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Abstract—Applications of multiagent systems are expected for 
parallel and distributed processing. Reinforcement learning is 
used as an implementation method for learning the actions of 
the agent. However, when systems must control many agents, 
the speed of learning becomes slower. Hence, Modular Q-
Learning is proposed to solve this problem. Given that it deals 
with partial states, the number of states is reduced to avoid 
exponential increases. However, if 𝑛𝑛 agents exist, they need 𝑛𝑛 
(𝑛𝑛−1) learning tables, and therefore require a lot of memory. 
To solve the problem, Centralized Modular Q-Learning is 
proposed. In this method, the agent has only one learning table. 
Given that agents do not distinguish other agents, the number 
of learning tables is reduced. This study improves these 
methods and proposes a new reinforcement learning method 
that can learn quickly by using the past actions of its own and 
other agents. The proposed method can learn good actions in 
fewer trials. However, if agents continuously learn, the 
learning efficiency will deteriorate. The method reduces the 
effects of the actions of other agents in the late stage of learning. 
Therefore, agents are able to learn suitable actions. In 
experiments, agents are able to find a good strategy in a small 
number of trials than the conventional methods. In addition, 
agents learn actions in hunter games in various environments. 
The results show that the proposed method is an efficient 
reinforcement learning method. 

Keywords—machine learning; Q-learning; sharing of 
activity histories; agents; hunter game 

I. INTRODUCTION 
This paper is based on the study [1] presented at the 

ADVCOMP 2016. In recent years, information has 
distributed and increased largely due the rapid development 
of the Internet and multimedia. Systems also become larger 
and complicated. It is difficult for centralized systems, which 
judge by bringing information in one place, to deal with a lot 
of information and process it. From the viewpoint of parallel 
and distributed processing, the application of multiagent 
systems [2] that exchange information between agents [3] is 
expected. 

It is difficult to follow environmental changes that 
humans could not forecast beforehand, and they do not carry 
out suitable actions. It is most important for each agent in a 
multiagent  system  to learn  by  itself.  Each  agent  needs  to  

 

learn a suitable judgment standard from its experience and 
information collected from other agents. Reinforcement 
learning [4][5] attracts attention as an implementation 
method for multiagent systems. It can be very effective 
means because it autonomously learns by setting the only 
reward, if a goal has been given. 

A hunter game [6] is widely used as a cooperative 
problem solving [7][8] under multiagent environment as a 
benchmark of reinforcement learning. If a hunter game 
becomes complicated and the number of agents increases, 
the number of states increases exponentially. The speed of 
learning slows down. Ono et al. proposed Modular Q-
Learning (MQL) [9] to solve this problem, but it had a 
disadvantage of using a lot of memory. Knowledge sharing 
methods [10][11][12][13] were also proposed. Reference 
[12] needs to build a tree structure model and [13] consumes 
a considerable amount of memory to store auxiliary variables 
that are used to record the trajectory of states, action, and 
rewards. With respect to memory, another method that 
reduced memory [14] was proposed. In this method, each 
agent has only one Q-value table by not distinguishing each 
agent with the same purpose.  

Based on these methods, this paper proposes a new 
method that increases learning efficiency by using each 
agent’s activity history of hunter agents. The method does 
not need preparation of any special model or communication 
algorithms between agents, strategies to exchange 
information [15][16], special exploration agents [17][18][19] 
and others according to various situations. This method saves 
only activity histories and updates the Q-value using its own 
or other hunters’ activity histories. In this manner, the 
method shares experiences between agents simply by adding 
other hunters’ activity histories to the Q-value table and 
picks up learning speed, which makes collective intelligence 
efficient. 

This paper is organized as follows. In Section II, the 
explosion of the number of states in the reinforcement 
learning is explained. In Section III, conventional methods 
are described. In Section IV, the proposed method is 
explained. In Section V, the results of application 
experiments confirm the validity of the proposed method. 
Finally, in Section VI, the conclusion and future work are 
presented. 
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hunter prey 

Figure 1. Hunter game. 

II. HUNTER GAME 
This section describes a hunter game and the explosion of 

the number of states. 

A. Definition of Hunter Game 
A hunter game is one of the standard problems in 

multiagent systems. It is a game where multiple hunters 
catch a prey (runaway) by chasing in a two-dimensional field. 
The definition of a hunter game in this study is shown below. 

 
-A field is a two-dimensional lattice and torus space as 
shown in Fig. 1.  
 
-It is possible for multiple agents to take one lattice space.  
 
