
The DynB Sparse Matrix Format Using Variable Sized 2D Blocks
for Efficient Sparse Matrix Vector Multiplications with General Matrix Structures

Javed Razzaq, Rudolf Berrendorf, Jan P. Ecker,
Soenke Hack, Max Weierstall

Computer Science Department
Bonn-Rhein-Sieg University of Applied Sciences

Sankt Augustin, Germany
e-mail:{javed.razzaq, rudolf.berrendorf, jan.ecker,

soenke.hack, max.weierstall}@h-brs.de

Florian Mannuss
EXPEC Advanced Research Center

Saudi Arabian Oil Company
Dhahran, Saudi Arabia

e-mail: florian.mannuss@aramco.com

Abstract—The Sparse Matrix Vector Multiplication is an impor-
tant operation on sparse matrices. This operation is the most
time consuming operation in iterative solvers and therefore an
efficient execution of that operation is of great importance for
many applications. Numerous different storage formats that store
sparse matrices efficiently have already been established. Often,
these storage formats utilize the sparsity pattern of a matrix in an
appropiate manner. For one class of sparse matrices the nonzero
values occur in small dense blocks and appropriate block storage
formats are well suited for such patterns. But on the other side,
these formats perform often poor on general matrices without
an explicit / regular block structure. In this paper, the newly
developed sparse matrix format DynB is introduced. The aim is to
efficiently use several optimization approaches and vectorization
with current processors, even for matrices without an explicit
block structure of nonzero elements. The DynB matrix format
uses 2D rectangular blocks of variable size, allowing fill-ins per
block of explicit zero values up to a user controllable threshold.
We give a simple and fast heuristic to detect such 2D blocks in a
sparse matrix. The performance of the Sparse Matrix Vector
Multiplication for a selection of different block formats and
matrices with different sparsity structures is compared. Results
show that the benefit of blocking formats depend – as to be
expected – on the structure of the matrix and that variable sized
block formats like DynB can have advantages over fixed size
formats and deliver good performance results even for general
sparse matrices.

Keywords–Sparse Matrix Vector Multiplication; SpMV; Block-
ing; Vector Units; Autotuning

I. INTRODUCTION
Sparse matrices arise in many applications of natural sci-

ence and engineering. The characteristic of sparse matrices
is that almost all matrix values are zero and only very few
entries (usually less than 1%) have a nonzero value. This
sparseness property is used in special storage formats for such
matrices to store only / mainly nonzero values along with index
information. A performance critical operation on such matrices
is the multiplication of a sparse matrix with a dense vector
(SpMV) y⃗← A⃗x that may be executed many times, e.g., at
each iteration step of an iterative solver. The efficiency of the
SpMV operation highly depends on the used sparse matrix
format, the matrix structure and how the SpMV operation is
implemented and optimized according to the format. Many
techniques are known to store a sparse matrix and perform the
SpMV operation that take advantage of the nonzero structure
of the matrix. One class of formats are block formats. Block
storage formats exploit block structures of nonzero elements

in a matrix and store dense blocks of values [1]. Block formats
have several advantages for efficient SpMV executions. Storing
nonzero values together in a block can lead to an improved
spatial data locality and, by addressing more than one nonzero
value by one index entry, the overall index structure, the
memory indirections and the memory bandwidth demand are
reduced [2] [3]. Another advantage of block formats is the
use of the processor’s Single Instruction Multi Data (SIMD)
extension [4], i.e., the vector units of a processor. Such a block
approach works for dense nonzero block structures in sparse
matrices and increases the performance of the SpMV operation
significantly, even if explicit zeros are used to fill the blocks
[5].

There are two groups of blocking formats: fixed size
blocking formats that use the same fixed block size for the
whole matrix and variable sized block formats that use the
structure of the matrix to build variable sized blocks. The
advantages of fixed sized blocking formats are the possibility
of optimizing the SpMV for certain, at compile time known,
block sizes and the rather simple building of blocks by
allowing and storing explicit zeros. The advantages of variable
blocking formats are the exploitation of a non-regular matrix
structure and the ability to store different sized blocks for
a matrix. Furthermore, the two types can be combined with
different other optimization techniques, like using bitmaps [6]
[7] or relative indexing [8] [9]. There are also some block
formats that do not fit in either of these categories or use both
techniques [10].

Sparse matrices with an inherent block structure usually
arise from a regular 2D / 3D geometry associated with the
original problem. Such matrices can certainly benefit from
blocking techniques [11]. A question is whether rather general
matrices without a clear block structure can also benefit from
blocking techniques.

Additionally, for different block sizes different implemen-
tations of the SpMV kernel may be optimal. Selecting an
implementation among a set of different implementations for
a large amount of different block sizes may be a task that
can hardly be handled manually, due to the large parameter
space. Thus, using an autotuning approach for this task may
be beneficial.

The paper is structured as follows. In Section II, an
overview on related work is given. In Section III, our own
newly developed block format DynB is described, including
the description of a low overhead algorithm for block detec-

48

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tion, implementation issues of the specific SpMV operation
and optimizations. In Section IV an autotuning approach for
selecting optimal SpMV kernel implementations for different
2D block sizes is presented for the new format. The fol-
lowing Section V describes the experimental setup. Section
VI shows performance results, which compare and evaluate
relevant blocking formats on matrices without an explicit block
structure. At last, in Section VII a conclusion is given.

II. RELATED WORK
In this section, a comprehensive overview of block formats

is given, including formats where blocks are used aside with
other optimization techniques. Then, a short overview on
further block detection methods is given. At last, autotuning
methods are discussed.

As an introduction we start with a brief discussion of rather
general sparse matrix formats. The Coordinate format (COO)
[12] is the most simple and basic format to store a sparse
matrix. It consists of three arrays. For a nonzero value, the
value as well as the row and column index is stored explicitly
at the i-th position in the three arrays, respectively. The size
of each array is equal to the number of nonzeros. The order of
values stored is of no concern. The Compressed Sparse Row
format (CSR) [13] [12] [14] is one of the most used matrix
format for sparse matrices. The index structure in CSR is in
relation to COO reduced by replacing the row index for every
nonzero value with a single index for all nonzero values in a
row. This row index indicates the start of a new row within
the other two arrays. As a consequence and in difference to
COO, all values in a row must be stored consecutively.

