
Vehicle Routing in a Dynamic Mesh

Ying Ying Liu

Data and Analytics Practice Department
Manitoba Hydro

Winnipeg, Canada
Email: yingliu@hydro.mb.ca

Parimala Thulasiraman

Department of Computer Science
University of Manitoba

Winnipeg, Canada
Email: Parimala.Thulasiraman@umanitoba.ca

Abstract—We model the traffic-aware vehicle routing problem
as an online problem and study online algorithms for this
problem on a dynamic directed mesh. In this problem, traffic
is represented as edge weights. At each time step, edge weights
increase or decrease randomly. The goal of a vehicle is to find
a path from the top-left corner source node S to the bottom-
right corner destination node T, such that the sum of edge
weights on the path is minimized. We first study lower bounds on
the competitive ratios for any deterministic online algorithm for
the problem, and competitive analysis with bounded adversarial
traffic, randomization and advice. Following the competitive
analysis, we propose nine online algorithms for the problem using
deterministic, randomized and advice variants of the Greedy
algorithm, Weighted Greedy algorithm, Dijkstra’s algorithm,
and Ant Colony Optimization (ACO). Our experiment shows
that algorithms with advice, representing traffic in the future,
find the best solutions among the algorithms in comparison.
Our experiment also shows that although simple randomization
technique does not help the greedy algorithms in our problem
setting, the more sophisticated randomization strategy used by
ACO is promising. Compared to ACO, the greedy algorithms are
very fast with comparable solution quality. They may be favoured
in practice for their speed and simplicity.

Index Terms—Dynamic Mesh; Online Shortest Path; Online
Greedy Algorithm; Online Dijkstra’s, Online Ant Colony Opti-
mization.

I. INTRODUCTION

Vehicle routing refers to the task of finding the optimal
travel path from place A to place B. In classical static
routing algorithms, such as Dijkstra’s algorithm [1] and A*
algorithm [2], this problem is solved by finding the shortest
path on a graph representing a road map with the weight of
an edge representing the actual geometric distance between
two junctions. The static routing algorithms are run once at
the path planning stage and do not consider dynamic traffic
information such as congestion, accidents and road closure. As
vehicle traffic congestion becomes alarming severe in modern
metropolitan areas, traffic-aware vehicle routing is one of the
important problems in improving quality of life and building
smart cities with higher productivity, less air pollution and less
fuel consumption.

In this paper, we model the traffic-aware vehicle routing
problem as an online problem on a dynamic directed mesh.
The contributions of this paper are as follows:

1) We study lower bounds on the competitive ratios for
any deterministic online algorithm for the problem, and

competitive analysis with bounded adversarial traffic,
randomization and advice.

2) We propose, implement, and compare nine online algo-
rithms for the problem using deterministic, randomized
and advice variants of the Greedy algorithm, Weighted
Greedy algorithm, Dijkstra’s algorithm, and Ant Colony
Optimization (ACO).

The rest of the paper is organized as follows. Section
II provides the formal problem definition and assumptions.
Section III reviews related work in the different variants of
problems for online vehicle routing. Section IV explains the
three strategies for our online algorithm design. Section V
provides in-depth theoretical analysis and online algorithm
design for vehicle routing in a dynamic mesh. Section VI
discusses the experimental results. Section VII concludes this
paper and provides thoughts for future work.

II. PROBLEM STATEMENT

The setting of the problem is on an n × n mesh M with
every edge directed from top to bottom and from left to right,
with the following assumptions:

• The structure of M remains static.
• Traffic, represented as the set of edge weights W , changes

in an online matter at each time step.
• The weight w ∈ W on an edge e changes between the

range of 1 and a constant µ > 1, inclusively.
• The vehicle v knows the structure of M , µ and W at

each time step.
The goal of the vehicle v is to find a path P from the top-

left corner source node S to the bottom-right corner destination
node T , such that the sum of edge weights of P , denoted by∑

eij∈P wij , is minimized.
We study the directed mesh because it is a basic setting

for the online routing problem. Each node of the mesh has
at least one and at most two outgoing edges and each edge
is on a path from the source node to the destination node,
and all the paths from the top-left corner source node S to
the bottom-right corner destination node T have exactly 2n
edges.