-Each agent can take five actions of moving, such as right, 
left, up, down or stop. 
 
-A hunter has perfect perception, and it recognizes a prey 
and other hunters in relative coordinates from itself. 
 
-A unit of time that each agent takes one action is called a 
time step, and a period from an initial state to a goal (i.e., 
hunters catch a prey) is called an episode. 
 
 

 

                               TABLE I.  Number of states m2n. 
 

n\ m 3 5 7 9 
1 9 25 49 81 
2 81 625 2401 6541 
3 729 15025 117649 531441 
4 6561 390625 5764801 43046721 

 

B. Explosion of the Number of States 
Q-Learning [20] is one of the bootstrap-type reinforcement 
learning. In Markov decision process, which is similar to Q-
Learning, if the learning rate is appropriately adjusted, 
convergence to an optimal solution in infinite time has been 
proven [21]. 

In Q-Learning of the hunter game, an action is evaluated 
on a pair (s, a) considering all observable states S (S ∋ s) and 
possible actions A (A ∋ a). The evaluated value is utilized for 
the same pair of state and action. It requires a lot of 
information on (s, a) to make Q-Learning effective. For 
example, if the size of the field is m × m and the number of 
hunters is n, one hunter can see m2n identifiable states 
(positional combinations of other hunters and prey). Table I 
shows the number of states for each number of hunters n and 
field size m. Given that each state has five kinds of actions, 
the state and action pair is 5m2n.  

In the hunter game with multiple hunters, state explosion 
cannot be avoided because the exponent includes n. The 
explosion of the number of states results in slower learning 
speed. Therefore, in Q-Learning in multiagent environment, 
how the number of states is reduced is an important subject. 

III. CONVENTIONAL METHODS 
This section describes related work of this study. 

A. Modular Q-Learning 
Ono et al. [9] proposed MQL to solve the state explosion 

in hunter games. Completely Perceptual Q-Learning (CPQL) 
[22] is a perfect perception learning, and it uses relative 
coordinates of all hunters to define states. Moreover, MQL 
uses a partial state that consists of a hunter and another one. 
The number of states of field size m × m and n hunters is m4. 
Given that the exponent is a constant and is not influenced 
by the number of hunters, it can prevent the state explosion. 

Learning accuracy of MQL deteriorates because of 
imperfect perception by the observing partial states. In 
addition, if n hunters exist, the number of partial states 
becomes n-1, and n-1 learning machines are prepared per 
hunter. A total of n(n-1) learning machines are needed. The 
size of the Q-value tables tends to increase, and the amount 
of memory will increase. 

B. Centralized Modular Q-Learning 
Matsumoto et al. [14] proposed a Centralized Modular Q-

Learning (CMQL) to solve the memory problem of MQL. In 
a hunter game, hunters should just surround a prey. It is not 
necessary to recognize the kind of hunters that surround the 
prey. Therefore, CMQL does not distinguish the 
characteristics of each hunter, and n-1 learning machines that 
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the hunter has in MQL can be reduced to one learning 
machine. In CMQL, a hunter has only one Q-value table of 
the partial state. Given that the number of Q-value tables 
becomes one per hunter, only n Q-value tables are required 
in all if n hunters exist. 

The number of states will increase, and the speed of 
learning will become slow in the hunter games of three or 
more hunters. To solve this problem, CMQL is introduced. 
CMQL improves the degradation of learning by parallel and 
switching learning [22]. The increase of memory is reduced 
by one learning machine per hunter.  

 
1) Parallel learning 

Imperfect perception learning is used to make learning 
quicker in the early stage and to accelerate learning 
processes to some extent. We switch to a perfect perception 
at a time. Owing to imperfect perception, the learning 
accuracy of CMQL is lowered, and the action selection will 
change for the worse in the later stages. A long-term 
performance is inferior compared with CPQL. The influence 
of lowered accuracy in early stages does not disappear, and 
the accuracy of action selection cannot be kept perfect. 

Parallel learning is a method of using CMQL that excels 
in early short-term learning and CPQL that excels in long-
term learning simultaneously. A decent action series is found 
by CMQL, and it is made to converge, where further 
convergence is expected by switching to CPQL at a suitable 
time. To obtain the suitable switching time for parallel 
learning, the mean unlearning entropy is defined. The 
probability P(s, a), which chooses action a at the time of 
state s and the unlearning entropy I(s) are shown below. I is 
an average of I(s), which is averaged for all the states 
contained in episode E and all agents. 
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where Q (s, a) is the Q-value of action a in state s, A is a set 
of all possible actions, na is the number of actions that can be 
chosen, np is the number of hunters, and |E| is the number of 
states contained in episode E. I comes close to 0 when the 
learning progresses. Moreover, it is 1 if no learning is carried 
on. 
 