For blocked formats, the Block Compressed Sparse Row
format (BCSR) [14] [2] is similar to the CSR format. But
instead of storing single nonzero values, the BCSR format
stores blocks, i.e., dense submatrices of a fixed size. The matrix
is partitioned into blocks of fixed size r× c, where r and c
represent the number of rows and columns of the blocks.Then,
only submatrices with at least one nonzero element are stored.
The optimal block size differs for different matrices and even
different processor platforms. Advantages of the BCSR format
are a possible reduction of the index structure, possible loop
unrolling per block, using vector units through automatic
compiler vectorization or using explicit intrinsics [15] and
many other low level optimization techniques [16]. However,
it may be necessary to store explicit zero values for blocks
that are not fully filled with nonzero values. In the worst-case,
this could lead to the same index structure as with CSR, but
with additional zeros stored for each nonzero value.

The Mapped Blocked Row format (MBR) [6] is similar to
the BCSR format. Like BCSR, MBR uses blocks of a fixed size
r×c. In addition to BCSR, bitmaps are stored that encode the
nonzero structure for each block. An advantage of this bitmap
array is, that only actual nonzero values need to be stored in
the values array, even though filled-in zeros exist. In exchange
for the reduced memory use, additional computation time is
needed during the SpMV operation.

The Blocked Compressed Common Coordinate format
(BCCOO) [17] uses fixed size blocks. It is based on the
Blocked Common Coordinate (BCOO) format, which stores
the matrix coordinates of a fixed sized block to address the
value. BCCOO relies on a bit_flag to store information about
the start of a new row. By using a bit array instead of an integer,
a high compression rate of the index information is archived.

One disadvantage of the bit_flag array is, that an additional
array is needed to execute the SpMV operation in parallel with
partition information.

The Unaligned Block Compressed Sparse Row format
(UBCSR) [5] [18] removes the row alignment of the BCSR
format by adding an additional array. However, this optimiza-
tion appears to be only applicable to a special set of matrices
where blocks occur in a recurring pattern in a row and are all
shifted.

The Variable Block Row format (VBR) [5] analyses rows
and columns that are next to each other. Their nonzero val-
ues are stored in blocks, if they have the identical pattern
of nonzero values in a row or in a column. Hereby, only
completely dense blocks are stored by VBR. It is possible
to relax the analyses of rows and columns by the use of a
threshold, which allows VBR to store explicit zeros to build
larger blocks [18].

The Variable Block Length format (VBL) [3] [19] [11],
which is also referred as Blocked Compressed Row Storage
format (BCRS), is likewise similar to the CSR format. But,
rather than storing a single value, all consecutive nonzero
values in a row are stored in 1D blocks. The blocks of the
VBL format do not have a fixed size and only nonzero values
are stored. VBL may reduce the index structure depending on
the stored matrix, but compared to CSR an additional loop
inside the SpMV is required to process all blocks in a row
and to proceed all elements in a block.

The aim of the Compressed sparse eXtended format (CSX)
[10] is to compress index information by exploiting (arbitrary
but fixed) substructures within matrices. CSX identifies hor-
izontal, vertical, diagonal, anti-diagonal and two-dimensional
block structures in a pre-process. The data structure, which
is used by CSX to store the location information, is based
on the Compressed Sparse Row Delta Unit format (CSR-
DU) [20]. The advantages of CSX are the index reduction
by using the techniques of CSR-DU and, at the same time,
the provision of a special SpMV implementation for each
substructure. However, implementing CSX seems to be rather
complex and to determine appropriate substructures in a matrix
may cause perceptible overhead.

The Pattern-based Representation format (PBR) [7] aims to
reduce the index overhead. Instead of adding fill-in or relying
on dense substructures in a matrix, PBR identifies recurring
block structures that are sharing the same nonzero pattern. For
each pattern that covers more nonzero values than a certain
threshold, PBR stores a submatrix in the BCOO format plus
a bitmap, which represents the repeated nonzero pattern. For
each of these patterns, an optimized SpMV kernel is provided
or generated. Belgin et al. state in their work [7] that it is
possible to use prefetching, vectorization and parallelization
to optimize each kernel individually. Advantages of PBR are
the possibility of providing special SpMV kernels for each
occurring block pattern as well as low level optimization for
these SpMV kernels.

The Recursive Sparse Blocks (RSB) format [21] [22] aims
to reduce the index overhead while keeping locality. By build-
ing a quadtree, which represents the sparse matrix, the matrix
is recursively divided into four quadrant submatrices, until
a certain termination condition is reached. The termination
condition for the recursive function is defined in detail by
Martone et al. in [23] [24]. The submatrix is stored in the leaf
node of the quadtree in COO or CSR format. All nodes before

49

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the leaf node do not contain matrix data and are pointers, which
build the quadtree.

The Compressed Sparse Block format (CSB) [8] [9] aims
to reduce the storage needed to store the location of a value
within a matrix by splitting the matrix into huge square
blocks. Further, row and column indices of each value are
stored relatively to each block. Due to the relative addressing
of the values, it is possible to use smaller data types for
the row and column index arrays, which leads to an index
reduction per nonzero. It is possible to order the values inside
the values array to get better performance of the SpMV
operation. The authors of the original work suggest a recursive
Z-Motion ordering to provide spatial locality. The parallel
SpMV implementation of CSB uses a private result vector per
thread, but the implementation also provides an optimization
in case the vector is not required for a block row [8].

In [25] it is shown that finding optimal nonoverlapping
dense blocks in a sparse matrix is a NP complete problem.
Here, the proof is given by using a reduction of the maximum
independent set problem, which is known to be NP complete
[26]. Moreover, [25] gives a greedy algorithm for finding 2×2
blocks within a sparse matrix. This algorithm is based on a
decision tree for finding only dense blocks, allowing no fill-in
within these blocks.

Other methods that can be used for blockfinding are for
example the kd-tree [27] and r-tree [28] data structure /
algorithm known from spatial databases. Both build (search)
tree data structures using spatial location of points or objects
within a search region.

Various other publications [29] [30] [31] [32] [33] discuss
the use of autotuning approaches, which can be used for a
wide range of optimizations. E.g., the selection of format
parameters, specific optimization techniques or the selection of
the best suited formats. Sophisticated auto-tuning approaches
are based on complex models [31] [32] or mathematical and
machine learning concepts [33].

In [29] Byun et al. present an auto-tuning framework for
optimizing the CSR format, e.g., by fixed-sized blocking. This
framework is used to find the optimal blocking for the resulting
BCSR format for a given input matrix and used hardware
platform.

