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Abstract—Numerous mammals possess in addition to normal
body hairs tactile hairs, also known as vibrissae or whiskers,
to explore their environment. Biological observations have shown
that rodents use their tactile hairs in the snout region (mystacial
vibrissae) to estimate obstacle contact and obstacle shape within
a few contacts of the tactile hair. Despite different morphology
of animal vibrissae (e.g., cylindrically or conically shaped, pre-
curved, multi-layer structure), these biological tactile hairs are
modeled in a mechanical way to develop and analyze models
concerning their bending behavior with a glance to get hints for
a technical implementation as a technical sensor. We focus on an
analytical description, numerical simulations and experimental
verifications of an object scanning process to to achieve a better
understanding of this sense. We investigate the bending behavior
of cylindrically shaped rods with an intrinsic curvature, which
are one-sided clamped and interact with a rigid obstacle in the
plane. Hence, the sensing element vibrissa is under the load of an
external contact force during object scanning and is frequently
modeled as an Euler-Bernoulli bending rod allowing for large
deflections. Most of the literature is limited to the research on
cylindrical & straight, or tapered & straight rods. The (natural)
intrinsic curved shape is rarely analyzed. Hence, the aim is to
determine the obstacles contour by one quasi-static sweep along
the obstacle and to figure out the dependence on the intrinsic
curvature of the rod. The consideration of an intrinsic curvature
makes the analytical treatment a bit harder and results in
numerical solutions of the process. Nevertheless, at first, we focus
on a constant intrinsic curvature and, then, present simulations
and experiments using a variable one.

Keywords–Vibrissa; intrinsic curvature; sensing; object scan-
ning; contour reconstruction.

I. INTRODUCTION

In recent years, the design and development of vibrissae-
inspired tactile sensors gain center stage in the focus of
research. This paper contributes to these investigations of
intelligent tactile sensors and extends the results of [1]. There
is a great interest in tactile sensors, especially in the field of
(autonomous) robotics, see e.g., [2]–[8], since these tactile
sensors complement to and/or replace senses like vision,
because they provide reliable information in a dark and noisy
environment (e.g., seals detect freshet and turbulence of fish
in muddy water [9]–[11]), and are cheaper in fabrication.

A. Motivation from Biology
In many technical developments, engineers often use bi-

ological systems as an inspiration. A tactile sensor system,
which attracted attention in recent years, is the so-called sinus

hair. This tactile sensory organ with incomparable abilities can
be found on the body of mammals. Despite existing differences
regarding musculature and localization, they are synonymously
also known as vibrissae or whiskers [12]. Depending on their
localization on the body they are used for several tasks like

• object recognition [13],
• object discrimination [10] [14], and
• perception of flow [10] [15], as well as
• for social behavior [16].

Sinus hairs differ from typical body hairs:

• they are thicker, longer and stiffer than body hairs
[17],

• each sinus hair is supported/embedded in its own
follicle-sinus complex (FSC), that is characterized by
its exceptional arrangement of blood vessels, neural
connections and muscles [18],

• they are made of dead material, i.e., the hair shaft itself
has no receptors along its length [19], hence they are
mainly used for the transmission for all tactile stimuli
arising along the shaft, and

• they feature an intrinsic curvature, a conical shape,
cylindrical cross-section and are made of different
material with hollow parts (like a multi-layer system)
[17] [20] [21].

As mentioned, rodents use their sinus hairs to acquire
information about their surroundings. The movement and de-
formation of the vibrissa due to contacts to several objects can
only be detected by mechanoreceptors in the FSC [2] [22].
Hence, the animal draws its conclusions about the environment
only from these (measured) quantities at the base of the
hair – the support reactions. We do not want to explain the
transmission of mechanical stimuli during object contact to the
mechanoreceptors in the follicle, rather we want to analyze the
influence of the geometrical properties of a sinus hairs on these
support reactions, which are used for object recognition and
contour reconstruction.

