
”User experience (ux) patterns for audio-visual networked applications:
Inspirations for design,” in Proceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries, ser. NordiCHI10.
New York, NY, USA: ACM, 2010, pp. 343-352.

202

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] A. G. Mirnig and M. Tscheligi, ”Introducing a General Multi-Purpose
Pattern Framework: Towards a Universal Pattern Approach,” Interna-
tional Journal On Advances in Intelligent Systems, vol. 8, 2015, pp.
40-56.

[12] G. K. Wallace, ”The JPEG still picture compression standard,” IEEE
transactions on consumer electronics, 1992, 38. Jg., Nr. 1, S. xviii-xxxiv.

[13] DRAFT, I. T. U. T. recommendation and final draft international
standard of joint video specification (ITU-T Rec. H. 264— ISO/IEC
14496-10 AVC). Joint Video Team (JVT) of ISO/IEC MPEG and ITU-
T VCEG, JVTG050, 2003, 33. Jg.

[14] H264, I. ISO/IEC 14496-10 AVC. Draft ITU-T Recommendation and
Final Draft International Standard of Joint Video Specification.

[15] S. Rakshit, D.M. Monro, ”An Evaluation of Image Sampling and
Compression for Human Iris Recognition,” IEEE Transactions on
Information Forensics and Security 2(3), 2007, 605-612.

[16] M.A. Figueroa-Villanueva, N.K. Ratha, R.M. Bolle, ”A comparative
performance analysis of JPEG2000 vs. WSQ for fingerprint compres-
sion,” In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, Springer,
Heidelberg 2003, vol. 2688, pp. 385-392.

[17] R.C. Kidd, ”Comparison of wavelet scalar quantization and JPEG for
fingerprint image compression,” Journal of Electronic Imaging 4(1),
1995, pp. 31-39.

[18] L. Granai, J.R. Tena, M. Hamouz, J. Kittler, ”Influence of compression
on 3D face recognition,” Pattern Recognition Letters, 30(8), pp. 745-
750.

[19] K. Delac, S. Grgic, M. Grgic, ”Image compression in face recognition
- a literature survey,” In: Recent Advances in Face Recognition, I-Tech,
2008, pp. 236-250.

[20] P. Elmer, A. Lupp, S. Sprenger, R. Thaler, and A. Uhl, ”Exploring
compression impact on face detection using haar-like features,” in
Scandinavian Conference on Image Analysis. Springer, 2015, pp. 53-64.

[21] P. Viola, M.J. Jones, ”Rapid object detection using a boosted cascade of
simple features,” In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2001,
vol. 1, pp. I-511-I-518.

[22] P. Viola, M.J. Jones, ”Robust Real-Time Face Detection,” International
Journal of Computer Vision, 57(2), 2004, pp. 137-154.

[23] R. Lienhart, J. Maydt, ”An extended set of Haar-like features for rapid
object detection,” In: Proceedings of the 2002 International Conference
on Image Processing, vol. 1, 2002, pp. I-900-I-903.

[24] OpenCV. Available: http://opencv.org [Accessed: 20 - Aug - 2017]
[25] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, ”A quality criteria

framework for pattern validation,” International Journal On Advances
in Software, vol. 3, no. 1 and 2. IARIA, 2010, pp. 252-264.

[26] A. Mirnig, T. Kaiser, A. Lupp, N. Perterer, A. Meschtscherjakov,
T. Grah, and M. Tscheligi, ”Automotive User Experience Design
Patterns: An Approach and Pattern Examples,” International Journal
On Advances in Intelligent Systems, vol. 9, 2016, pp. 275-286.

[27] A. G. Mirnig et al., ”User Experience Patterns from Scientific and
Industry Knowledge: An Inclusive Pattern Approach,” in PATTERNS
2015, Seventh International Conference on Pervasive Patterns and
Applications. IARIA, 2015, pp. 38-44.

[28] Philips MASTER TL5 HO 49W/865 UNP/40 - Product Page. Available:
http://bit.ly/2kDgmOV [Accessed: 11 - Jan - 2017]

[29] YouTube Video - Nexus 5 Lens Holder Case. Available: https://youtu.
be/J3dParRRQJg [Accessed: 11 - Jan - 2017]

[30] [App][2.3+]Snap Camera. Available: http://bit.ly/2iCujgO [Accessed:
31 - Jul - 2017]

[31] [App][2.3+]Snap Camera - 4k Video on Nexus 5 Feature. Available:
http://bit.ly/2tQQW47 [Accessed: 31 - Jul - 2017]

[32] Download FFmpeg. Available: http://bit.ly/2v6qkNm [Accessed: 21 -
Aug - 2017]

[33] VideoLAN. Available: http://www.videolan.org [Accessed: 20 - Aug -
2017]http://www.videolan.org

[34] VLC HowTo/Take a snapshot. Available: http://bit.ly/2wJ6AU5 [Ac-
cessed: 20 - Aug - 2017]

[35] OpenCV Installation - Windows. Available: http://bit.ly/2wmqx0f [Ac-
cessed: 20 - Aug - 2017]

[36] OpenCV Installation - macOS. Available: http://bit.ly/2ukmjoE [Ac-
cessed: 20 - Aug - 2017]

[37] OpenCV Installation - Linux. Available: http://bit.ly/2xvIzNE [Ac-
cessed: 20 - Aug - 2017]

[38] OpenCV Haarcascade Files. Available: https://github.com/opencv/
opencv/tree/master/data/haarcascades [Accessed: 20 - Aug - 2017]

[39] DETECTING EYES WITH PYTHON & OPENCV. Available: http:
//bit.ly/2vHNjhc [Accessed: 20 - Aug - 2017]

