
Learning Method by Sharing Activity Histories in Multiagent Environment

Keinosuke Matsumoto, Takuya Gohara, and Naoki Mori
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

email: {matsu, gohara, mori}@cs.osakafu-u.ac.jp

Abstract—Applications of multiagent systems are expected for
parallel and distributed processing. Reinforcement learning is
used as an implementation method for learning the actions of
the agent. However, when systems must control many agents,
the speed of learning becomes slower. Hence, Modular Q-
Learning is proposed to solve this problem. Given that it deals
with partial states, the number of states is reduced to avoid
exponential increases. However, if 𝑛𝑛 agents exist, they need 𝑛𝑛
(𝑛𝑛−1) learning tables, and therefore require a lot of memory.
To solve the problem, Centralized Modular Q-Learning is
proposed. In this method, the agent has only one learning table.
Given that agents do not distinguish other agents, the number
of learning tables is reduced. This study improves these
methods and proposes a new reinforcement learning method
that can learn quickly by using the past actions of its own and
other agents. The proposed method can learn good actions in
fewer trials. However, if agents continuously learn, the
learning efficiency will deteriorate. The method reduces the
effects of the actions of other agents in the late stage of learning.
Therefore, agents are able to learn suitable actions. In
experiments, agents are able to find a good strategy in a small
number of trials than the conventional methods. In addition,
agents learn actions in hunter games in various environments.
The results show that the proposed method is an efficient
reinforcement learning method.

Keywords—machine learning; Q-learning; sharing of
activity histories; agents; hunter game

I. INTRODUCTION
This paper is based on the study [1] presented at the

ADVCOMP 2016. In recent years, information has
distributed and increased largely due the rapid development
of the Internet and multimedia. Systems also become larger
and complicated. It is difficult for centralized systems, which
judge by bringing information in one place, to deal with a lot
of information and process it. From the viewpoint of parallel
and distributed processing, the application of multiagent
systems [2] that exchange information between agents [3] is
expected.

It is difficult to follow environmental changes that
humans could not forecast beforehand, and they do not carry
out suitable actions. It is most important for each agent in a
multiagent system to learn by itself. Each agent needs to

learn a suitable judgment standard from its experience and
information collected from other agents. Reinforcement
learning [4][5] attracts attention as an implementation
method for multiagent systems. It can be very effective
means because it autonomously learns by setting the only
reward, if a goal has been given.

A hunter game [6] is widely used as a cooperative
problem solving [7][8] under multiagent environment as a
benchmark of reinforcement learning. If a hunter game
becomes complicated and the number of agents increases,
the number of states increases exponentially. The speed of
learning slows down. Ono et al. proposed Modular Q-
Learning (MQL) [9] to solve this problem, but it had a
disadvantage of using a lot of memory. Knowledge sharing
methods [10][11][12][13] were also proposed. Reference
[12] needs to build a tree structure model and [13] consumes
a considerable amount of memory to store auxiliary variables
that are used to record the trajectory of states, action, and
rewards. With respect to memory, another method that
reduced memory [14] was proposed. In this method, each
agent has only one Q-value table by not distinguishing each
agent with the same purpose.

Based on these methods, this paper proposes a new
method that increases learning efficiency by using each
agent’s activity history of hunter agents. The method does
not need preparation of any special model or communication
algorithms between agents, strategies to exchange
information [15][16], special exploration agents [17][18][19]
and others according to various situations. This method saves
only activity histories and updates the Q-value using its own
or other hunters’ activity histories. In this manner, the
method shares experiences between agents simply by adding
other hunters’ activity histories to the Q-value table and
picks up learning speed, which makes collective intelligence
efficient.

This paper is organized as follows. In Section II, the
explosion of the number of states in the reinforcement
learning is explained. In Section III, conventional methods
are described. In Section IV, the proposed method is
explained. In Section V, the results of application
experiments confirm the validity of the proposed method.
Finally, in Section VI, the conclusion and future work are
presented.

71

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hunter prey

Figure 1. Hunter game.