B. Goal
In this paper, the investigations focus the influence of the

intrinsic curvature to the bending behavior of a vibrissa due
to an obstacle contact during object sensing. This intrinsic
curvature is due to a kind of protection role: purely axial forces
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are prevented and, including the conical shape, the area of the
tip of the vibrissa is limp. This results in a tangential contact
to an object [20] [23]. We describe a quasi-static scanning
process of obstacles: 1. analytical/numerical generation the
observables in the support, which an animal solely relies on,
2. reconstruction of the scanned profile contour using only
these observables, and 3. verification of the working principle
by means of experiments. These steps were done in [8], [24]
and [25] for cylindrical vibrissae. In [1], the influence of a
constant intrinsic curvature was investigated, here, we extend
these results to rods with a variable intrinsic curvature in this
paper.

C. Arrangement
The paper is arranged as follows: We give a short overview

on the related literature in Section II, which is quite rare
and often starts up with some approximations of the problem.
Section III is devoted to the governing equations describing
an Euler-Bernoulli rod with intrinsic curvature under large
deflections – nonlinear theory. In Section IV, we present the
scanning process, which has to be divided into two phases:
tip contact of the rod with the object, or tangential contact
within the rod’s length. For this, we set up two mechanical
models to describe these scenarios – ordinary differential
equations with boundary- or initial- condition. These equations
are exemplarily solved in Section V – considering firstly a
constant intrinsic curvature radius of the bending rod, and
then a variable one. The results are performed to test the
reconstruction algorithm to detect the obstacle’s boundary. The
effectiveness of the algorithm is then verified by experiments
in Section VI using three different artificial vibrissae. Then, the
paper closes in Section VII with a conclusion and an outlook
on future work.

II. SOME STATE OF ART OF MODELING VIBRISSAE WITH
INTRINSIC CURVATURE

From the biological point of view, there are a lot of works
focussing on the determination of vibrissae parameters. Towal
et al. [21] pointed out an important fact that the mostly
vibrissae are curved in a plane. The deviation of the vibrissa
from this plane (referred to the length) is less than 0.1%.
In [21], [23] and [26]–[30], a vibrissa is described using a
polynomial approximation of 2nd-, 3rd- and 5th-order, which is
rather low. In contrast to this references, we present numerical
results using one of order 10. In [23], it is stated that ap-
proximately 90% of rat vibrissae exhibit an intrinsic curvature
κ0 ∈ (0.0065/mm, 0.074/mm), and in [28] that extremely
curved vibrissa provide κ0 > 0.25/mm. The authors of [17],
[23], [28] publish the following dimensionless parameters

L

d
≈ 30 ,

r0
d
≈ 90 ,

whereas L is the length, d is the base diameter, and r0 is the
intrinsic curvature radius of the vibrissa.

From the technical point of view, pre-curved vibrissae are
rarely used in applications. In [23], [29], [30], experimental
and theoretical investigations concerning the distance detection
to a pole are presented, using a pre-curved artificial vibrissa,
also incorporating the conical shape. The pros and cons of
a positive (curvature forward, CF) and negative (CB) curved
vibrissae are stated in [23] whereas the vibrissa is used for

tactile sensing of a pole. The CF-scanning results in low
axial forces, but higher sheer ones; CB the inverse results.
Summarized, the pre-curvature influences mainly the support
forces instead of the support moment.

III. MODELING

The deflection of a largely deformed rod with intrinsic
curvature is described in using the so-called Winkler-Bach-
Theory. A detailed derivation of the equations can be found in
[32].

At first, we derive the equations of stress and deformation
of the rod – using an infinitesimal small element of a rod
with intrinsic curvature, presented in Figures 1–3, whereas we
have the following relation between curvature κ and curvature
radius r:

κ0(s) =
1

r0(s)
(1)

κ(s) =
1

r(s)
(2)

whereas the index “0′′ means undeformed state.

Figure 1. Initial state of no load.

dϕ = dϕ0 + dψ

The strain of the rod axis is

ε(s, η = 0) =
du(s, η = 0)

ds
(3)

The length of a fiber in distance η to the rod axis is

dsη(s, η) = (r0(s)− η) · dϕ0 . (4)
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Figure 2. Deformed state of an infinitesimal rod element.

Figure 3. Rod element with stress resultants.