2)  Switching learning method 
If parallel learning of CMQL and CPQL are used at the 

same time, the amount of memory will increase because the 
two learning methods must use a lot of memory. Before 
switching learning, only the learning machine of CMQL is in 
the memory; and after switching, only the learning machine 
of CPQL is in the memory. By this process, learning can 

always be carried out under the memory of CPQL before and 
after switching. 

The delivery technique of Q-value at the time of 
switching is shown: Three hunters (s1, s2, s3) exist with states 
of sl(x1, yl), s2(x 2, y2), and s3(x 3, y3). Hunter s1’s Q-value of 
CMQL is Qm (sl, T, a). Moreover, the Q-value of CPQL is Qc 
(sl, s2, s3, a). Where T is a state of another hunter, and a is 
one of the actions. The Q-value cannot be copied easily 
because the expression forms are different. Q-value is 
delivered in the following formula: 

 
Qc[xl] [yl] [x2] [y2] [x3] [y3] [a]  

        Qm[xl] [yl] [x2] [y2] [a] + Qm[xl] [yl] [x3] [y3] [a] 
 
                                            2 

 
This formula can deliver the same Q-value to all 

combinations from CMQL to CPQL. The difference between 
both expression forms is absorbed in this manner. 

 
3) Preliminary experiments 

Some preliminary experiments have been conducted to 
investigate the influence of mean unlearning entropy on 
learning. The problems that the preliminary experiments deal 
with are shown below. Each hunter carries out Q-learning 
individually, and a prey acts at random without learning in 
hunter games. The number of hunters is three, the field size 
is 7 × 7, and the cost per one-time step is 0.05. Q-value may 
become zero or less. To prevent this case, δ is defined as 
follows, and δ is added to Q (s, a). 

 
01.0|),(min| += asQ

a
δ                                                   (5)  

 
In both CPQL and CMQL, learning and discount rates 

are set to 0.5. Thresholds of mean unlearning entropy are set 
to 0.500, 0.840, and 0.947. These values correspond to 
switching times at 45,000, 15,000, and 3000 episodes. The 
resulting graphs are shown in Fig. 2. Every plot shows the 
average time steps to catch a prey of every 300 episodes. 
Given that the mean unlearning entropy comes close to 0 as 
the learning progresses as described in sub-section 1), the 
larger the thresholds are, the quicker it switches in the early 
stages of learning.  

When it is switched at threshold 0.500, the number of 
steps to catch a prey has leaped up abruptly at the time of 
switching. Furthermore, it has also converged on the number 
of steps worse than that of CPQL. This means that the action 
patterns learned by CMQL is delivered to CPQL, but the 
deteriorated action patterns are not corrected. When the 
threshold is 0.840, it switches earlier than that of the 
threshold 0.500, but it switches similarly and the number of 
steps to catch a prey has leaped up abruptly. The convergent 
number of steps to catch is almost the same as that of CPQL. 
When it switches at the threshold 0.947, it has switched just 
before the learning accuracy of CMQL deteriorates. Change 
of learning machines can be performed, and the number of 
steps does not leap up  abruptly.  After  the  switching,  the 

=     (4) 
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Figure 2. Learning graphs for various thresholds. 
 
number of steps converges better than that of CPQL. 

These results show that CMQL obtained a fewer steps 
solution and fewer amount of memory than those of CPQL 
when it switched at the threshold 0.947. Therefore, the 
efficiency of reinforcement learning in hunter games can be 
increased by CMQL. However, if the learning rates and 
discount rates are changed, the results will change. The 
inability to determine automatically an optimum switching 
time is a problem.  

IV. PROPOSED METHOD 
In this section, a method that raises learning efficiency is 

described based on MQL and CMQL. Fig. 3 shows the basic 
concept of the proposed method. The method for defining 
the partial state of CMQL in a hunter game in a maze 
environment is examined. 

A. Redefinition of the Partial State by the Relative 
Coordinate Change 
In MQL and CMQL, the definition of perceptual 

information is made by a relative coordinate from the prey. 
This study uses the relative coordinate from each hunter. If 
the coordinates of other hunters s1: (x1, y1), s2: (x2, y2), and 
the prey sp: (xp, yp), the partial state of the method is <sp, s1>,  
 <sp, s2>. Therefore, perceptual information of some hunters 
can be constituted based on information equal to the partial 
states of CMQL.  