III. DEVELOPMENT OF A 2D VARIABLE SIZED BLOCK
FORMAT

In this section, a newly developed variable sized block
format, called DynB, is described. The goal of DynB is, to
find rectangular 2D blocks within a matrix to efficiently utilize
a processor’s vector units for the SpMV. At first, a simple and
fast algorithm for the detection of variable sized 2D blocks is
introduced. Then, the overall structure of the format is given.
Afterwards, the SpMV kernel is presented and at last code
optimization techniques are considered.

A. Finding Variable Sized Blocks
As described in Section II, the CSX format uses a sophis-

ticated but time consuming algorithm to find even complex
nonzero substructures within the entire matrix. Although the
speedup of the SpMV operation may be high, many SpMV
operations may be neccessary to compensate the cost of the
detection algorithm. In contrast, the VBL format uses a simple
and fast algorithm to find just 1D blocks within each row of a
matrix. However, the speedup of the SpMV may not be as high
as for CSX. For the introduced DynB format a fast algorithm

Input: A[][], T , Smax
Output: B[][]

1: for i← 1,nRows
2: for j← 1,nColumns
3: if A[i][j] ̸= 0∧A[i][j] /∈ B
4: r← 1, c← 1, rr← 0, cc← 0
5: added← T RUE
6: while added
7: added← FALSE
8: rr← r−1, cc← c−1
9: search(next column n with A[i : i+ rr][n] ̸= 0)

10: search(next row m with A[m][j : j+ cc] ̸= 0)
11: if r∗ (n+1− j)≤ Smax∧ t(A[i : i+ rr][j : n])≥ T
12: c← n+1− j
13: added← T RUE
14: end if
15: if (m+1− i)∗c≤ Smax∧t(A[i : m][j : j+cc])≥ T
16: r← m+1− i
17: added← T RUE
18: end if
19: end while
20: B← B+A[i : i+ rr][j : j+ cc]
21: end if
22: end for
23: end for

Figure 1: Fast Heuristic for the Detection of 2D Blocks.

to find rectangular 2D blocks over the entire matrix should
be developed. With these 2D blocks, a reasonable runtime
improvement for the SpMV operation should be achieved, by
using advantages similar to BCSR, while possibly generating
less fill-in.

The algorithm we developed to find 2D block structures
of nonzero elements is a fast greedy heuristic. It tries to find
possible block candidates that should be as large as possible,
even if nonzeros are not direct neighbors, i.e., fill-ins of
explicit zeros are allowed up to a certain amount per block.
Consequently, a threshold T is used that indicates how dense
a block candidate, which has been found by the heuristic,
needs to be in order to be stored as a block. That means T
is a measure for how many fill-in is allowed in a block. The
nonzero density t(block) of a block has to satisfy the relation

t(block) = nnzblock/blocksize
= nnzblock/(nnzblock + zeros)
= nnzblock/(r ∗ c)
≥ T

where nnzblock represents the number of nonzero values in the
block and r,c the number of rows, columns of that block.

The algorithm shown in Figure 1 describes a simplified
version of the heuristic, which is used to find the blocks in a
matrix. The heuristic takes a sparse matrix A[][], the desired
threshold T (maximum portion of nonzero values in a block)
and a maximum blocksize Smax (usually according to the size
of the vector units) as an input. It gives the converted blocked
Matrix B[][] as output. The algorithm iterates rowwise over the
nonzero elements of the original matrix. If a nonzero value
of the original matrix is not already assigned to a block, a
new 1× 1 block will be created. Then this block will be

50

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A =

0 a1 a2 0 0 0 0 0

0 a3 a4 0 0 0 0 0

0 0 a5 0 0 0 a6 a7

0 0 a8 0 0 0 a9 a10

a11 0 0 a12 a13 a14 0 0

a15 0 0 a16 0 a17 0 0

a18 0 0 a19 a20 a21 0 0

0 a22 0 0 0 0 0 0




values = {a1,a2,a3,a4,0,a5,0,a8,

a6,a7,a9,a10,
a11,a15,a18,
a12,a13,a14,a16,0,a17,a19,a20,a21,
a22}

block_start = {0,8,12,15,24}
row_index = {0,2,4,4,7}

column_index = {1,6,0,3,1}
block_row = {4,2,3,3,1}

block_column = {2,2,1,3,1}

Figure 2: The DynB Format storing Matrix A with a Threshold of 0.75.

expanded successively with new columns and rows in each
iteration of the while loop. Adding a new column or row
means adding the column/row with the next nonzero element
and all fill-in columns/rows with zeros that are located between
the outermost block column/row and the column/row with the
next nonzero. Column/rows are only added to the block if the
nonzero density of the block after adding these columns/rows
would be large enough. If not enough nonzero elements would
be added, i.e., the if statements for both column and row fail,
the heuristic will finish the block. After all blocks are found,
the memory for the DynB data structure is allocated and filled
with the actual values and index structure. This data structure
is described in the following section.

B. Structure of the Format
The DynB format relies on six arrays. In the values array

the nonzero values (plus fill-in zeros) are consecutively stored
in block order and rowwise within a block. The block_start

pointer stores the starting position of each block in the
values array. The row_index and the column_index store
the location of the upper left corner of each block. This is
similar to the COO format for single values, but here, fewer
indices are stored explicitly, because the indices are used to
address a whole block of values. Finally, the block_row and
block_column arrays store the column and row size of each
two dimensional block, i.e., the block size is variable. Below,
the purpose of the six arrays are described as well as why
certain data types were chosen and how many entries they
contain:
• values[nnz+zeros] : double contains the values of

the matrix.
• rowIndex[blocks] : int stores the row index in

which a block starts.
• columnIndex[blocks] : int stores the column index

in which a block starts.
• blockStart[blocks] : int stores the start point of

each block inside the values array.

for (int i = 0; i < nonZeroBlocks; ++i){
//general SpMV for any blocksize
for (int ii = 0; ii < blockRow[i]; ++ii){
double s = 0.0;
int jj = blockStart[i] + (blockColumn[i]*ii) ;
for (int j = 0 ; j < blockColumn[i]; ++j, ++jj){

s += values[jj] * x[columnIndex[i]+j];
}
y[rowIndex[i]+ii]+=s;

}
}

Figure 3: SpMV implementation of DynB for general blocks.

• blockRow[blocks] : unsigned char stores the num-
ber of rows a block contains. The unsigned char data
type is used because the maximum allowed block size
is 64, according to the size of vector units, which
means that blockRow×blockColumn≤ 64 must hold.

• blockColumn[blocks] : unsigned char stores the
number of columns a block contains.