Hence, we get

ε(s, η) =
du(s, η)

dsη(s, η)
=
du(s, η = 0)− η · dψ
(r0(s)− η) · dϕ0

(5)

=
ε(s, η = 0) · r0(s) · dϕ0 − η · dψ

(r0(s)− η) · dϕ0
(6)

→ ε(s, η) = ε(s, η = 0) +
(
ε(s, η = 0)− dψ

dϕ0

) η

r0 − η
(7)

To determine ε(s, η = 0) and
dψ

dϕ0
we introduce the stress

resultants bending moment ~Mbs(s) and normal force ~N(s).
Applying Hooke’s law of elasticity (8)

σ(s, η) = E · ε(s, η) (8)

we get

N(s) =

∫
A

σ(s, η) dA = E ·

(
ε(s, η = 0) ·A

+
(
ε(s, η = 0)− dψ

dϕ0

)
·
∫
A

η

r0(s)− η
dA

)
(9)

Mbs(s) = −
∫
A

σ(s, η) ·η dA = −E ·

(
ε(s, η = 0) ·

∫
A

η dA

︸ ︷︷ ︸
0

+
(
ε(s, η = 0)− dψ

dϕ0

)
·
∫
A

η2

r0(s)− η
dA

)
(10)

Introducing the following parameter, see [32],

λ(s) :=
1

A

∫
A

η

r0(s)− η
dA (11)

yields:

ε(s, η = 0)− dψ

dϕ0
=

−Mbs(s)

λ(s) · r0(s) · E ·A
(12)

ε(s, η = 0) =
1

E ·A
·
(
N(s) +

Mbs(s)

r0(s)

)
(13)

Substituting (13) and (12) in (7) yields the equation of the
stress:

σ(s, η) =
N(s)

A
+
Mbs(s)

A r0(s)
·
(
1− 1

λ(s)
· η

r0(s)− η

)
(14)

The determination of the equation of deformation is based
on the consideration of the deformation of the rod axis (η = 0),
having a glance to Figure 3:

ds+ du(s, η = 0) = r(s) · (dϕ0 + dψ) (15)

Using

du(s, η = 0) = ds · ε(s, η = 0) and ds = r0(s) · dϕ0

we get:

r0(s) ·
(
1 + ε(s, η = 0)

)
= r(s) ·

(
1 +

dψ

dϕ0

)
(16)

Replacing dψ
dϕ0

by (12) yields:

r0(s) ·
(
1 + ε(s, η = 0)

)
=

r(s) ·

(
1 +

Mbs(s)

λ(s) · r0(s) · E ·A
+ ε(s, η = 0)

)
(17)
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The arising formula for the curvature κ is:

κ(s) =
1

r(s)

=
1

r0(s)
·

(
1 +

Mbs(s)

λ(s) · r0(s) · E ·A
· 1

1 + ε(s, η = 0)

)
(18)

Now, replacing ε(s, η = 0) by (13), there arises a formula for
the curvature κ(s) (after deformation) or the curvature radius
r(s), respectively:

κ(s) =
1

r(s)
=

1

r0(s)
+

Mbs(s)

λ(s)r0(s)2EA

· 1

1 +
1

EA
·

(
N(s) +

Mbs(s)

r0(s)

) (19)

Having a glance to Figure 2 it is obvious:

ds
(
1 + ε(s, η = 0)

)
= r · dϕ (20)

dϕ

ds
=

1

r(s)

(
1 + ε(s, η = 0)

)
(21)

Applying (18) we get:

dϕ(s)

ds
=

1

r0(s)
·

(
1 + ε(s, η = 0) +

Mbs(s)

λ(s) · r0(s) · E ·A

)
Finally, using (13) there is the equation of deformation:

dϕ(s)

ds
=

1

r0(s)
·

(
1 +

N(s)

EA
+

Mbs(s)

EAr0(s)
·
(
1 +

1

λ(s)

))
(22)

Considering the special case, that the radius of intrinsic
curvature is much greater than the dimensions of the cross-
section, then the influence of the normal force can be neglected
[33]. Hence, the describing equations can be simplified to

dϕ(s)

ds
=

1

r0(s)
+
Mbs(s)

E Iz
, (23)

with second moment of area

Iz :=

∫
(A)

η2dA ,

and Young’s modulus E, cross-section A, bending moment
Mbs, and radius of pre-curvature r0.