III. LITERATURE REVIEW

There are different variants of problems for online vehicle
routing. Dynamic path discovery [3] is a well-studied online

32Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

problem. In this problem, new vertices appear in an online
matter, and the goal is to find the shortest path on the graph. In
dynamic multiple vehicle routing [4], the requests for service
appear in an online matter, and the goal is to dispatch k
vehicles to serve the online requests such that the total distance
the vehicles travel is minimized. This is similar to the famous
k-server problem [5]. In our problem setting, the weights on
the edges change in an online matter. This problem is also
called the Time-Dependent Shortest Path (TDSP) problem in
literature.

Cook and Halsey [6] first studied the TDSP problem and
solved it using Dynamic Programming. Dreyfus [7] pointed
out that TDSP can be solved by a generalization of Dijkstra’s
method as efficiently as for static shortest path. Halpern [8]
proved that [7] is only true for First-In-First-Out (FIFO)
networks. If the FIFO property does not hold in a time-
dependent network, then the problem is NP-hard. Dean [9]
solved TDSP based on the Bellman-Ford algorithm. Batz et
al. [10] solved TDSP using Contraction Hierarchies. Takimoto
and Warmuth [11] used a machine learning approach to
represent probabilistic weights. Gyrgy et al. [12] proposed a
machine learning approach using randomization and advice.

To our knowledge, there are few competitive analyses for the
TDSP problem in the literature. In this paper, we begin with
a competitive analysis of our online problem setting, followed
by algorithm design based on the competitive analysis.

IV. STRATEGIES

A. Competitive Analysis

Competitive analysis [13] is a framework to compare online
algorithms. Given a sequence σ of W , let OPT denote the
best possible offline solution to the vehicle routing problem.
Competitive ratio of an online algorithm A is the maximum
ratio between the cost of A and that of OPT over all sequences.

cr(A) = maxσ
costA(σ)

costOPT (σ)
) (1)

In competitive analysis, we consider the worst-case inputs
generated by an adversary, which tries its best to make the
algorithm inefficient.

B. Competitive Analysis with Randomization

To strive for better competitive ratios, randomization [14]
is a common strategy for online algorithms. For randomized
algorithms, we compare online algorithms against an oblivious
adversary which knows the code of the algorithm but does
not know the run-time random bits used by the algorithm.
Randomization helps an online algorithm achieve better com-
petitive ratio when there are more than two ways for the
algorithm, and adversary does not know whether a better way
is chosen at run time.

C. Competitive Analysis with Advice

Another way for an online algorithm A to achieve a better
competitive ratio is through receiving some bits of advice from
a benevolent oracle [15] . Given sufficient bits, the advice can

encode the entire OPT for A. The other end on the advice
spectrum is when 1 bit of advice is given. In general, we
study the advice strategies with varied sizes and how they can
help the algorithm with its competitive ratio.

V. VEHICLE ROUTING IN A DYNAMIC MESH

A. Lower Bounds

In this section, we derive lower bounds on the competitive
ratios of any online algorithms for vehicle routing in a dynamic
mesh.

1) Competitive Analysis for Any Deterministic Online Algo-
rithm: Consider a 2×2 mesh in Figure 1, an online algorithm
A wants to find a path from node A to D. At time 0, the
adversary generates traffic W0 such that all the edges have
weight of 1. Since the two paths A-B-D and A-C-D both have
cost of 2, A chooses one of them randomly. In this example,
A chooses A-C-D. Once the vehicle v arrives at C at time 1,
the adversary generates traffic W1 such that eCD becomes µ
and all other edge weights remain unchanged. Because now
C-D is the only possible sub-route for the vehicle to reach D,
the vehicle arrives at D at time µ+1, whereas OPT arrives at
time 2. The competitive ratio is µ+1

2 .