• nonZeroBlocks : int stores the quantity of blocks.
• threshold : float needs to be set prior to the

conversion of a matrix into the DynB format. The
threshold needs to be positive and smaller or equal
to 1.0 (e.g., 1.0 = 100% nonzero values, 0.5 = 50%
nonzero values in a block are allowed).

All data types are choosen as small as possible to reduce
memory bandwidth demands, which are critical in SpMV
operations. Figure 2 shows in an example how a matrix A
is stored using the DynB format.

C. SpMV Kernel
The SpMV implementation of DynB iterates over the

blocks, which have been build before. A general and simplified
code version is shown in Figure 3. Initially, beside a generic
code version able to handle arbitrary block sizes, we imple-
mented additionally optimized code versions for special and
often found block structures (single nonzero values, horizontal
and vertical 1D blocks and the general case of all other 2D
block sizes). Further block kernels were implemented for the
autotuning (see Section IV-A).

D. Code Optimization
It was already shown in [34] that using vector intrinsics

to address the vector units of a processor can lead to a
performance gain for the SpMV operation. However, with this
technique the programmer needs to write code on an assembler
level, which can be tedious and error prone. Another approach,
which showed good results in [34], is to leave the utilization
of vector units solely to the compiler. For the Intel Compiler
icc/icpc, automatic compiler vectorization is enabled for the
optimization level -O2 and higher levels [15]. The compiler
can use various optimization techniques and auto-vectorize
code, where possible. To achieve this, the compiler has to
be provided with appropriate information. E.g., by using the
-x compiler option the information on the target processor
architecture / instruction set can be provided [15]. Without
this option, the compiler uses a default (older) instruction
set that can not utilize abilities of current vector units. A
programmer can give the compiler additional hints, e.g., where
data can be assumed as aligned, if the compiler is not able to

51

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Offline

Kernel

generation

Matrix

generation

Execution

of Benchmarks

Select fastest

kernel for

each block size

Create

optimized

executable

Online

SpMV

execution

Figure 4: Simplified Process of the DynB Autotuning.

detect this automatically [15]. Furthermore, different pragmas
exist to force the compiler to execute different actions. With
#pragma simd a compiler is requested to vectorize a loop
even if the compiler ascertains that this is not a good idea.
There are many other possible optimizations as well for the
blocked SpMV. Loop unrolling can be executed manually
by the programmer, if the blocksizes are known beforehand.
With pragma unroll, the compiler can be forced to unroll a
loop. Furthermore, special cases of the blocked SpMV can
be considererd, e.g., for 1D blocks, resulting in single loops
instead of nested loops.

IV. AUTOTUNING FOR 2D BLOCKS
By enabling variable block sizes, many blocks of different

sizes may be found. Due to the design decision (and optimiza-
tion) of using unsigned char and therefore 8 Bits to code a
block size, the DynB format supports 280 different block sizes.
It would be possible to compute the SpMV operation using
one general kernel code for arbitrary block sizes that iterates
over both dimensions of the blocks (see Figure 3 for such a
general code version). This very simple implementation is not
expected to deliver the optimal performance, as it contains
two additional loops with unknown iteration counts, which
can not easily be optimized by a compiler. It is expected
that the optimal implementation for each block size is at least
slightly different. E.g., the use of vector units may be beneficial
for larger, but not for very small blocks, e.g., single values.
Additionally, the optimal strategy to handle specific block sizes
is processor specific. Finding the optimal implementation for
each possible block size manually may be time consuming.
Thus, an autotuning approach is used for the DynB format
to find offline optimal implementations. The focus of the
developed autotuning approach is on the optimization of the
SpMV operation for the DynB format, which uses dynamic
block sizes.

A. Description of the Autotuning Approach
The developed autotuning approach for the DynB format

has similarities to the pOSKI framework [29]. This framework
is used for finding the optimal blocking for a given input
matrix and used hardware platform. The autotuning approach
developed in this work focuses on the identification of optimal
implementations for all possible block sizes of the DynB
format.

The basic idea of the autotuning approach is to identify the
optimal implementation for each block size individually, using

a large set of possible implementations and synthetic bench-
mark matrices with different sparsity pattern. The simplified
process of the autotuning is presented in Figure 4. In a first
step, the possible SpMV kernels and the benchmark matrices
have to be generated. A large set of matrices is thereby created,
with each matrix containing only one specific block size.
Afterwards, the SpMV is executed using all kernels and the
benchmark matrices, while the execution time is measured. The
gathered information can then be used to identify the fastest
implementation for each specific block size. These implemen-
tations are then used to generate an optimized executable,
which is used to execute the actual SpMV operation. The
complete autotuning is required only once for the specific
hardware platform and can be executed offline. This means
there is no overhead for the the SpMV operation applied on
an actual matrix, caused by the autotuning. In the following,
the different steps are explained in more detail.

In the first step, the kernel generation, the required SpMV
kernel source code for the for all possible block sizes is gen-
erated. Many kernels can be generated automatically, because
they follow a fixed pattern. There are additional kernels of
relevance, e.g., implementations using intrinsics, that can not
easily be generated automatically and therefore hand-tuning is
necessary is this cases. The following list shows the set of
kernels used for most block sizes:
• normal: The default kernel, normally used in the

general case. Consists of two loops with variable loop
count.

• loop: Very similar implementation as the normal
kernel. Instead of variable loop counts, the known
block sizes are used as static loop counts.

• singleLoop: Special kernel for one dimensional blocks
only. Implementation is identical with the loop kernel,
but only using one of the loops. The other loop is not
required, as its iteration count would be 1.

• unroll: Identical loop implementation as the loop
kernel. Additionally the #pragma unroll directive is
used to generated unrolled code with different unroll
factors.

• novec: Identical loop implementation as the loop
kernel. Additionally the #pragma novector directive
is used to prevent a vectorization of the code.

• simd: Identical loop implementation as the loop ker-
nel. Additionally the #pragma simd directive is used
to force vectorization of the code.

• plain: The kernel is implemented without any loops.
All operations are manually unrolled.

• intrinsic: Similar to the plain kernel, the kernel is
implemented without loops. The calculation is imple-
mented using low level intrinsic functions. The kernels
have to be written manually.

In the basic DynB format the elements of every block are
stored in row-major order. For the autotuning every kernel is
additionally generated for a column-major order organization
of the blocks. The creation of the format has been changed as
well to allow both block types. This may allow a more efficient
vector unit utilization.