IV. SCANNING PROCEDURE

Here, we describe the scanning procedure of strictly convex
profile contours using pre-curved technical vibrissae in a plane.
This is done in two steps:

1. Because of analytical interest, we firstly generate the
observables (support reactions) during the scanning
process. Since our intension is from bionics, we sim-
ply model the support as a clamping (being aware that
this does not match the reality). Hence, the support

0

yy

Figure 4. Scanning procedure using an artificial vibrissa; adapted from [8].

reactions are the clamping forces and moment ~MAz ,
~FAx, ~FAy , which an animal solely relies on.

2. Then, we use these observables in an algorithm to
reconstruct the profile contour.

Figure 4 sketches the scanning process of a plane, strictly
profile. For this scanning process, several assumptions are
made:

• The technical vibrissa is moved from right to the left
(negative x-direction), i.e., the base point is moved.

• The problem is handled quasi-statically, i.e., the vib-
rissa is moved incrementally (and presented in changes
of the boundary conditions). Then, the elastically
deformed vibrissa is determined.

• Since we do not want to deal with friction at the
beginning, we assume an ideal contact, i.e., the contact
force is perpendicular to the contact point tangent of
the profile.

The scanned profile is given by a function g : x 7→ g(x),
where g ∈ C1(R;R). Since the graph of g is convex by
assumption, the graph can be parameterized by means of the
slope angle α in the xy-plane. Then we have, [8]:

dg(x)

dx
= g′(x) = tan(α)

−→ x = ξ(α) := g′−1
(
tan(α)

)
y = η(α) := g

(
ξ(α)

)
Therefore, each point of the profile contour is given by
(ξ(α), η(α)), α ∈ (−π2 ,

π
2 ). For generality, we introduce

dimensionless variables, starting with the arc length s with
s = Ls∗, s∗ ∈ [0, 1]. Then, the basic units are:

[length] = L, [moment] =
EIz
L
, [force] =

EIz
L2

Remark IV.1. For the sake of brevity, we omit the asterisk
“∗’ from now on.

A. Boundary-value Problem in Step 1
The system of differential equations (ODEs) describing

the deformed pre-curved, technical vibrissa in a plane in
dimensionless quantities is:

dx(s)

ds
= cos(ϕ(s))

dy(s)

ds
= sin(ϕ(s))

dϕ(s)

ds
=

1

r0L(s)
+ f

((
y(s)− η(α)

)
sin(α)

+
(
x(s)− η(α)

)
cos(α)

)


(24)
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Observing Figures 4 and 5 gives the hint to distinguish two
phases of contact between the vibrissa and the obstacle:

• Phase A – tip contact: We have still ODE-system (24)
with the boundary conditions (BCs)

y(0) = 0 , ϕ(0) =
π

2
,

x(1) = ξ(α) , y(1) = η(α)
(25)

• Phase B – tangential contact: Only the BCs change:

y(0) = 0 , ϕ(0) =
π

2
,

x(s1) = ξ(α) , y(s1) = η(α) , ϕ(s1) = α
(26)

s

s

s1

x

yy

(ξ(α),η(α)) 
(ξ(α),η(α)) 

x0x0

f

f

Figure 5. Contact of vibrissa and obstacle in Phase A (left) and in Phase B
(right) during scanning process.

A direct inspection of the occurring problems (24)&(25) and
(24)&(26) yield the choice of a shooting method to determine
the parameters f and s1, and finally with f the clamping
reactions ~MAz , ~FAx, ~FAy .

B. Initial-value Problem in Step 2
Here, we use only the generated observables (measured

in experiments) ~MAz , ~FAx, ~FAy and known base of the
vibrissa x0 to reconstruct the scanned profile. Due to [31],
we determine the bending moment, see Figure 6, to formulate
the initial-value problem (IVP) in this step:

dx(s)

ds
= cos(ϕ(s))

dy(s)

ds
= sin(ϕ(s))

dϕ(s)

ds
=

1

r0L(s)
−MAz − FAxy(s) + FAy

(
x(s)− x0

)


(27)

with initial conditions (ICs)

x(0) = x0 , y(0) = 0 , ϕ(0) =
π

2
(28)

Now, it is necessary – for each input {MAz, FAx, FAy, x0}
– to determine the contact point (x(s1), y(s1)) (note, that s1
is known in step 1, but is not an observable). But, it is still
unknown, in which phase we are. We only have

Mbz(s1) = 0

In accordance to [8], we determine a decision criterion to
distinguish both phase. The vibrissa is in Phase B, if and only

s

x

y
Mbz

MAz

FAx

FAy

x(s)

y(s)

Figure 6. Applying method of sections to the vibrissa.

if it holds:

M2
Az +

2MAz

r0L
− 2FAy = 0 (29)

In comparison to the condition in [8], we get one new term
2MAz

r0L
. And, in a limiting case for r0L −→ ±∞, condition (29)

forms the condition in [8], which serves as a validation.