II. HUNTER GAME
This section describes a hunter game and the explosion of

the number of states.

A. Definition of Hunter Game
A hunter game is one of the standard problems in

multiagent systems. It is a game where multiple hunters
catch a prey (runaway) by chasing in a two-dimensional field.
The definition of a hunter game in this study is shown below.

-A field is a two-dimensional lattice and torus space as
shown in Fig. 1.

-It is possible for multiple agents to take one lattice space.

-Each agent can take five actions of moving, such as right,
left, up, down or stop.

-A hunter has perfect perception, and it recognizes a prey
and other hunters in relative coordinates from itself.

-A unit of time that each agent takes one action is called a
time step, and a period from an initial state to a goal (i.e.,
hunters catch a prey) is called an episode.

 TABLE I. Number of states m2n.

n\ m 3 5 7 9
1 9 25 49 81
2 81 625 2401 6541
3 729 15025 117649 531441
4 6561 390625 5764801 43046721

B. Explosion of the Number of States
Q-Learning [20] is one of the bootstrap-type reinforcement
learning. In Markov decision process, which is similar to Q-
Learning, if the learning rate is appropriately adjusted,
convergence to an optimal solution in infinite time has been
proven [21].

In Q-Learning of the hunter game, an action is evaluated
on a pair (s, a) considering all observable states S (S ∋ s) and
possible actions A (A ∋ a). The evaluated value is utilized for
the same pair of state and action. It requires a lot of
information on (s, a) to make Q-Learning effective. For
example, if the size of the field is m × m and the number of
hunters is n, one hunter can see m2n identifiable states
(positional combinations of other hunters and prey). Table I
shows the number of states for each number of hunters n and
field size m. Given that each state has five kinds of actions,
the state and action pair is 5m2n.

In the hunter game with multiple hunters, state explosion
cannot be avoided because the exponent includes n. The
explosion of the number of states results in slower learning
speed. Therefore, in Q-Learning in multiagent environment,
how the number of states is reduced is an important subject.

III. CONVENTIONAL METHODS
This section describes related work of this study.

A. Modular Q-Learning
Ono et al. [9] proposed MQL to solve the state explosion

in hunter games. Completely Perceptual Q-Learning (CPQL)
[22] is a perfect perception learning, and it uses relative
coordinates of all hunters to define states. Moreover, MQL
uses a partial state that consists of a hunter and another one.
The number of states of field size m × m and n hunters is m4.
Given that the exponent is a constant and is not influenced
by the number of hunters, it can prevent the state explosion.

Learning accuracy of MQL deteriorates because of
imperfect perception by the observing partial states. In
addition, if n hunters exist, the number of partial states
becomes n-1, and n-1 learning machines are prepared per
hunter. A total of n(n-1) learning machines are needed. The
size of the Q-value tables tends to increase, and the amount
of memory will increase.

B. Centralized Modular Q-Learning
Matsumoto et al. [14] proposed a Centralized Modular Q-

Learning (CMQL) to solve the memory problem of MQL. In
a hunter game, hunters should just surround a prey. It is not
necessary to recognize the kind of hunters that surround the
prey. Therefore, CMQL does not distinguish the
characteristics of each hunter, and n-1 learning machines that

72

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the hunter has in MQL can be reduced to one learning
machine. In CMQL, a hunter has only one Q-value table of
the partial state. Given that the number of Q-value tables
becomes one per hunter, only n Q-value tables are required
in all if n hunters exist.

The number of states will increase, and the speed of
learning will become slow in the hunter games of three or
more hunters. To solve this problem, CMQL is introduced.
CMQL improves the degradation of learning by parallel and
switching learning [22]. The increase of memory is reduced
by one learning machine per hunter.

1) Parallel learning

Imperfect perception learning is used to make learning
quicker in the early stage and to accelerate learning
processes to some extent. We switch to a perfect perception
at a time. Owing to imperfect perception, the learning
accuracy of CMQL is lowered, and the action selection will
change for the worse in the later stages. A long-term
performance is inferior compared with CPQL. The influence
of lowered accuracy in early stages does not disappear, and
the accuracy of action selection cannot be kept perfect.