B. Perception Method of Walls  
Conventional CMQL constitutes partial states based on 

hunter and prey coordinates. It is necessary to consider the 
walls in a hunter game in a maze environment. An effect 
seems to come out in learning results by way of defining the 
partial states. Given that the positions of the walls do not 
change in this study, all walls are grasped by the absolute 
coordinate system. The partial states that consider the walls 
using this absolute coordinates are constructed. The walls are 
blocks where each agent could not go through. 

 
C. Explorative Experiment 

Two kinds of partial states are considered in this 
experiment. In hunter games, one partial state consists of a 
pair of any hunter and prey, and another pair of a wall and 
prey (Method 1). Another partial state is considering a hunter, 
prey, and wall at the same time (Method 2). Figures 4 and 5 
show partial states for Methods 1 and 2, respectively. The 
number of states of Method 2 is larger than that of Method 1, 
but their memory consumption is equal. Experimental 
conditions were as follows: 
 

- Size of field: 12 × 12 
- Number of walls in the mazy field: 43 
- Number of hunters: n = 3 
- Action selection strategy: ε-greedy (ε = 0.01) 
- Prey’s action: random action 
- Capture state: Four lattices in left, right, top, and bottom 
of a prey’s position are surrounded by hunters or walls. 
- Cost per one time step: 0.05 
- Learning rate: α = 0.2 
- Discount rate: γ = 0.8 
- Maximum number of learning episodes: 300000  
 
The comparison results are shown in Fig. 6. The number 

of steps of Method 2 to catch the prey decreases when the 
learning advances. Good learning is possible. Comparing 
Method 1 with Method 2, the learning speed of Method 1 is 
rapid, but the number of steps to catch increases. The 
positions of walls are considered in all partial states of 
Method 2. Method 2 can choose an action that bypasses 
walls between the hunter and prey. Some partial states of 
Method 1 disregard the walls, and Method 1 could not 
choose a good action that accesses the prey. If an element to 
be newly considered in the environment increases, each 
partial state seems to have to consider the new element at the 
same time. 
 

Figure 3. Architecture of the proposed method. 
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Figure 4.  Partial states for Method 1. 
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Figure 5.  Partial states for Method 2. 

Figure 6.  Results of the proposed method for maze task. 
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D. Learning Method by Sharing Activity Histories 
In the hunter game, all hunters have the common purpose 

of catching the prey. In this environment, the learned actions 
of other hunters to catch the prey are useful. Appropriate 
actions can be learned with fewer trials by learning actions of 
other hunters. In this study, a method of updating the Q-
value based on other hunters’ activity histories is proposed. 
The number of times of updating for every episode increases, 
but the method raises the learning efficiency for every 
episode. The algorithm of the proposed method is shown 
below. 

The number of hunters is n and a prey is caught at q steps. 
Each hunter is observing states s1, s2, ---, sn and actions are a1, 
a2, ---, an. 
(1) In each episode, save the hunters’ coordinates and actions 

for every step, and for up to t steps. These are activity 
histories. 

(2) Give awards to all hunters’ Q-value Q (s1, a1), Q (s2, a2), 
---, Q(sn, an) if the prey is caught. 

(3)  i = q  
(4) Q(si-1, ai-1) ← (1-α) Q(si-1, ai-1)+ α [r+γ maxa Q (si, ai)]  
(5) Replace i by i-1 and repeat (4) until i ≤ q-t or i≤1. 
 

In the algorithm mentioned above, t is t = 1000. 
Combining this algorithm with CMQL makes a more 
efficient learning method. Parameter t is determined by the 
complexity of the applied problems to cover almost all states 
at the initial setting [23][24][25][26]. 

Although learning has become early in the proposed 
method, final learning results tend to deteriorate compared 
with the conventional methods without sharing activity 
histories. The learning accuracy of the proposed method 
becomes worse by learning actions of other hunters at the 
final learning stage. For this reason, the learning rate using 
other hunters’ actions is decreased according to the number 
of episodes. Influence on learning by other hunters’ actions 
is lessened as learning progresses. This will be an approach 
that utilizes other hunters’ activity histories at the early 
learning stages and uses only each hunter’s history at the 
final learning stage.  

