
Why Multipath TCP Degrades Throughput Under Insufficient Send Socket Buffer 

and Differently Delayed Paths 

Toshihiko Kato, Adhikari Diwakar, Ryo Yamamoto, and Satoshi Ohzahata 

Graduate School of Informatics and Engineering 

University of Electro-Communications 

Tokyo, Japan 

e-mail: kato@net.lab.uec.ac.jp, diwakaradh@net.lab.uec.ac.jp, ryo-yamamoto@uec.ac.jp, ohzahata@uec.ac.jp 

 
Abstract— Recently, the Multipath Transmission Control 

Protocol (MPTCP) comes to be used widely.  It allows more than 

one TCP connections via different paths to compose one 

Multipath TCP communication.  Our previous papers pointed 

out that insufficient send socket buffer makes the throughput 

worse than that of single path TCP, when the subflows have 

different transmission delays.  Although our previous papers 

gave the detailed analysis on the throughput degradation 

focusing on the relationship between the send socket buffer size 

and the delay, they did not clarify the reason of the throughput 

degradation.  This paper investigates the Linux MPTCP 

software and the MPTCP communication details, and clarifies 

why the insufficient socket buffer degrades the MPTCP 

throughput.   

Keywords- multipath TCP; send socket buffer; head-of-line 

blocking. 

I. INTRODUCTION 

Recently, mobile terminals with multiple interfaces have 
come to be widely used.  For example, most smart phones are 
installed with interfaces for 4G Long Term Evolution (LTE) 
and Wireless LAN (WLAN).  In order for applications to use 
multiple interfaces effectively, Multipath TCP (MPTCP) is 
being introduced in several operating systems, such as Linux, 
Apple OS/iOS and Android.  MPTCP is defined in three RFC 
documents by Internet Engineering Task Force.  RFC 6182 
[1] outlines the architecture guidelines for developing MPTCP 
protocols.  It defines the ideas of MPTCP connection and 
suflows (TCP connections associated with an MPTCP 
connection).  RFC 6824 [2] presents the details of extensions 
to the traditional TCP to support multipath operation.  It 
defines the MPTCP control information realized as new TCP 
options, and the MPTCP protocol procedures.  RFC 6356 [3] 
presents a congestion control algorithm that couples those 
running on different subflows. 

MPTCP has some problems when subflows are 
established over heterogeneous paths with different delay, 
such as an LTE network and a WLAN.  TCP 
ACKnowledgment (ACK) segments from a path with longer 
delay return later than those from a shorter delay path.  This 
causes a Head-of-Line (HoL) blocking, in which TCP data 
segments over a longer delay subflow block the window 
sliding while waiting for their ACKs [4].  In order to avoid 
this problem, the selection of the appropriate subflow is 
required.  The function to select a subflow for transferring a 
data segment is called a scheduler, and several scheduler 
algorithms have been proposed so far.  Originally, MPTCP 

implementation adopted the lowest Round-Trip Time (RTT) 
first and the round-robin schedulers [5].  However, both of 
them suffer from the HoL blocking.  The opportunistic 
Retransmission and Penalization mechanism (RP mechanism) 
[6] [7] is used in the current MPTCP implementation as a 
default.  When a data sender detects that new data cannot be 
sent out due to an HoL blocking over a specific subflow, it 
retransmits the oldest unacknowledged data through a subflow 
with the lowest RTT (opportunistic retransmission).   At the 
same time, the subflow that occurred this HoL blocking is 
punished by halving its congestion window (penalization).   

The Delay Aware Packet Scheduling (DAPS) [8] and the 
Out-of-order Transmission for In-order Arrival Scheduling 
(OTIAS) [9] take account of subflow delays and schedule data 
segment sending for in-order receiving.  The BLocking 
ESTimation scheduler (BLEST) [10] estimates whether a 
subflow will cause an HoL blocking and dynamically adapts 
scheduling to prevent blocking.   

Those schedulers improve the MPTCP performance 
compared with the original scheduler algorithm, and several 
studies report the results of MPTCP performance evaluation 
through heterogeneous paths [11]-[15].  However, those 
proposals of schedulers and the performance evaluation 
reports are focusing only on the receive socket buffer.  While 
insufficient receive socket buffer invokes HoL blocking, the 
send socket buffer also gives some impacts on the TCP 
throughput.  