Figure 5 shows the usage of vector units with a column-
major order and row-major order. In column-major order,
vector units are used to process multiple rows at once, which
allows a very efficient calculation. Memory accesses can be
easily aligned and consecutive. Furthermore, after calculating

52

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Column-major Order

(b) Row-major Order

Figure 5: Calculation of 2D Blocks using Vector-Units.

the last elements of the rows, the result of the vector unit is
simply written to the y⃗ vector.

On the other hand, in row-major order, vector units process
elements of the same row. This requires an additional reduction
operation at the end of every row, as the partial results of the
vector unit lanes have to be combined.

The matrix generation for the benchmark matrices is also
done in the first autotuning step. For each block size a set
of synthetic benchmark matrices is generated. Thereby, the
matrices contain one specific block size only. Furthermore, for
each block size three different distributions of the elements
and two different nonzero densities are created. This is done to
analyze, if the matrix structure has an impact on the individual
kernel performance.

Figure 6 presents the three used distributions. In every
distribution the blocks are placed with a safety margin around
them, to prevent the greedy block finding algorithm of the
DynB format to combine multiple blocks into one bigger
block. The first structure is called round robin and it distributes
the elements evenly over the columns of the matrix. Starting
in the first row and column, the blocks are placed in increasing
columns. When the end of the matrix is reached, the column
index is reset. The resulting patterns resamble squashed diago-
nals. The second structure is a simple diagonal pattern, because
of the safety margin there is not an element in every row. The
last structure selects the column index of the blocks randomly.
The number of entries per row is still fixed, also the safety
margin is still be respected.

The second step of our autotuning uses the generated
kernels and matrices and measures the SpMV execution time.
Furthermore, for each kernel multiple versions should be used,
using different compilers, optimization levels and inlining of
code.

In the third step the fastest kernel for each individual block
size has to be identified. This can simply be achieved by

X

X

X

X

X

X

X

X

X

(a) Round Robin

X

X

X

X

X

(b) Diagonal

X

X

X

X

X

X

X

X

X

(c) Random

Figure 6: Illustration of the three different structures used for the synthetic
matrices of the DynB autotuning. Every red square represents a block in the
DynB format.

comparing the measured runtimes of all kernels for one specific
block size. Further complexity is introduced by the different
matrix structures used, which may require a comparison over
a larger data set.

The last step of the offline autotuning is the creation of
an optimized executable for the SpMV execution. The kernels
identified in the previous step are combined into one large
SpMV kernel, to provide a proper implementation for every
possible kernel. Further analysis may be required to identify if
it is suitable to provide an implementation for every of the 280
possible kernels. For each block in a matrix, the proper kernel
has to be selected at runtime. The selection of the kernel has
therefore to be very efficient, to prevent excessive branching.
This will be described in more detail in the following Section
IV-B, where the implementation is described.

The developed autotuning potentially can increase the
performance of the DynB format. The default implementation
does handle most of the block sizes identically. For small
blocks the loop overhead of the general implementation might
be too high, while for larger blocks the use of vector units may
be beneficial. One possible problem with the use of individual
kernels is the introduced branching that is necessary to handle
the different sizes. For every block the correct kernel has to be
identified and executed, which can potentially slow down the
SpMV. Furthermore, the amount of program code could result
in problems with the instruction caches. If a large number
of different kernel implementations is used, the required code
could not fit in the available caches.

Another problem may occur because of the developed auto-
tuning process itself. The initial assumption of the autotuning
is, that the performance result of the individual kernels and
synthetic matrices can be used to determine the proper kernel
for a real matrix. It is also assumed, that the performance

53

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

numbers of the sequential execution can be used to find the
optimal kernels for a parallel executions. It is possible that
these assumptions do not hold true, which would result in
wrong findings.

B. Implementation
The autotuning approach can be automated using scripts

(e.g., we used Python) in combination with the SpMV imple-
mentation. As described in the previous section, most of the
kernels can be generated automatically. These kernels have
one basic pattern, which can be adapted to different block
sizes. This is different for some more specialized kernels,
which need to be written by hand. One example for this are
implementations using intrinsics. The kernel creation scripts
take manually written kernels and the general templates to
create the source code for the kernels for every block size.

The benchmarking script uses the kernel source code to
compile a special version of the DynB SpMV operation. The
SpMV operation is executed using the synthetic matrices and
the execution time is measured. The results can ce stored, e.g.,
in a database. This step is repeated several times for every
kernel using different compilers and optimization options.
Finally, the selection of the fastest kernels and the creation of
the optimized executable can also be automated using scripts.

An important part of the implementation is the integration
of the optimized block kernels into the SpMV operation of the
DynB format. As already discussed in the previous section,
280 different block sizes and kernels are possible, which
potentially introduces a lot of additional branching. To handle
this efficiently a jumper table should be used either by function
pointer arrays generated by a programmer or by a switch case
that is handled by the compiler. Many compilers are able to
create a jumper table from a switch case if certain limitations
are respected, e.g., the number of states are within a certain
limit. This behavior has been verified for the Intel compiler,
by analyzing the generated assembler code. The analysis also
showed, that the optimization can be applied in the case that
not only consecutive numerical values are used. In this case,
the missing values are filled with jump directives to the default
case of the switch case statement.

V. EXPERIMENTAL SETUP
The experiments to evaluate block formats were run on

a system with an Intel Xeon E5-2697 v3 CPU (Haswell
architecture) [35] and the Intel C++ Compiler version 2017
[15]. A set of 78 large test matrices from the Florida Sparse
Matrix Collection [36] and SPE reference problems [37] was
taken as test matrices. Most of the chosen matrices do not
have an overall explicit block structure of nonzeros. Compiler
optimization and AVX2 instruction set were used, if possi-
ble. The following block matrix formats were chosen to be
compared in the experiments. They represent a selection of
1D and 2D block formats with fixed and variable sizes as
well as more arbitrary pattern (CSX) which have shown to be
well performing, at least on matrices with an explicit block
structure. In parentheses is shown whether fixed or variable
sized blocks can be used.
• DynB (variable): own implementation according to

Section III, threshold T varied from 0.55 (slightly
more nonzeros than fill-in) to 1.0 (only nonzeros, no
fill-in).

• VBL (variable): own implementation according to [3].

BCSR

10−2

10−1

100

3x3
Blocks

T
im

e
[s

]

VBL DynB

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Threshold

CSX

Figure 7: SpMV with all Blocking Formats, Best implementation.