E. Control of Learning Rate 
It is difficult to find an optimal action if a hunter learns 

other hunters’ actions in the final stage of learning. The 
learning rate of learning other hunters’ activity histories 
should be decreased in proportion to the number of episodes. 
If other hunters’ activity histories are used at the last stage of 
learning, learning accuracy will reduce slightly. It does not 
become bad by learning only for one’s history, and the 
learning rate at the time of updating for other hunters’ 
activity histories should be gradually made small. 

The influence of other hunters’ activity histories on 
learning was reduced with the number of times of learning. 
This method (hereinafter referred to as Turned Experience 
CMQL (TECMQL)) is a learning approach that utilizes other 
hunters’ activity histories in the early stage of learning and 
only its own history in the final stage. 

The following formula defines the learning rate at 
learning other hunters’ activity histories.  

 

)/(1 rateepisodeother +
=

a
a                                           (6) 

 
where, αother is a learning rate the updates the Q-value using 
other hunters’ activity histories and rate is a constant that 
determines reduction rate of the learning rate. The learning 
rate at learning using other hunters’ actions should be 
decreased according to the number of episodes. The value of 
parameter rate is determined to eliminate the effect of other 
hunters’ actions in proportion to the number of episodes. 

V. EXPERIMENTS 
In this section, the proposed method was applied to 

hunter games to confirm its validity.  

A. Outline of Experiments 
Experiments compare learning efficiency of the 

following three methods. 
 

- Proposed method: CMQL using other hunters’ activity 
histories (referred to as Sharing Experience CMQL 
(SECMQL)).  
 
- Compared method: CMQL using only each hunter’s history 
(referred to as Own Experience CMQL (OECMQL)). 
 
- Conventional method: CMQL that does not use activity 
histories. 
 

These three methods were applied to a hunter game in a 
maze environment and two-prey hunter game.  

B. Experiment 1: Hunter Games in Maze Environment 
The performances of the three methods mentioned above 

were compared in the hunter game in a maze environment. In 
this case, hunters learn ways of bypassing walls in the maze 
and leading a prey to the place where it is easy to catch using 
the walls. The positions of the walls do not change from the 
beginning of this experiment. Walls are grasped by the 
absolute coordinate system. In this experiment, a partial state 
of CMQL consists of a relative coordinate from a hunter to 
any other hunter, a relative coordinate from the hunter to a 
prey, and an absolute coordinate of the hunter itself. Actions 
can be learned considering the positions of walls in each 
partial state.  

Experimental conditions were as follows: 
 
- Size of field: 8 × 8 
- Number of walls in the mazy field: 21 (cf. Fig. 7) 
- Number of hunters: n = 3 
- Action selection strategy: ε-greedy (ε = 0.01) 
- Prey’s action: It escapes from hunters. 
- Capture state: Four lattices in left, right, top, and bottom 
of a prey’s position are surrounded by hunters or walls. 
- Cost per one time step: 0.05 
- Learning rate: α = 0.2 
- Discount rate: γ = 0.8 
- Maximum number of learning episodes: 300000 
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     - Reward of hunter that caught a prey directly: 5 
     - Reward of hunter that did not caught the prey directly: 4 
 

In this experiment, only three hunters cannot catch a prey 
without making use of walls. Hunters will learn actions that 
guide the prey near walls and catch it using the walls. At 
least two or fewer hunters can catch a prey if they use walls. 
In this case, one hunter could guide the prey for the other 
two hunters to catch it. A slightly reduced reward was given 
to the hunter that did not catch the prey directly for its 
contribution to the catching. 

Results are shown in Fig. 8. The horizontal axis indicates 
the number of episodes and the vertical axis indicates the 
time steps to catch a prey from an initial state. Every plot 
shows the average time steps to catch a prey of every 100 
episodes. The fewer the time steps results in better action 
patterns that can be learned. 

The learning of SECMQL became earlier until near 
episode no. 5000 than other methods, but the final learning 
result was bad compared with other methods. On the other 
hand, OECMQL could catch with fewer steps compared with 
CMQL. SECMQL’s learning accuracy was deteriorated by 
learning other hunters’ actions in the final stage of learning. 

C. Experiment 2: Two-Prey Hunter Games 
The performances of the three methods mentioned above 

were compared in a hunter game that has two preys. In this 
game, the hunters’ purpose is to catch one of the two preys. 
Given that the candidate actions of a hunter increases in 
number, learning becomes difficult compared with the 
problem of one prey. In this experiment, a partial state of 
CMQL consists of a relative coordinate from a hunter to any 
other hunter and two relative coordinates from the hunter to 
two preys. Given that the positions of both preys can be seen, 
actions can be learned considering the two preys. 