Parallel learning is a method of using CMQL that excels
in early short-term learning and CPQL that excels in long-
term learning simultaneously. A decent action series is found
by CMQL, and it is made to converge, where further
convergence is expected by switching to CPQL at a suitable
time. To obtain the suitable switching time for parallel
learning, the mean unlearning entropy is defined. The
probability P(s, a), which chooses action a at the time of
state s and the unlearning entropy I(s) are shown below. I is
an average of I(s), which is averaged for all the states
contained in episode E and all agents.

∑ Α∈

=Ρ
i

isQ
asQas

),(
),(),((1)

∑ ΡΡ−=Ι
aa

asas
n

s),(log),(
log

1)((2)

∑
Ε∈

Ι
Ε

=Ι
sp

s
n

)(1 (3)

where Q (s, a) is the Q-value of action a in state s, A is a set
of all possible actions, na is the number of actions that can be
chosen, np is the number of hunters, and |E| is the number of
states contained in episode E. I comes close to 0 when the
learning progresses. Moreover, it is 1 if no learning is carried
on.

2) Switching learning method
If parallel learning of CMQL and CPQL are used at the

same time, the amount of memory will increase because the
two learning methods must use a lot of memory. Before
switching learning, only the learning machine of CMQL is in
the memory; and after switching, only the learning machine
of CPQL is in the memory. By this process, learning can

always be carried out under the memory of CPQL before and
after switching.

The delivery technique of Q-value at the time of
switching is shown: Three hunters (s1, s2, s3) exist with states
of sl(x1, yl), s2(x 2, y2), and s3(x 3, y3). Hunter s1’s Q-value of
CMQL is Qm (sl, T, a). Moreover, the Q-value of CPQL is Qc
(sl, s2, s3, a). Where T is a state of another hunter, and a is
one of the actions. The Q-value cannot be copied easily
because the expression forms are different. Q-value is
delivered in the following formula:

Qc[xl] [yl] [x2] [y2] [x3] [y3] [a]

 Qm[xl] [yl] [x2] [y2] [a] + Qm[xl] [yl] [x3] [y3] [a]

 2

This formula can deliver the same Q-value to all

combinations from CMQL to CPQL. The difference between
both expression forms is absorbed in this manner.

3) Preliminary experiments

Some preliminary experiments have been conducted to
investigate the influence of mean unlearning entropy on
learning. The problems that the preliminary experiments deal
with are shown below. Each hunter carries out Q-learning
individually, and a prey acts at random without learning in
hunter games. The number of hunters is three, the field size
is 7 × 7, and the cost per one-time step is 0.05. Q-value may
become zero or less. To prevent this case, δ is defined as
follows, and δ is added to Q (s, a).

01.0|),(min| += asQ

a
δ (5)

In both CPQL and CMQL, learning and discount rates

are set to 0.5. Thresholds of mean unlearning entropy are set
to 0.500, 0.840, and 0.947. These values correspond to
switching times at 45,000, 15,000, and 3000 episodes. The
resulting graphs are shown in Fig. 2. Every plot shows the
average time steps to catch a prey of every 300 episodes.
Given that the mean unlearning entropy comes close to 0 as
the learning progresses as described in sub-section 1), the
larger the thresholds are, the quicker it switches in the early
stages of learning.

When it is switched at threshold 0.500, the number of
steps to catch a prey has leaped up abruptly at the time of
switching. Furthermore, it has also converged on the number
of steps worse than that of CPQL. This means that the action
patterns learned by CMQL is delivered to CPQL, but the
deteriorated action patterns are not corrected. When the
threshold is 0.840, it switches earlier than that of the
threshold 0.500, but it switches similarly and the number of
steps to catch a prey has leaped up abruptly. The convergent
number of steps to catch is almost the same as that of CPQL.
When it switches at the threshold 0.947, it has switched just
before the learning accuracy of CMQL deteriorates. Change
of learning machines can be performed, and the number of
steps does not leap up abruptly. After the switching, the

= (4)

73

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Learning graphs for various thresholds.

number of steps converges better than that of CPQL.