TABLE I: Count of minimal SpMV execution times

BCSR VBL DynB CSX

0 4 32 42

• CSX (variable): library taken from the authors of the
original work on CSX [10] [38], no influence on
implementation.

• BCSR (fixed): own implementation according to [14],
block dimensions: 2×2, 3×3, 4×4

Moreover, the autotuning approach for the DynB format
was measured for selected block kernels. The other block
kernels were chosen to be optimized by the compiler, giving it
in all cases of the switch statement the exact block dimensions
as constants. For all experiments, the SpMV operation was
executed 100 times and the median of these execution times
was taken as the resulting execution time, to exclude uncer-
tainty of the measurements. Subsequently, this is referred to
as execution time.

VI. RESULTS
In this section we present selected results of the executed

experiments. When boxplots are shown, the quartiles over
the results for all matrices are given, whiskers extend to the
last datapoint within 1.5× interquartile range and outliers are
drawn as points.

A. Comparison of the Formats
Figure 7 shows the execution times of the SpMV for

the formats of interest. Different optimizations were applied
and the on average best implementation was chosen (for
DynB optimizations see Section III-D). For BCSR different
blocksizes are possible. In the figure, the results for the 3×3
blocks are shown which have shown the best results over all
supported blocksizes.

The base BCSR version showed the weakest performance
of all formats. An explanation is the introduced fill-in of

54

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

5

10

15

20

kk
t_

po
wer

G3_
cir

cu
it

nlp
kk

t2
00

Matrix

C
oe

ffi
tie

nt
 o

f V
ar

ia
tio

n
[%

]
CV<5 5<=CV<10 10<=CV<20 20<=CV

Figure 8: Coefficient of Variation of SpMV with DynB over all Thresholds
per Matrix.

nonzero values of the format for the fixed 2D block sizes for
the rather general matrices used (i.e., without regular block
structures). Therefore, a first conclusion is already that the
BCSR format should be used only for matrices where an
appropriate nonzero pattern exists in the matrix.

Comparing VBL, DynB and CSX shows that these formats
are on a similar SpMV performance level. However, the (one-
time) creation times for the VBL format were much shorter
than the complex detection algorithm for the CSX format, due
to the simpler heuristics used in VBL. For the DynB format,
there seem to be onyl minor differences dependent on the
threshold T .

Table I summarizes the best ranking of the examined
formats, i.e., when a format with any setting resulted in the
minimal execution times of the SpMV operation. It can be
seen that the DynB is the second best format for this setting
behind the CSX. However, the algorithm for block detection
in the CSX is much more complicated than the detection
of the rectangular blocks for the DynB format. Additionally,
parallelizing the CSX format is difficult, for example as it is
possible that blocks overlap over a row which is circumvented
in the creation process of the DynB format. Overlapping blocks
in rows computed by different threads requires some form of
(costly) synchronization, e.g., atomic operations or reductions
on private buffers which can be quite costly.

B. Analysis of the DynB Format
In this subsection the DynB format is analyzed in more

depth regarding the influence of the threshold T and the
autotuning.

1) Influence of the Threshold T : Here, we begin initially
with the standard / base version of the DynB and used compiler
optimization level O3 and the AVX2 instruction set. Figure 8
shows the coefficient of variation of the SpMV execution time
for the DynB format for the test matrices, over all thresholds
T for the allowable fill-in of a block. It can be seen that,
for some matrices varying the threshold T has a significant

[1x1]

[5x4]

[1x1]

[3x5]

[5x3]

[1x1]

[4x3]

[1x1]

[2x4]

[4x2]

[1x1]

[3x2]

[1x1]

[1x3]

[3x1]

1.352 s

1.391 s

1.503 s

1.373 s

1.608 s 0.949 s

0.0e+00

5.0e+07

1.0e+08

1.5e+08

0.55 0.6 0.65 0.7/0.75 0.8 >=0.85
Threshold

B
lo

ck
co

un
t

Blocks

[1
x1

]

[1
x3

]

[2
x1

]

[2
x2

]

[2
x3

]

[2
x4

]

[3
x1

]

[3
x2

]

[3
x3

]

[3
x4

]

[3
x5

]

[4
x2

]

[4
x3

]

[4
x4

]

[4
x5

]

[5
x3

]

[5
x4

]

Figure 9: Blocks Found for DynB with Different Thresholds, nlpkkt200 Matrix.

0

20

40

60

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Threshold

C
ou

nt
Ranking Rank 1 Rank 2 Rank 3

Figure 10: Ranking of DynB Thresholds.

impact on the execution time. This is due to the different blocks
that were found by the heuristic. Figure 9 shows the found
blocks and their execution times according to the threshold
for the example matrix nlpkkt80. The class of nlpkkt matrices
have shown the highest coefficient of variation. It can be seen
that, for several different thresholds the same block sizes were
found. Consequently, the execution times for the same block
sizes do not differ significantly. Moreover, when blocksize
1× 1 is predominant (i.e., such blocks consist of a single
nonzero value), the execution times are highest. Here, a lot
of overhead arises due to the indices that have to be stored
for only single values. The best execution times are achieved,
when the threshold is higher, i.e., less fill-in occurs, and (for

55

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0

0.2

0.4

0.6

0.8

1.0

M
L_

Gee
r

nd
24

k
nd

6k

co
ns

ph

at
m

os
m

od
d

G3_
cir

cu
it

nlp
kk

t2
40

to
rs

o1

at
m

os
m

od
l

nlp
kk

t1
60

nlp
kk

t2
00

ra
jat

31

af
_s

he
ll1

nlp
kk

t1
20

tm
t_

sy
m

af
_0

_k
10

1

Cub
e_

Cou
p_

dt
0

nlp
kk

t8
0

pw
tk

matrixname

N
or

m
al

iz
ed

 T
im

e
0.55 0.75 1.00

Threshold

Figure 11: Normalized Times for selected Matrices with DynB, Different
Thresholds.

this matrix) a lot of 1D blocks are found.
For the G3 circuit matrix the results are similar (not

explicitly shown here), but its coefficient of variation is lower,
what can be explained by the lower number of nonzeros,
so execution time is primarily lower. The matrix with the
lowest coefficient of variance is the kkt power. For this matrix,
changing the threshold did not result in different blocks, due
to the structure of the matrix. Hence, the execution time was
the same for all thresholds.