Fig. 1: Adversary Input to a 2 x 2 Mesh

Consider a n×n mesh in Figure 2, the adversary generates
inputs similar to the previous example. At time 0, the adversary
generates W0 with weight 1 on each edge (to make sure OPT
also has cost 1 at this time step). At each time step after time
0, the adversary places weight µ on the upcoming two edges
of node that the vehicle arrives at, so that when the vehicle
arrives at T , costA becomes 1 + (2n− 1)µ. The competitive
ratio is 1+(2n−1)µ

2n ≈ µ

Fig. 2: Adversary Input to a n x n Mesh

2) Competitive Analysis with Bounded Adversarial Traffic:
In this section, we analyze the strategy of adversary if the total
amount of adversarial traffic is bounded by a factor c of n, that

33Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

is, W ≤ c ∗n. By observation, all the nodes in the mesh have
2 outgoing edges except for nodes at the bottom and the right,
which only have 1 outgoing edge. An intuitive strategy for the
adversary is therefore to use some of its traffic quota to trick
algorithm A to direct the vehicle to these two critical paths.
Once the vehicle is on a critical path, the adversary can place
all of its rest traffic quota on the path. Consider the example
in Figure 3 when c = 2µ − 1. The adversary places µ traffic
on each right edge of the left-most nodes, tricking algorithm
A to choose the bottom edge with less traffic, until the vehicle
reaches the bottom critical path. When c = 2µ−1, competitive
ratio is 1+nµ

2n ≈ µ/2. The competitive ratio is smaller than µ/2
if c < 2µ− 1 and greater than µ/2 if c > 2µ− 1.

Fig. 3: Adversary Input to a n x n Mesh With (2µ−1)n Traffic

3) Competitive Analysis with Randomization: On an n×n
mesh, there are exactly 2n edges and 2n + 1 nodes on any
path from S to T . There are at least n+ 1 nodes (see Figure
3) and at most 2n− 1 nodes (see Figure 4) that have 2 edges
on a path. For each such node, the decision to go right or
go down is a binary decision problem. A correct guess has a
cost of 1 in the next node, and a wrong guess has cost of µ
in the next node. Using randomization in the algorithm, the
adversary cannot know which guess the algorithm makes until
run time, therefore, the algorithm has a competitive ratio of at
most µ 2n−1

2 + 2n−1
2 +µ

2n ≈ µ/2.

Fig. 4: Nodes With 2 Outgoing Edges in a Path on an n x n
Mesh

4) Competitive Analysis with Advice: Following the previ-
ous section, since Θ(n) guesses are required, logn bits of
advice is required to find the optimal path. With 1 bit of
advice, half of the guesses is correct, and half is wrong, and
the algorithm has a competitive ratio of µ/2.

B. Online Algorithms

In this section, we propose nine online algorithms for the
vehicle routing problem in a dynamic mesh using determinism,
randomization and advice.

Fig. 5: Greedy Algorithm for Vehicle Routing in a Dynamic
Mesh

Fig. 6: Greedy Algorithm With Randomization for Vehicle
Routing in a Dynamic Mesh

1) Greedy Algorithm: The most intuitive approach to solve
the problem is the Greedy algorithm. The algorithm is ex-
tremely simple. At each time step, if a vehicle arrives at a
node, it decides next direction with the least traffic at the
current time. The pseudo-code of the Greedy Algorithm is
shown in Figure 5.

2) Greedy Algorithm With Randomization: The randomiza-
tion of the Greedy algorithm is straightforward. When a binary
decision is needed, the edge with less cost is selected with
higher probability. The pseudo code is shown in Figure 6.