These results show that CMQL obtained a fewer steps
solution and fewer amount of memory than those of CPQL
when it switched at the threshold 0.947. Therefore, the
efficiency of reinforcement learning in hunter games can be
increased by CMQL. However, if the learning rates and
discount rates are changed, the results will change. The
inability to determine automatically an optimum switching
time is a problem.

IV. PROPOSED METHOD
In this section, a method that raises learning efficiency is

described based on MQL and CMQL. Fig. 3 shows the basic
concept of the proposed method. The method for defining
the partial state of CMQL in a hunter game in a maze
environment is examined.

A. Redefinition of the Partial State by the Relative
Coordinate Change
In MQL and CMQL, the definition of perceptual

information is made by a relative coordinate from the prey.
This study uses the relative coordinate from each hunter. If
the coordinates of other hunters s1: (x1, y1), s2: (x2, y2), and
the prey sp: (xp, yp), the partial state of the method is <sp, s1>,
 <sp, s2>. Therefore, perceptual information of some hunters
can be constituted based on information equal to the partial
states of CMQL.

B. Perception Method of Walls
Conventional CMQL constitutes partial states based on

hunter and prey coordinates. It is necessary to consider the
walls in a hunter game in a maze environment. An effect
seems to come out in learning results by way of defining the
partial states. Given that the positions of the walls do not
change in this study, all walls are grasped by the absolute
coordinate system. The partial states that consider the walls
using this absolute coordinates are constructed. The walls are
blocks where each agent could not go through.

C. Explorative Experiment

Two kinds of partial states are considered in this
experiment. In hunter games, one partial state consists of a
pair of any hunter and prey, and another pair of a wall and
prey (Method 1). Another partial state is considering a hunter,
prey, and wall at the same time (Method 2). Figures 4 and 5
show partial states for Methods 1 and 2, respectively. The
number of states of Method 2 is larger than that of Method 1,
but their memory consumption is equal. Experimental
conditions were as follows:

- Size of field: 12 × 12
- Number of walls in the mazy field: 43
- Number of hunters: n = 3
- Action selection strategy: ε-greedy (ε = 0.01)
- Prey’s action: random action
- Capture state: Four lattices in left, right, top, and bottom
of a prey’s position are surrounded by hunters or walls.
- Cost per one time step: 0.05
- Learning rate: α = 0.2
- Discount rate: γ = 0.8
- Maximum number of learning episodes: 300000

The comparison results are shown in Fig. 6. The number

of steps of Method 2 to catch the prey decreases when the
learning advances. Good learning is possible. Comparing
Method 1 with Method 2, the learning speed of Method 1 is
rapid, but the number of steps to catch increases. The
positions of walls are considered in all partial states of
Method 2. Method 2 can choose an action that bypasses
walls between the hunter and prey. Some partial states of
Method 1 disregard the walls, and Method 1 could not
choose a good action that accesses the prey. If an element to
be newly considered in the environment increases, each
partial state seems to have to consider the new element at the
same time.

Figure 3. Architecture of the proposed method.

Ti
m

e
st

ep
s t

o
ca

tc
h

a
pr

ey

Number of episodes (* 300)

74

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Method 1
Method 2

Figure 4. Partial states for Method 1.

Ti
m

e
st

ep
s (

av
er

ag
e

ev
er

y
30

0
ep

is
od

es
)

Figure 5. Partial states for Method 2.

Figure 6. Results of the proposed method for maze task.

Number of episodes (* 300)

75

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Learning Method by Sharing Activity Histories
In the hunter game, all hunters have the common purpose

of catching the prey. In this environment, the learned actions
of other hunters to catch the prey are useful. Appropriate
actions can be learned with fewer trials by learning actions of
other hunters. In this study, a method of updating the Q-
value based on other hunters’ activity histories is proposed.
The number of times of updating for every episode increases,
but the method raises the learning efficiency for every
episode. The algorithm of the proposed method is shown
below.