Figure 10 shows the count of the ranking (rank 1 to rank
3, related to time) of the thresholds across all matrices, i.e.,
how often a threshold resulted in the fastest, 2nd fastet and
3rd fastest time. Overall, it can be seen that higher thresholds
(less or no fill-in) could lead mostly to a good ranking. Medium
threshold did not result in a good ranking for the test matrices.
However, in some cases, a low threshold (sufficient amount of
fill-in) result in better rank counts again.

This is further shown in Figure 11. Here, the normalized
times (Time ∈ [0.0,1.0]) for selected matrices with different
structures is given for different thresholds. It can be seen
that not for all matrices a higher threshold leads to short
execution times of the SpMV operation. For example, the
matrices ML Geer, nd24k and nd6k show the best results
with a low threshold (thus more fill-in). Figure 12 shows the
absolute results for the matrix ML Geer. With a higher amount
of fill-in it is possible to find more larger blocks (8× 8 or
4×4). Moreover, when many small blocks are found the use
of the AVX2 instruction set is even disadvantegous. With this
instruction set the vector size of 4 with the Haswell architecture
is assumed. Thus the shortest SpMV execution times can be
achieved with different settings, dependent on the threshold.

2) Influence of the Autotuning: The results of the autotun-
ing approach can be seen in Figure 13. Here, the autotuning
described in Section IV-A was used. Four different settings are
shown:

1) autotuned transposed

0.0

0.1

0.2

0.6 0.7 0.8 0.9 1.0
Treshold

T
im

e[
s]

predominantblock 2x2 4x4 8x8

Figure 12: SpMV of ML Geer for different Threshold.

2) autotuned untransposed
3) comp. transposed
4) comp. untransposed

Items 1 and 2 are partially autotuned kernels, with 30 au-
totuned blocks and the rest of the kernels transposed or un-
transposed and optimized by the compiler (see Section IV-A).
Compiler guided (comp.) denotes that the compiler is provided
with the constant block sizes per kernel (constant propagation
is therefore possible at compile time) and the compiler is thus
able to optimize these kernels. The compiler guided version
was also executed with transposed and untransposed blocks.
It can be seen that all approaches mostly lead to a reasonable
speedup. However, the compiler guided optimization, i.e., pro-
viding the Intel compiler with the information about (constant)
blocksizes at compile time, results in the best speedup, even
compared to the code version proposed by autotuning. This is
consistent with the results presented in [34], where different
optimization setting where examined.

3) Possible Applications: As described in Section I the
SpMV is a central operation in iterative solvers, such as
Conjugate Gradient (CG) or Generalized Minimal Residual
(GMRES) [12]. Finding dense subblocks with the algorithm
described in Figure 1 can be used in a one time prepro-
cessing step before executing the actual solver. Then, the
SpMV operation can be executed repeatedly with the same
matrix within the iterative solver. Matrices where 1×1 blocks
are not the predominant block size found by the algorithm
are most suitable for the use with the DynB format. There
are 44 matrices from our testset for which this is true.
These matrices mostly arise from 2D / 3D problems with
different origin, e.g., RM07M (CFD problem) [36], Serena
(gas reservoir FEM problem) [36], Geo 1438 (geomechanical
problem) [36], SPE matrices (reservoir simulation problems)
[37]. But there are also matrices that arise from other problems,
like TSOPF RS b2383 (power network problem) [36], nlpkkt
matrices (optimization problems) [36] that are suitable for the
DynB format. Spyplots of some of these matrices are given

56

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1.0

1.5

2.0

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Threshold

sp
ee

du
p

autotuning transposed

autotuning untransposed

comp transposed

comp untransposed

Figure 13: SpMV with DynB Format, Different Optimizations.

(a) Serena (b) TSOPF RS b2383

(c) RM07R (d) nlpkkt80

Figure 14: Example Matrices from the Testset.

in Figure 14. It can be seen that the matrices may have very
different structures and they also have different properties, such
as positive definiteness or symmetry. However, they all have a
lot of densely packed regions, i.e., arbitrary grouped nonzero
entries that can be exploited by the block finding alogorithm.

VII. CONCLUSIONS
In this paper, a new matrix format DynB for storing

variable sized 2D blocks was introduced. The aim of the new
format is to utilize any nonzero block structures in sparse
matrices, because dense blocks can be handled efficiently
with current and even more future processor architectures.

For the DynB format, a simple and fast algorithm for finding
blocks of different size and a related implementation of the
SpMV operation was presented. Furthermore, several code
optimization techniques, such as using vector intrinsics and
using autotuning, were examined.

The execution of the SpMV operation on a large set of
sparse matrices with different nonzero structures was examined
and compared to other known block formats. Here, the formats
with variable sized blocks had an advantage over the BCSR
with fixed size blocks. For the DynB format, the structure of
the matrix can have a significant impact on the dimension of
the found blocks and thus on the execution time of the SpMV
operation. Moreover, the choice of an appropiate threshold
for DynB is dependent on the matrix structure. Several op-
timization approaches were introduced and combined in an
autotuning technique for the DynB format. However, results
showed that, when constant propagation is used for the block
dimensions for every block kernel, the compiler optimizations
showed the best results. Future work on the DynB format
will include improvements in finding variable sized rectangular
blocks and examining different parallelization techniques.

ACKNOWLEDGEMENTS
Simon Scholl at Bonn-Rhein-Sieg University helped us in

many discussions. We would like to thank the CMT team
at Saudi Aramco EXPEC ARC for their support and input.
Especially we want to thank Ali H. Dogru for making this
research project possible.

REFERENCES

[1] J. Razzaq, R. Berrendorf, S. Hack, M. Weierstall, and F. Mannuss,
“Fixed and variable sized block techniques for sparse matrix vector
multiplication with general matrix structures,” in Proc. Tenth Intl. Con-
ference on Advanced Engineering Computing and Applications in
Sciences (ADVCOMP 2016), pp. 84–90, 2016.

[2] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” The International Journal of High Perfor-
mance Computing Applications, vol. 18, no. 1, pp. 135–158, 2004.

[3] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proc. ACM/IEEE Conference on Supercom-
puting (SC’99), pp. 30 – 39. IEEE, Nov. 1999.

[4] S. Williams et al., “Optimization of sparse matrix-vector multiplication
on emerging multicore platforms,” in Proc. ACM/IEEE Supercomputing
2007 (SC’07), pp. 1–12. IEEE, 2007.

[5] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[6] R. Kannan, “Efficient sparse matrix multiple-vector multiplication using
a bitmapped format,” in Proc. 20th International Conference on High
Performance Computing (HiPC), pp. 286–294. IEEE, 2013.