3) Greedy Algorithm With Advice: In the previous two
algorithms, a binary decision is made based on assessment
of edge weights at current time. However, as a vehicle is set
off, the traffic may increase or decrease while the vehicle is
still on the way. Therefore, the actual arrival time at the next
node may be different from the estimated arrival time. In a
dynamic mesh, it is common that as the vehicle sets off on
one edge, the traffic on the other edge becomes less than the
current edge. With advice of log µ that encodes the actual
arrival time at the next two nodes, the algorithm is expected
to make a better decision. The pseudo code is shown in Figure
7.

4) Weighted Greedy Algorithm: Recall the adversarial strat-
egy in the competitive analysis with bounded adversarial

34Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

Fig. 7: Greedy Algorithm With Advice for Vehicle Routing in
a Dynamic Mesh

traffic, in order to avoid being tricked to a critical path, a
natural extension to the Greedy algorithm is the Weighted
Greedy algorithm where the selection favors nodes in the
middle. Specifically, the greedy weight on an edge i = 0, 1
becomes wi

remainingWeightOnTheAxis , where edge 0 denote
the bottom edge and edge 1 denote the right edge. For
example, in time 1 of Figure 2, the vehicle is at the node
below the starting node S, and except for the current two
edges with weight µ, all other edges have weight 1. The
Greedy algorithm selects either the bottom edge or the right
edge. But the Weighted Greedy Algorithm select the right
edge (edge 1), because w1=µ

remainingWeightOnXAxis=n−1 <
w0=µ

remainingWeightOnY Axis=n−2 . The pseudo-code of Weighted
Greedy Algorithm is similar to the Greedy Algorithm except
for the weight function.

5) Weighted Greedy Algorithm With Randomization: The
pseudo-code of Weighted Greedy Algorithm with randomiza-
tion is similar to Figure 6 except for the weight function.

6) Weighted Greedy Algorithm With Advice: The pseudo-
code of Weighted Greedy Algorithm with advice is similar to
Figure 7 except for the weight function.

7) Dijkstra’s Algorithm: Dijkstra’s algorithm [1] is a classic
algorithm for shortest-path problem from a single source to all
other nodes in a weighted, directed graph G with nonnegative
edge weights [16]. Although it is designed to solve the single-
source problem, the output of Dijkstra’s includes the solution
for single-source single-destination shortest path. Moreover,
both problems have the same worst-case asymptotic running
time [16]. Dijkstra’s starts by initializing an attribute d on
all nodes as ∞ except for S with d = 0. The Dijkstra’s

Fig. 8: Dijkstra’s Algorithm for Vehicle Routing in a Dynamic
Mesh

keeps a priority queue of nodes not being visited, where a
node u with the minimum d is visited first. Starting from S,
it repeatedly updates d of a node v with the minimum value
of u.d + wuv where v is a predecessor node of u. Different
from static routing, in the dynamic mesh setting, Dijkstra’s
algorithm is run each time when the vehicle arrives at a new
node, which becomes the new source node. The pseudo-code
of Dijkstra’s is shown in Figure 8.

8) Dijkstra’s Algorithm With Advice: Similar to Figure 7,
Dijkstra’s Algorithm With Advice uses the predicted actual
arrival time from u to v in the future assuming that the time
table for future traffic is available for querying. The formula
for calculating the predicted actual arrival time is given in line
6 to 14 in Figure 7.

9) Ant Colony Optimization: In addition to improvements
in traditional algorithms, stochastic algorithms mimicking the
routing of social animals in the dynamic nature have attracted
much attention due to their proven efficiency and similarity to
the dynamic vehicle routing problem. One popular algorithm is
Ant Colony Optimization (ACO) [17], an iterative and evolv-
ing optimization heuristic. In nature, ants explore routes from
nest to food source and deposit a chemical substance called
pheromone, which attracts other ants to follow the same route.
Pheromone, if not applied, evaporate over time. Eventually the
longer paths lose pheromone concentration and all ants travel
on the shortest path. Based on this observation, Dorigo et al.
propose the ACO algorithm [17] and the Travelling Salesman
Problem (TSP) is the first optimization problem solved by
ACO.