V. SIMULATIONS OF PROFILE SCANNING

Referring to [8], we consider a profile described by

g1 : x 7→ 1

2
x2 + 0.3 . (30)

A. Scanning Using a Constant Intrinsic Curvature Radius
Here, we present numerical simulations of the described

profile scanning algorithm (based of two steps). At first, we
focus on a constant pre-curvature radius r0L 6= r0L(s).

Exemplarily, the scanning process is performed for several
values of r0L and the results are presented in Figures 7–10.

Remark V.1. Note, that the vibrissae in Phase B are only
plotted to the contact point, just for clarity.

One can clearly see, that the smaller the pre-curvature
radius is no Phase A occurs, i.e., no tip contact, which might
explain the protective role of the pre-curvature of vibrissae.

−1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 7. Profile scanning using a pre-curved vibrissa with r0L = −1000:
in blue Phase A, in red Phase B.

Figures 11–13 show the observables during a scanning pro-
cess in dependence on the pre-curvature radius. The transition
between both phases is marked with a “+”. It becomes clear:
the smaller the pre-curvature radius the smaller the bending
behavior of the vibrissa, the smaller the observables, but the
smaller the scanning area. Therefore, a small pre-curvature
radius results in poor scanning results.
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0.8

1

x

y

Figure 8. Profile scanning using a pre-curved vibrissa with r0L = −5: in
blue Phase A, in red Phase B.

−1.5 −1 −0.5 0 0.5 1
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0.8

1

x

y

Figure 9. Profile scanning using a pre-curved vibrissa with r0L = −1: in
blue Phase A, in red Phase B.
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0

0.2

0.4

0.6

0.8

1

x

y

Figure 10. Profile scanning using a pre-curved vibrissa with r0L = −0.5: in
red Phase B, no Phase A.
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Figure 11. Clamping moment MAz for varying pre-curvature radius r0L.

The error of the reconstruction between the given and
reconstructed profile is defined for single points according to
[8]:

error =

√(
xk(s1k)− ξ(αk)

)2
+
(
yk(s1k)− η(αk)

)2
,
(31)

whereby (ξ(αk), η(αk)) represent a point of the given profile
and (xk(s1k), yk(s1k)) is the corresponding one of the recon-
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Figure 12. Clamping force FAx for varying pre-curvature radius r0L.
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Figure 13. Clamping force FAy for varying pre-curvature radius r0L.

structed profile. Figures 14–17 present the reconstruction errors
of the simulations. The magnitude of the error is from 10−7

to 10−6, which is quite good.
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x 10
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E
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Figure 14. Error of given and reconstructed profile for r0L = −0.5.

B. Scanning Using a Variable Intrinsic Curvature Radius
In this subsection, the parabola profile from (30) is scanned

and reconstructed in using an artificial tactile rod with a
variable intrinsic curvature of the form:

r0L(s) = −5 + 4.2 · s 1
3 , s ∈ [0, 1] (32)

The scanning process is presented in Figure 18, the clamping
reactions are displayed in Figure 19, and the reconstruction
error is shown in Figure 20.
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Figure 15. Error of given and reconstructed profile for r0L = −1.
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Figure 16. Error of given and reconstructed profile for r0L = −5.
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Figure 17. Error of given and reconstructed profile for r0L = −1000.
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Figure 18. Profile scanning using a pre-curved vibrissa with r0L(s) of (32):
in red Phase B, no Phase A.

Comparing these results in using a rod with variable
intrinsic curvature with the results using a straight cylindrical
rod, i.e., r0L is very high like r0L = 1000 (see Figures 7,
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Figure 19. Clamping reactions varying pre-curvature radius r0L(s) of (32).
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Figure 20. Error of given and reconstructed profile for r0L(s) of (32).