[7] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-based sparse matrix
representation for memory-efficient smvm kernels,” in Proc. 23rd In-
ternational Conference on Supercomputing (SC’09), ser. ICS ’09, pp.
100–109. ACM, 2009.

[8] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multiplica-
tion using compressed sparse blocks,” in Proc. 21th Annual Symp. on
Parallelism in Algorithms and Architectures (SPAA’09), pp. 233–244.
ACM, 2009.

[9] A. Buluc, S. Williams, L. Oliker, and J. Demmel, “Reduced-
bandwidth multithreaded algorithms for sparse matrix-vector multipli-
cation,” in Proc. Intl. Parallel and Distributed Processing Symposium
(IPDPS’2011), pp. 721–733. IEEE, 2011.

[10] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N. Koziris,
“An extended compression format for the optimization of sparse matrix-
vector multiplication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 10, pp. 1930–1940, Oct. 2013.

57

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] V. Karakasis, G. Goumas, and N. Koziris, “A comparative study of
blocking storage methods for sparse matrices on multicore architec-
tures,” in Proc. 12th IEEE Intl. Conference on Computational Science
and Engineerging (CSE-09), pp. 247–256. IEEE, 2009.

[12] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM,
2003.

[13] ——, “Sparskit: a basic tool kit for sparse matrix computations,” http:
//www-users.cs.umn.edu/∼saad/software/SPARSKIT/, 1994, [retrieved:
August, 2016].

[14] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd ed. SIAM, 1994.

[15] User and Reference Guide for the Intel C++ Compiler 17.0,
https://software.intel.com/en-us/intel-cplusplus-compiler-17.
0-user-and-reference-guide ed., Intel Corporation, 2017, [retrieved:
February, 2017].

[16] R. Berrendorf, M. Weierstall, and F. Mannuss, “SpMV runtime improve-
ments with program optimization techniques on different abstraction
levels,” Intl. Journal On Advances in Intelligent Systems, vol. 9, no. 3
& 4, pp. 417–429, 2016.

[17] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: yet another SpMV
framework on GPUs,” in Proc. 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’14), pp. 107–
118. ACM, 2014.

[18] R. W. Vuduc and H.-J. Moon, “Fast sparse matrix-vector multiplication
by exploiting variable block structure,” in Proc. First Intl. Conference
on High Performance Computing and Communications (HPCC’05), pp.
807–816. Springer-Verlag, 2005.

[19] V. Karakasis, G. Goumas, and N. Koziris, “Performance models for
blocked sparse matrix-vector multiplication kernels,” in Proc. 38th
Intl. Conference on Parallel Processing (ICPP’09), pp. 356 – 364.
IEEE, 2009.

[20] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing sparse matrix-
vector multiplication using index and value compression,” in Proc. 5th
Conference on Computing Frontiers (CF’08), pp. 87–96. ACM, 2008.

[21] M. Martone, S. Filippone, S. Tucci, P. Gepner, and M. Paprzycki, “Use
of hybrid recursive csr/coo data structures in sparse matrix-vector multi-
plication,” in Computer Science and Information Technology (IMCSIT),
Proceedings of the 2010 International Multiconference on, pp. 327–335.
IEEE, 2010.

[22] M. Martone, S. Filippone, M. Paprzycki, and S. Tucci, “Assembling
recursively stored sparse matrices.” in IMCSIT, pp. 317–325, 2010.

[23] ——, “On the usage of 16 bit indices in recursively stored sparse ma-
trices,” in Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2010 12th International Symposium on, pp. 57–64. IEEE,
2010.

[24] M. Martone, S. Filippone, S. Tucci, M. Paprzycki, and M. Ganzha,
“Utilizing recursive storage in sparse matrix-vector multiplication-
preliminary considerations.” in CATA, pp. 300–305, 2010.

[25] A. Pinar and V. Vassilevska, “Finding nonoverlapping dense blocks of a
sparse matrix,” Electronic Transactions on Numerical Analysis, vol. 21,
pp. 107 – 124, 2004.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[27] J. L. Bentley, “Finding nonoverlapping dense blocks of a sparse matrix,”
Commun. ACM, vol. 18, no. 9, pp. 509 – 517, 1979.

[28] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
SIGMOD Rec., vol. 14, no. 2, pp. 47 – 57, 1984.

[29] J.-H. Byun, R. Lin, K. A. Yelick, and J. Demmel, “Autotuning sparse
matrix-vector multiplication for multicore,” EECS Department, Univer-
sity of California at Berkeley, Tech. Rep. UCB/EECS-2012-215, Nov.
2012.

[30] Y. Kubota and D. Takahashi, “Optimization of sparse matrix-vector mul-
tiplication by auto selecting storage schemes on GPU,” in Proc. Com-
putational Science and Its Applications - ICCSA 2011, vol. 6783, pp.
547–561. Springer-Verlag, 2011.

[31] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning
of sparse matrix-vector multiply on GPUs,” in Proc. Principles and
Practices of Parallel Programming (PPoPP’10), pp. 115–125. ACM,
Jan. 2010.

[32] A. Elafrou, G. I. Goumas, and N. Koziris, “A lightweight optimization
selection method for sparse matrix-vector multiplication,” arXiv.org,
vol. abs/1511.0249, Dec. 2015.

[33] C. Lehnert, R. Berrendorf, J. P. Ecker, and F. Mannuss, “Performance
prediction and ranking of SpMV kernels on GPU architectures,” in
Proc. 22th Intl. European Conference on Parallel and Distributed
Computing (Euro-Par 2016), ser. LNCS, P. Dutot and D. Trystram, Eds.,
no. 9833, pp. 90–102. Springer, 2016.

[34] R. Berrendorf, M. Weierstall, and F. Mannuss, “Program optimization
strategies to improve the performance of SpMV-operations,” in Proc. 8th
Intl. Conference on Future Computational Technologies and Applica-
tions (FUTURE COMPUTING 2016), pp. 34–40. IARIA, 2016.

[35] Intel R⃝ Haswell, Intel, http://ark.intel.com/products/codename/42174/
Haswell, [retrieved: August, 2016].

[36] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Nov. 2010.

[37] SPE Comparative Solution Project, Society of Petroleum Engineers,
http://www.spe.org/web/csp/, [retrieved: August, 2016].

[38] V. Karakasis, T. Gkountouvas, and K. Kourtis, CSX library v0.2, https:
//github.com/cslab-ntua/csx, [retrieved: August, 2016].

58

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