When solving the TSP problem, the algorithm considers a
TSP with N cities, and scatters m virtual ants randomly on
these cities. The algorithm comprises three phases: compu-

35Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

Fig. 9: Online Ant Colony Optimization for Vehicle Routing
in a Dynamic Mesh

tation, communication and update. In the computation phase,
ACO constructs a tour of minimum length. The ants indirectly
communicate with one another through stigmergy by deposit-
ing a pheromone concentration on the trail for all other ants
to follow. Finally, the ants update the tour by increasing or
decreasing (evaporating) the pheromone concentration on trails
that were unused or produced a longer tour length. The ants
work concurrently and cooperate to find an efficient tour.

For dynamic routing, Zhe et al. [18] develop a variant of
ACO algorithm that uses stench pheromone to redirect ants to
the second best route if the best route becomes too crowded.
The authors incorporate traffic to the cost of each road segment
as the total travel time on the segment. José Capela et al.
[19] propose a hybrid algorithm of Dijkstra’s algorithm and
inverted ACO for traffic routing.

In this paper, we modify the basic ACO algorithm [17] for
the mesh setting. In the online setting, the iterative process
is removed from the algorithm because the ants cannot go
back in time. This means that solution quality achieved by
global optimization and reinforcement learning is a trade-off
in the online setting. The pseudo-code for the ACO algorithm
is shown in Figure 9. Since ACO is already a stochastic
algorithm, we do not consider the advice variant for it for
fair comparison.

VI. RESULT

A. Implementation Details

The algorithms are implemented in python and the code is
available at github.com/yingyingliuCA/ShortestPath OnMesh.
The experiment is conducted on a MacBook Pro with 2.3 GHz

Intel Core i5 processor and 8 GB 2133 MHz LPDDR3. The
sizes of input n×n mesh varies from n = 10 to n = 150. For
each input mesh, a timetable with random traffic between 1 and
µ = 5 on each edge is created, and all the algorithms are run
against this timetable. The experiment results are measured
as the average results of 3 runs. The algorithms are mainly
measured by solution quality. Execution time is also shown
for additional analysis.

B. Analysis

Figure 10 shows the costs of different online algorithms on
different problem sizes. Unsurprisingly, algorithms with advice
outperform other algorithms in general. For 15 input meshes,
Greedy with Advice finds paths with the minimum cost among
all compared algorithms for eight instances, Weighted Greedy
with Advice achieves six times, and Dijkstra with Advice only
one time. There is no result for Dijkstra algorithms for n
greater than 80 because they become too slow to run. The
result shows that Dijkstra’s does not have an advantage over
Greedy algorithms in our problem setting. This observation
can be explained by the mesh setting. In the mesh, every edge
is on a path to the destination, therefore, it is not necessary
for a Greedy algorithm to traverse the path to the destination
to make sure it does not walk into a dead end, as it would on
other graph types. In addition, as the traffic changes randomly
at each time step, the traversal to the destination in Dijkstra
becomes redundant both in terms of solution quality and in
terms of execution time, as we will see in the later section.

The two Greedy deterministic algorithms, Greedy and
Weighted Greedy, produce good solutions in general. When
the problem space becomes larger, Weighted Greedy seems
to have a slight advantage over Greedy, probably due to its
strategy to stay in the middle and therefore it has more room
for exploration.

Among the three algorithms that use randomization, Greedy
and Weighted Greedy with randomization do not seem to help
the deterministic algorithms. For Greedy, there is no significant
difference between the deterministic and randomized versions.
For Weighted Greedy, randomization seems to be even worse
than the deterministic version. This is probably because ran-
domization offsets the stay-in-middle principle of Weighted
Greedy. As randomization is a strategy to improve worst-case
caused by an adversarial input, it may not help the algorithm
when the input is already random in our problem setting.