In our previous papers [16] [17], we pointed out that an 
insufficient size of send socket buffer provokes more serious 
throughput degradation than insufficient receive socket buffer.  
Although our previous papers analyzed the detailed behaviors 
of MPTCP by investigating the MPTCP and TCP level 
sequence numbers and windows, they did not discuss why 
such performance degradation happens.  In this paper, we 
clarify the reason by investigating the Linux MPTCP software 
and the communication traces.   

The rest of paper consists of the following sections.  
Section 2 shows the details of MPTCP data transfer procedure 
and the related work on the MPTCP scheduler.  Section 3 
gives the results of performance evaluation in the case that an 
MPTCP connection provides poor throughput than a single 
TCP connection due to the insufficient send socket buffer.  
Section 4 shows the behavior of Linux MPTCP software in 
the case of limited send buffer, and discusses the reason of the 
performance degradation.  Section 5 concludes this paper.   

48Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



II. RELATED WORK 

This section describes the related work of our work.   

A. MPTCP Data Transfer Procedures 

As described in Figure 1, the MPTCP module is located 
on top of TCP.  MPTCP is designed so that the conventional 
applications do not need to care about the existence of MPTCP.  
MPTCP establishes an MPTCP connection that is associated 
with two or more regular TCP connections called subflows.  
The management and data transfer over an MPTCP 
connection is done by the TCP options newly introduced for 
MPTCP operation.  In the beginning, one subflow and an 
MPTCP connection are established through the TCP three 
way handshake using a Multipath Capable (MP_CAPABLE) 
TCP option.  Next, another subflow is established and 
associated with the existing MPTCP connection by use of a 
Join Connection (MP_JOIN) option.  This option contains the 
identification of the MPTCP connection to be joined.   

After establishing multiple subflows, MPTCP takes one 
input data stream from a sender-side application, splits it into 
subflows, and reassembles the split data streams at the 
receiver side.  The MPTCP connection level maintains the 
data sequence number independent of the subflow level 
sequence numbers.  The data and ACK segments used in a 
subflow may contain a Data Sequence Signal (DSS) option 
depicted in Figure 2.  The number is assigned on a byte-by-
byte basis similarly with the TCP sequence number.  The 
value of data sequence number is the number assigned to the 
first byte conveyed in that TCP segment.  The data sequence 
number, subflow sequence number (relative value) and data-
level length define the mapping between the MPTCP 
connection level and the subflow level.  The data ACK is 
analogous to the behavior of the standard TCP cumulative 
ACK, and specifies the next data sequence number a receiver 
expects.   

We need to say that there is no window size field in the 
DSS option.  Instead, the window size contained in the TCP 
header is used for the flow control in MPTCP.  That is, the 

flow control is performed for the data sequence number at the 
MPTCP connection level as well as the subflow level.  The 
control for the data sequence number is done in a way that the 
data sequence number is not more than the data ACK plus the 
window size.  It is also required that the upper window edge 
in the MPTCP connection level (the data ACK plus the 
window size) does not shrink.  In order to fully utilize the 
capacity of all subflows, a receiver needs to provide the 
following buffer space so that a sender can keep all subflows 
fully utilized [2].    

 Buffer size =  ∑ 𝑏𝑤𝑖 × 𝑅𝑇𝑇𝑚𝑎𝑥 × 2.𝑛
𝑖=1  (1) 

Here, n is the number of subflows, 𝑏𝑤𝑖is the bandwidth of 
subflow i, and 𝑅𝑇𝑇𝑚𝑎𝑥is the highest RTT among all subflows.  
This equation means that an MPTCP connection can send data 
segments at full speed during the highest RTT, even if a loss 
event occurs.   

B. Related Work on MPTCP Scheduler 

As stated in the previous section, the mechanism to assign 
data to multiple subflows is called a scheduler.  The MPTCP 
implementation for Linux operating system supports the 
default scheduler, the lowest RTT first with RP mechanism, 
which is called minRTT.  The minRTT scheduler first sends 
data over one subflow with the lowest RTT until its window 
is full.  Then, it starts transmitting over the next subflow.  
When it detects an HoL blocking, it retransmits the oldest data 
as a new data segment over the lowest RTT subflow, and 
halves the congestion window of the subflow that caused this 
blocking.   