The number of hunters is n and a prey is caught at q steps.
Each hunter is observing states s1, s2, ---, sn and actions are a1,
a2, ---, an.
(1) In each episode, save the hunters’ coordinates and actions

for every step, and for up to t steps. These are activity
histories.

(2) Give awards to all hunters’ Q-value Q (s1, a1), Q (s2, a2),
---, Q(sn, an) if the prey is caught.

(3) i = q
(4) Q(si-1, ai-1) ← (1-α) Q(si-1, ai-1)+ α [r+γ maxa Q (si, ai)]
(5) Replace i by i-1 and repeat (4) until i ≤ q-t or i≤1.

In the algorithm mentioned above, t is t = 1000.
Combining this algorithm with CMQL makes a more
efficient learning method. Parameter t is determined by the
complexity of the applied problems to cover almost all states
at the initial setting [23][24][25][26].

Although learning has become early in the proposed
method, final learning results tend to deteriorate compared
with the conventional methods without sharing activity
histories. The learning accuracy of the proposed method
becomes worse by learning actions of other hunters at the
final learning stage. For this reason, the learning rate using
other hunters’ actions is decreased according to the number
of episodes. Influence on learning by other hunters’ actions
is lessened as learning progresses. This will be an approach
that utilizes other hunters’ activity histories at the early
learning stages and uses only each hunter’s history at the
final learning stage.

E. Control of Learning Rate
It is difficult to find an optimal action if a hunter learns

other hunters’ actions in the final stage of learning. The
learning rate of learning other hunters’ activity histories
should be decreased in proportion to the number of episodes.
If other hunters’ activity histories are used at the last stage of
learning, learning accuracy will reduce slightly. It does not
become bad by learning only for one’s history, and the
learning rate at the time of updating for other hunters’
activity histories should be gradually made small.

The influence of other hunters’ activity histories on
learning was reduced with the number of times of learning.
This method (hereinafter referred to as Turned Experience
CMQL (TECMQL)) is a learning approach that utilizes other
hunters’ activity histories in the early stage of learning and
only its own history in the final stage.

The following formula defines the learning rate at
learning other hunters’ activity histories.

)/(1 rateepisodeother +
=

a
a (6)

where, αother is a learning rate the updates the Q-value using
other hunters’ activity histories and rate is a constant that
determines reduction rate of the learning rate. The learning
rate at learning using other hunters’ actions should be
decreased according to the number of episodes. The value of
parameter rate is determined to eliminate the effect of other
hunters’ actions in proportion to the number of episodes.

V. EXPERIMENTS
In this section, the proposed method was applied to

hunter games to confirm its validity.

A. Outline of Experiments
Experiments compare learning efficiency of the

following three methods.

- Proposed method: CMQL using other hunters’ activity
histories (referred to as Sharing Experience CMQL
(SECMQL)).

- Compared method: CMQL using only each hunter’s history
(referred to as Own Experience CMQL (OECMQL)).

- Conventional method: CMQL that does not use activity
histories.

These three methods were applied to a hunter game in a
maze environment and two-prey hunter game.

B. Experiment 1: Hunter Games in Maze Environment
The performances of the three methods mentioned above

were compared in the hunter game in a maze environment. In
this case, hunters learn ways of bypassing walls in the maze
and leading a prey to the place where it is easy to catch using
the walls. The positions of the walls do not change from the
beginning of this experiment. Walls are grasped by the
absolute coordinate system. In this experiment, a partial state
of CMQL consists of a relative coordinate from a hunter to
any other hunter, a relative coordinate from the hunter to a
prey, and an absolute coordinate of the hunter itself. Actions
can be learned considering the positions of walls in each
partial state.