Experimental conditions were as follows: 
 

 
- Size of field: 8 × 8 
- Number of hunters: n = 3 
- Action selection strategy: ε-greedy (ε = 0.01) 
- Prey’s action: It escapes from hunters. 
- Capture state: At least two hunters exist in left, right,  

      top, and bottom of one prey. 
- Cost per one time step: 0.05 
- Learning rate: α = 0.2 
- Discount rate: γ = 0.8 
- Maximum number of learning episodes: 300000  
- Reward of hunter that caught a prey directly: 5 
- Reward of hunter that did not catch the prey directly:4  
 
In this experiment, preys observe all hunters’ positions 

and they escape from hunters based on the hunters’ 
coordinates. A slightly reduced reward was given to the 
hunter that did not catch a prey directly for its contribution to 
catching.  

Results are shown in Fig. 9. In this experiment, the 
learning efficiency of SECMQL is the best in the early stages 
of learning. Given that action patterns that lead to catching in 
the early stages of learning by only one hunter are 
insufficient, it is useful to use other hunters’ activity histories 
for learning. 

However, OECMQL found good action strategies over 
100000 episodes. Obtaining good action strategies improves 
the way a hunter individually learns in the final stage. 

D. Experiment 3: Hunter Games in Maze Environment after 
Control of Learning Rate 
Performance was compared with the cases where they are 

with or without reducing learning rate of hunter games in a 
maze environment. TECMQL was added to the three 
methods of Experiments 1 and 2 as a compared method. 
Experimental conditions were the same as Experiment 1, and 
the rate of TECMQL was 500.  

Results are shown in Fig. 10. In this experiment, 
OECMQL shows the best learning result. TECMQL also 
showed almost equivalent learning result to that of 
OECMQL, while TECMQL maintained good efficiency in 
the early stage of learning.  

E. Experiment 4: Two-Prey Hunter Games after Control of 
Learning Rate 
Performance was compared with the cases where they are 

with or without reducing learning rate of hunter games that 
have two preys. The compared method was the same as 
Experiment 3. Experimental conditions were the same as 
Experiment 2, and the rate of TECMQL was 10000. The 
results are shown in Fig. 11.  

In this experiment, TECMQL discovered a strategy that 
could catch a prey with fewer steps than other methods. 
From these results, it seems to be effective to assemble a 
rough action strategy using actions of other hunters in the 
early stages of learning, and then to learn the action strategy 
that is suitable for each hunter by individual learning.  
 
 

        

        

        

        

        

        

        

        

Figure 7.  Maze environment. 
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In addition to Experiment 3, TECMQL found actions that 
were  easy  to  catch  a  prey  rather  than  the  conventional 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
methods in different environments. However, it is necessary 
to adjust the learning rate according to the environments. 

 
 

Figure 11.  Results of the proposed method for two-prey game  
                 after control of the learning rate. 

Number of episodes (* 100) 

Figure 9. Results of the proposed method for two-prey game. 

Figure 8.  Results of the proposed method for maze task. Figure 10.  Results of the proposed method for maze task   
                 after control of the learning rate. 
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TABLE II. Convergent average steps. 
 

 
 
 
 
 
 
 
 

F. Convergent Average Number of Steps for Each Method 
     Table II shows the convergent average steps for each 
method after each method has finished learning. TECMQL 
obtained the best average number of steps for the two-prey 
game. For the maze task game, it obtained nearly the best 
number of steps. 

VI. CONCLUSION 
     In this study, some Q-learning algorithms were applied in 
the hunter game of maze and two-prey environments. The 
composition of appropriate partial states was examined. This 
paper proposed a method that can learn in fewer trials by 
sharing activity histories among hunters. The method is 
based on MQL and CMQL, which are methods that prevent 
an explosion of the number of states. The performance of the 
proposed method was compared with CMQL. To solve the 
problem of deteriorating learning performance of the 
proposed method in the later stage of learning when using 
other hunters’ activity histories, the learning rate is decreased 
according to the number of episodes. The proposed method 
can be generalized to other multiagent environment other 
than hunter games because it uses a general Q-learning 
algorithm. 

At the present method, the control of learning rate is 
dependent on the number of episodes, but it is not controlled 
by the contents of learning. In future study, an index should 
be established to control the learning rate according to Q-
value during learning. In addition, it is considered that the 
internal states of agents will be optimized by clustering.  
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