On the other hand, ACO is among the best algorithms,
even though the global optimization part of the algorithm is
removed for the online setting. As shown in Figure 11, when
n is greater than 100, ACO continuously finds the minimum
cost among the deterministic and randomized algorithms. This
is probably due to the unique combination of exploration in
the large space and exploitation using collaborative pheromone
update strategy.

The execution time of the algorithms is presented in Table
I. Algorithms in the Greedy family are the fastest and have
robust performance when the problem size becomes larger.
Dijkstra’s algorithms are slowest as expected because they

36Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

Fig. 10: Cost Comparison of Online Algorithms

Fig. 11: Cost Comparison of Deterministic and Online Algo-
rithms

need to traverse to the destination in order to update the path
each time when a node on the previous path is reached. ACO
is the second slowest because of the additional computation by
each ant at each node. However, as ACO is inherently parallel,
its performance can be improved using parallel computing. On
the other hand, Greedy and Weighted Greedy are over 1000X
times faster than ACO on average, with comparable solution
quality.

VII. CONCLUSION

In this paper, we study the competitive ratios of the vehicle
routing problem in a dynamic mesh and propose online
algorithms using determinism, randomization and advice. The
deterministic algorithms include Greedy, where the edge with
less cost is selected at run time, Weighted Greedy, where the

TABLE I: Execution Time of Online Algorithms
Avg
Time
(Sec)

Greedy Greedy
Rand

Greedy
Advice

Weighted
Greedy

Weighted
Greedy
Rand

Weighted
Greedy
Advice

Dijkstra Dijkstra
Advice

ACO

n=10 0.000 0.001 0.001 0.001 0.001 0.002 0.058 0.065 0.012
n=20 0.001 0.004 0.001 0.002 0.002 0.008 1.385 1.388 0.162
n=30 0.001 0.007 0.002 0.003 0.002 0.016 9.826 9.556 0.799
n=40 0.002 0.012 0.003 0.004 0.003 0.028 41.300 40.126 2.565
n=50 0.002 0.018 0.004 0.005 0.004 0.047 128.936 126.485 6.769
n=60 0.003 0.025 0.004 0.008 0.005 0.064 325.729 341.760 13.887
n=70 0.003 0.035 0.005 0.010 0.006 0.085 773.689 740.604 29.090
n=80 0.004 0.044 0.006 0.012 0.008 0.111 1591.932 1506.106 49.037
n=90 0.004 0.053 0.006 0.013 0.009 0.135 - - 80.726
n=100 0.005 0.070 0.007 0.016 0.010 0.175 - - 131.163
n=110 0.005 0.080 0.008 0.022 0.012 0.207 - - 203.820
n=120 0.005 0.097 0.009 0.021 0.013 0.245 - - 306.258
n=130 0.006 0.107 0.010 0.024 0.014 0.294 - - 444.651
n=140 0.006 0.125 0.010 0.027 0.016 0.329 - - 637.004
n=150 0.010 0.149 0.011 0.031 0.023 0.386 - - 949.803

selection greedy favours nodes in the middle, and Dijkstra’s
algorithm, the classic static algorithm for finding the shortest
path on graphs. The randomization algorithms include Greedy-
Rand and Weighted Greedy-Rand, where an edge with less
cost is selected with a higher probability, and ACO, a nature-
inspired algorithm that combines exploitation and exploration.
Third, Greedy-Advice, Weighted Greedy-Advice and Dijkstra-
Advice are also implemented where the advice is actual travel
time in the future on the outgoing edges of the current node.

Our experiment shows that algorithms with advice find the
best solutions among the algorithms in comparison. Although
such advice is unrealistic in real-life problems, this result
shows the justification for high-quality prediction machine
learning models for real-life problems. Our experiment also
shows that although a simple randomization technique does
not help the greedy algorithms, the more sophisticated ran-
domization strategy used by ACO is promising. The drawback
of ACO is however speed. Although it can be parallelized, a
considerable amount of effort is needed. On the other hand,
the greedy algorithms are very fast with comparable solution
quality. They may be favoured in practice for their speed and
simplicity.