Experimental conditions were as follows:

- Size of field: 8 × 8
- Number of walls in the mazy field: 21 (cf. Fig. 7)
- Number of hunters: n = 3
- Action selection strategy: ε-greedy (ε = 0.01)
- Prey’s action: It escapes from hunters.
- Capture state: Four lattices in left, right, top, and bottom
of a prey’s position are surrounded by hunters or walls.
- Cost per one time step: 0.05
- Learning rate: α = 0.2
- Discount rate: γ = 0.8
- Maximum number of learning episodes: 300000

76

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 - Reward of hunter that caught a prey directly: 5
 - Reward of hunter that did not caught the prey directly: 4

In this experiment, only three hunters cannot catch a prey
without making use of walls. Hunters will learn actions that
guide the prey near walls and catch it using the walls. At
least two or fewer hunters can catch a prey if they use walls.
In this case, one hunter could guide the prey for the other
two hunters to catch it. A slightly reduced reward was given
to the hunter that did not catch the prey directly for its
contribution to the catching.

Results are shown in Fig. 8. The horizontal axis indicates
the number of episodes and the vertical axis indicates the
time steps to catch a prey from an initial state. Every plot
shows the average time steps to catch a prey of every 100
episodes. The fewer the time steps results in better action
patterns that can be learned.

The learning of SECMQL became earlier until near
episode no. 5000 than other methods, but the final learning
result was bad compared with other methods. On the other
hand, OECMQL could catch with fewer steps compared with
CMQL. SECMQL’s learning accuracy was deteriorated by
learning other hunters’ actions in the final stage of learning.

C. Experiment 2: Two-Prey Hunter Games
The performances of the three methods mentioned above

were compared in a hunter game that has two preys. In this
game, the hunters’ purpose is to catch one of the two preys.
Given that the candidate actions of a hunter increases in
number, learning becomes difficult compared with the
problem of one prey. In this experiment, a partial state of
CMQL consists of a relative coordinate from a hunter to any
other hunter and two relative coordinates from the hunter to
two preys. Given that the positions of both preys can be seen,
actions can be learned considering the two preys.

Experimental conditions were as follows:

- Size of field: 8 × 8
- Number of hunters: n = 3
- Action selection strategy: ε-greedy (ε = 0.01)
- Prey’s action: It escapes from hunters.
- Capture state: At least two hunters exist in left, right,

 top, and bottom of one prey.
- Cost per one time step: 0.05
- Learning rate: α = 0.2
- Discount rate: γ = 0.8
- Maximum number of learning episodes: 300000
- Reward of hunter that caught a prey directly: 5
- Reward of hunter that did not catch the prey directly:4

In this experiment, preys observe all hunters’ positions

and they escape from hunters based on the hunters’
coordinates. A slightly reduced reward was given to the
hunter that did not catch a prey directly for its contribution to
catching.

Results are shown in Fig. 9. In this experiment, the
learning efficiency of SECMQL is the best in the early stages
of learning. Given that action patterns that lead to catching in
the early stages of learning by only one hunter are
insufficient, it is useful to use other hunters’ activity histories
for learning.

However, OECMQL found good action strategies over
100000 episodes. Obtaining good action strategies improves
the way a hunter individually learns in the final stage.

D. Experiment 3: Hunter Games in Maze Environment after
Control of Learning Rate
Performance was compared with the cases where they are

with or without reducing learning rate of hunter games in a
maze environment. TECMQL was added to the three
methods of Experiments 1 and 2 as a compared method.
Experimental conditions were the same as Experiment 1, and
the rate of TECMQL was 500.

Results are shown in Fig. 10. In this experiment,
OECMQL shows the best learning result. TECMQL also
showed almost equivalent learning result to that of
OECMQL, while TECMQL maintained good efficiency in
the early stage of learning.

E. Experiment 4: Two-Prey Hunter Games after Control of
Learning Rate
Performance was compared with the cases where they are

with or without reducing learning rate of hunter games that
have two preys. The compared method was the same as
Experiment 3. Experimental conditions were the same as
Experiment 2, and the rate of TECMQL was 10000. The
results are shown in Fig. 11.