11–13), than we can increase the scanned area of the profile
whereas the clamping reactions still stay at their values. It is
not really desirable to diminish the values of the clamping
reaction because of possible measurement problems.

The numerical simulation of scanning object contours using
artificial sinus hair-like tactile sensors of both constant and
variable intrinsic curvature work very well. Therefore, we
go on to the next step: experimental verification in the next
section.

VI. EXPERIMENTS

To verify the algorithms, we present numerical investiga-
tions of scanning vibrissae with variable intrinsic curvature and
experimental results, using the parabola profile

x 7→ g1(x) = 2x2 + 0.55 .

Three different technical vibrissae with different pre-curvature
are used in an experiment. Figure 21 shows that the first
vibrissa is a straight one, the second and the third one have a
variable intrinsic curvature radius.

With the help of a computer-aided evaluation of the graphic
representation of the vibrissae in Figure 21, their intrinsic
curvature radius r0L(s) is determined in dependence on the
arc length s as polynomials of order 10. This is rather new in
literature, because a lot of works from literature restrict to a
representation of the pre-curvature only to s2-terms.

The simulated scanning processes are shown in Figures 23
and 24 for vibrissa 1 and 3.
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Figure 21. Three different pre-curved vibrissae for the experiment.
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Figure 22. Scanning process using vibrissa 1 – in blue Phase A; in red
Phase B.
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Figure 23. Scanning process using vibrissa 2 – in blue Phase A; in red
Phase B.

Figures 25–27 show exemplarily the observables (simu-
lation vs. experiment) of the experiment using vibrissa 3.
An easy inspection confirms prior results, that the maximal
values of MAz , FAx and FAy decrease the bigger the intrinsic
curvature and the smaller the intrinsic curvature radius are.
These figures show a good coincidence of the simulated and
measured curves of the observables.

Summarizing, the following Figures 28–30 present the
reconstruction of the profile. Compared to further simulations,
we point out that the smaller the intrinsic curvature radius is the
smaller is the reconstruction error. Finally, we conclude that
it is promising to use pre-curved vibrissae for object contour
scanning and reconstruction. The simulated and measured
curves of the observables show up a good coincidence. The
presented algorithms work effectively.
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Figure 24. Scanning process using vibrissa 3 – in blue Phase A; in red
Phase B.
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Figure 25. Experiment using vibrissa 3: clamping force FAx of a simulation
and the experiment.
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Figure 26. Experiment using vibrissa 3: clamping force FAy of a simulation
and the experiment.

VII. CONCLUSION

Due to the functionality of animals vibrissae, the goal was
to set up a model for an object scanning and shape reconstruc-
tion algorithm. For this, the only available information are the
observables (support reaction, which an animal solely relies
on) governed by one single sweep along the profile. Based on
these observables, the object boundary has to be reconstructed.

It was possible to illustrate the characteristics and influ-
ences of pre-curved technical vibrissae in view of profile
scanning. Based on the Winkler-Bach-Theory for pre-curved
beams we set up the equations for a deformed vibrissa during a
scanning process. We presented an algorithm to reconstruct the
scanned profile in using the generated observables (which an
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Figure 27. Experiment using vibrissa 3: clamping moment MAz of a
simulation and the experiment.
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Figure 28. Given and reconstructed profile using vibrissa 1.
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Figure 29. Given and reconstructed profile using vibrissa 2.
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Figure 30. Given and reconstructed profile using vibrissa 3.

animal is supposed to solely rely on) via shooting methods.
The reconstruction then was based on solving initial-value
problems on contrast to the generation procedure where we

solved boundary-value problems. The investigations respective
the scanning of a strictly convex profile with a pre-curved
vibrissae showed noticeable differences to the profile scanning
with a straight vibrissa. The extrema of the bending reactions
and the size of the scanned profile area depends on the pre-
curvature radius of the vibrissa. Using a smaller radius, the
tangential contact phase B in the scanning process could be
enlarged. Experiments confirmed the numerical results and
algorithms in this paper. Moreover, the investigation showed
that the profile reconstruction works better with a pre-curved
vibrissa.
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