The vehicle routing problem becomes very different than
the mesh setting on other graph types. In particular, Greedy
algorithms may lose their solution correctness when path
traversal is required. In future work, a similar study will be
extended to other graph types and real road networks with real
traffic.

REFERENCES

[1] E. W. Dijkstra, “A Note on Two Problems in Connetion with Graphs,”
Numerische mathematik, vol. 1, no. 1, 1959, pp. 269–271.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, 1968, pp. 100–107.

[3] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A Review of
Dynamic Vehicle Routing Problems,” European Journal of Operational
Research, vol. 225, no. 1, 2013, pp. 1–11.

[4] P. Jaillet and M. R. Wagner, “Generalized Online Routing: New Com-
petitive Ratios, Resource Augmentation, and Asymptotic Analyses,”
Operations research, vol. 56, no. 3, 2008, pp. 745–757.

[5] E. Koutsoupias, “The k-server Problem,” Computer Science Review,
vol. 3, no. 2, 2009, pp. 105–118.

[6] K. L. Cooke and E. Halsey, “The Shortest Route through a Network
with Time-dependent Internodal Transit Times,” Journal of mathematical
analysis and applications, vol. 14, no. 3, 1966, pp. 493–498.

[7] S. E. Dreyfus, “An Appraisal of Some Shortest-path Algorithms,”
Operations research, vol. 17, no. 3, 1969, pp. 395–412.

[8] J. Halpern, “Shortest Route with Time Dependent Length of Edges
and Limited Delay Possibilities in Nodes,” Zeitschrift fuer operations
research, vol. 21, no. 3, 1977, pp. 117–124.

[9] B. C. Dean, “Algorithms for Minimum-cost Paths in Time-dependent
Networks with Waiting Policies,” Networks: An International Journal,
vol. 44, no. 1, 2004, pp. 41–46.

[10] G. V. Batz, D. Delling, P. Sanders, and C. Vetter, “Time-dependent
Contraction Hierarchies,” in Proceedings of the Meeting on Algorithm
Engineering & Expermiments. Society for Industrial and Applied
Mathematics, 2009, pp. 97–105.

[11] E. Takimoto and M. K. Warmuth, “Path Kernels and Multiplicative
Updates,” Journal of Machine Learning Research, vol. 4, no. Oct, 2003,
pp. 773–818.

[12] A. György, T. Linder, G. Lugosi, and G. Ottucsák, “The On-line Shortest
Path Problem under Partial Monitoring,” Journal of Machine Learning
Research, vol. 8, no. Oct, 2007, pp. 2369–2403.

37Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

[13] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. cambridge university press, 2005.

[14] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson,
“On the Power of Randomization in On-line Algorithms,” Algorithmica,
vol. 11, 1994, pp. 2–14.

[15] Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén, “Online Computation
with Advice,” Theoretical Computer Science, vol. 412, no. 24, 2011, pp.
2642–2656.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT press, 2009.

[17] M. Dorigo and G. Di Caro, “Ant Colony Optimization: a New
Meta-heuristic,” in Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), vol. 2. IEEE, 1999, pp.
1470–1477.

[18] Z. Cong, B. De Schutter, and R. Babuška, “Ant Colony Routing
Algorithm for Freeway Networks,” Transportation Research Part C:
Emerging Technologies, vol. 37, 2013, pp. 1–19.

[19] J. C. Dias, P. Machado, D. C. Silva, and P. H. Abreu, “An Inverted Ant
Colony Optimization Approach to Traffic,” Engineering Applications of
Artificial Intelligence, vol. 36, 2014, pp. 122–133.

38Copyright (c) IARIA, 2024. ISBN: 978-1-68558-133-6

INTERNET 2024 : The Sixteenth International Conference on Evolving Internet