In this experiment, TECMQL discovered a strategy that
could catch a prey with fewer steps than other methods.
From these results, it seems to be effective to assemble a
rough action strategy using actions of other hunters in the
early stages of learning, and then to learn the action strategy
that is suitable for each hunter by individual learning.

Figure 7. Maze environment.

77

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In addition to Experiment 3, TECMQL found actions that
were easy to catch a prey rather than the conventional

methods in different environments. However, it is necessary
to adjust the learning rate according to the environments.

Figure 11. Results of the proposed method for two-prey game
 after control of the learning rate.

Number of episodes (* 100)

Figure 9. Results of the proposed method for two-prey game.

Figure 8. Results of the proposed method for maze task. Figure 10. Results of the proposed method for maze task
 after control of the learning rate.

78

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Convergent average steps.

F. Convergent Average Number of Steps for Each Method
 Table II shows the convergent average steps for each
method after each method has finished learning. TECMQL
obtained the best average number of steps for the two-prey
game. For the maze task game, it obtained nearly the best
number of steps.

VI. CONCLUSION
 In this study, some Q-learning algorithms were applied in
the hunter game of maze and two-prey environments. The
composition of appropriate partial states was examined. This
paper proposed a method that can learn in fewer trials by
sharing activity histories among hunters. The method is
based on MQL and CMQL, which are methods that prevent
an explosion of the number of states. The performance of the
proposed method was compared with CMQL. To solve the
problem of deteriorating learning performance of the
proposed method in the later stage of learning when using
other hunters’ activity histories, the learning rate is decreased
according to the number of episodes. The proposed method
can be generalized to other multiagent environment other
than hunter games because it uses a general Q-learning
algorithm.

At the present method, the control of learning rate is
dependent on the number of episodes, but it is not controlled
by the contents of learning. In future study, an index should
be established to control the learning rate according to Q-
value during learning. In addition, it is considered that the
internal states of agents will be optimized by clustering.

ACKNOWLEDGMENT
This work was supported in part by JSPS KAKENHI

Grant Number JP16K06424.

REFERENCES
[1] K. Matsumoto, T. Gohara, and N. Mori, “Learning method by

sharing activity logs in multiagent environment,” Proc. of the
Tenth International Conference on Advanced Engineering
Computing and Applications in Sciences (ADVCOMP 2016),
IARIA, October 2016, pp. 71-76, ISBN: 978-1-61208-506-7.

[2] G. Weiss, Multiagent Systems: a modern approach to
distributed artificial intelligence, MIT Press, 1999.

[3] S. J. Russell and P. Norving, Artificial intelligence: a modern
approach, Prentice-Hall, Englewood Cliffs, 1995.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: an
introduction, MIT Press, 1998.

[5] H. Van Hasselt, “Reinforcement learning in continuous state
and action spaces,” in Reinforcement Learning, Springer
Berlin Heidelberg, pp. 207-251, 2012.

[6] M. Benda, V. Jagannathan, and R. Dodhiawalla, On optimal
cooperation of knowledge sources, Technical Report, BCS-G
2010-28, Boeing AI Center, 1985.

[7] I. Nahum-Shani, M. Qian, D. Almirall, W. E. Pelham, B.
Gnagy, G. A. Fabiano, and S. A. Murphy, “Q-learning: A data
analysis method for constructing adaptive interventions,”
Psychological methods, vol. 17, no. 4, p. 478, 2012.

[8] S. Shamshirband, A. Patel, N. B. Anuar, M. L. M. Kiah, and
A. Abraham, “Cooperative game theoretic approach using
fuzzy Q-learning for detecting and preventing intrusions in
wireless sensor networks,” Engineering Applications of
Artificial Intelligence, vol. 32, pp. 228-241, 2014.

[9] N. Ono and K. Fukumoto, “Multi-agent reinforcement
learning: a modular approach,” Proc. of AAAI ICMAS-96,
pp.252-258, 1996.

[10] M.Tan, “Multi-agent reinforcement learning : independent vs.
cooperative agents,” Proc. of the 10th International
Conference on Machine Learning, pp. 330-337, 1993.

[11] R. M. Kretchmar, “Parallel reinforcement learning,” Proc. of
the 6th World Conference on Systemics, Cybernetics, and
Informatics, vol. 6, pp. 114-118, 2002.

[12] K. Hwang, W. Jiang, and Y. Chen, “Model learning and
knowledge sharing for a multiagent system with Dyna-Q
learning,” IEEE Transactions on Cybernetics, vol. 45, no. 5,
pp. 978-990, 2015.

[13] Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai, “FMRQ-A
multiagent reinforcement learning algorithm for fully
cooperative tasks,” IEEE Transactions on Cybernetics, vol. 47,
no. 6, pp. 1367-1379, 2017.

[14] K. Matsumoto, T. Ikimi, and N. Mori, “A switching Q-
learning approach focusing on partial states,” Proc. of the 7th
IFAC Conference on Manufacturing Modelling, Management,
and Control (MIM 2013) IFAC, pp. 982-986, ISBN: 978-3-
902823-35-9, June 2013.

[15] H. Iima and Y. Kuroe, “Swarm reinforcement learning
algorithm based on exchanging information among agents,”
Transactions of the Society of Instrument and Control
Engineers, vol. 42, no. 11, pp. 1244-1251, 2006 (in Japanese).

[16] S. Yamawaki, Y. Kuroe, and H. Iima, “Swarm reinforcement
learning method for multi-agent tasks,” Transactions of the
Society of Instrument and Control Engineers vol. 49, no. 3, pp.
370-377, 2013 (in Japanese).

[17] T. Tateyama, S. Kawata, and Y. Shimomura, “Parallel
reinforcement learning systems using exploration agents,”
Transactions of the Japan Society of Mechanical Engineers
Series C vol. 74, no. 739, pp. 692-701, 2008 (in Japanese).

[18] Y. M. De Hauwere, P. Vrancx, and A. Nowe, “Future sparse
interactions: A MARL approach,” Proc. of the 9th European
Workshop on Reinforcement Learning, pp. 1-3, 2011.

[19] H. Igarashi, M. Handa, S. Ishihara, and I. Sasano, “Agent
control in multiagent systems – Reinforcement learning of
weight parameters in particle swarm optimization,” The
Research Reports of Shibaura Institute of Technology,
Natural Sciences and Engineering vol. 56, pp. 1-8, 2012 (in
Japanese).

[20] C. J. C. H. Watkins and P. Dayan, “Technical note Q-
learning,” Machine Learning, vol. 8, no. 3, pp. 279-292, 1992.

[21] S. J. Bradtke and M. O. Duff, “Reinforcement learning
method for continuous-time Markov decision problems,”
Advances in Neural Information Processing Systems, vol. 7,
pp. 393-400, 1994.

[22] A. Ito and M. Kanabuchi, “Speeding up multi-agent
reinforcement learning by coarse-graining of perception —
hunter game as an example—,” IEICE Trans. Information and

Average
number of

steps
Maze task game Two-prey game

TECMQL 9.6 10.6
SECMQL 11.5 12.1
OECMQL 9.4 11.3

CMQL 10.6 13.6

79

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Systems D-I, vol. J84-D-I, no. 3, pp. 285-293, 2001 (in
Japanese)

[23] G. Giannakopoulos and P. Themis, “Revisiting the effect of
history on learning performance: The problem of the
demanding lord,” Knowledge and information systems, vol.
36, no. 3, pp. 653-691, 2013.

[24] I. Koychev and R. Lothian, “Tracking drifting concepts by
time window optimisation,” Proc. of the twenty-fifth SGAI

International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp. 46–59, 2005.

[25] I. Koychev and I. Schwab, “Adaptation to drifting user’s
interests,” Proc. of ECML2000 Workshop: Machine Learning
in New Information Age, pp. 39–45, 2000.

[26] J. Patist, “Optimal window change detection,” Data Mining
Workshops, pp. 557–562, 2007.

80

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