The other schedulers mentioned in the previous section 
can be summarized as follows.  DAPS aims for in-order 
arrival at the receiver to prevent its buffer from blocking [8].  
It sends data segments in inverse proportion to the delay of 
individual subflows with the strategy that the younger 
numbered data segments are transferred through the path with 
shorter delay.  OTIAS provides the out-of-order transmission 
at the sender for the in-order arrival at the receiver [9].  One 
of the difference between DAPS and OTIAS is that DAPS 
focuses on the scheduling of multiple packets, but OTIAS 
tries to determine the scheduling of only one packet.  BLEST, 
on the other hand, takes a proactive stand towards minimizing 
HoL blocking [10].  Rather than penalizing the slow subflows, 
it estimates whether a path will cause HoL blocking and 
dymamically adapts scheduling to prevent it.    

Several publications discussed the performance evaluation 
[6] [7] [11][-15].  The early stage papers [6] [7] [11] [12] focus 
mainly on measuring MPTCP throughput with changing the 
receive socket buffer size.  Kim et al. [13] proposes a 
scheduler using the buffer blocking prediction based on 
receive buffer size and RTT.  It gives the time variations of 
throughput as a performance evaluation.  Zhou et al. [14] 
shows the MPTCP performance evaluation over the real 
Internet by changing socket buffer size under the assumption 
that the sizes of send and receive socket buffers are the same.  
Dong et al. [15] compares the performance of several 
schedules including DAPS, OTIAS, and BLEST.  In the 
performance evaluation, it measured the file transfer 
completion time by changing RTT ratio, receive socket buffer 
size, and transferred file size.   

Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP
 

Figure 1.  MPTCP layer structure. 

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-level length (2 octets) Checksum (2 octets)
 

Figure 2.  Data sequence signal option. 

49Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



Those papers have two problems.  First, all of them use 
only macroscopic performance metrics, such as the average 
throughput and the completion time for a file transfer.  They 
do not discuss the detailed performance analysis taking 
account of the MPTCP parameters, such as data sequence 
number and data ack number.  Secondly, they mainly focus on 
the receive socket buffer.  However, the send socket buffer 
also gives some impacts on the TCP throughput.   

In contrast, we took a microscopic approach that analyzes 
the detailed MPTCP internal behaviors in the performance 
evaluation, and focused on send socket buffer size as well as 
receive buffer size.  In [16], we evaluated the MPTCP 
performance by changing receive and send socket buffer sizes 
independently, and clarified that an insufficient send socket 
buffer provokes more serious throughput degradation than 
insufficient receive socket buffer.  Kato et al. [17] provided 
more detailed analysis of the MPTCP communicatison under 
insufficient send socket buffer through dissimilarly delayed 
subflows. 

III. THROUGHPUT DEGRADATION DUE TO INSUFFICIENT 

SEND SOCKET BUFFER 

As for the case that send socket buffer is insufficient, our 
previous papers showed the following results when MPTCP 
communication is done by two subflows whose transmission 
delay is different; fast subflow and slow subflow.  In the case 
that the send socket buffer size is small, the communication is 
done through only the fast subflow.  As the send socket buffer 
size increases, the communication is done through two 
subflows, but the MPTCP connection level throughput is 
lower than the single path TCP communication whose delay 
is equal to the fast subflow.  When the send socket buffer size 
becomes bigger, two subflows are used in the MPTCP 
communication and its throughput is larger than the 
bandwidth of one subflow.   

In this section, we show the detailed MPTCP behaviors 
when the MPTCP connection level throughput is lower than a 
single path TCP throughput.   

A. Experimental Settings 

In the experiment, we use the network configuration of 
shown in Figure 3.  Two hosts running the Linux operating 
system (Ubunts 16.04 LTS), data sender and receiver, are 
connected together through two 1Gbps Ethernet links.  The 
private IP addresses are assigned as shown in the figure.  In 
one Ethernet link, a network emulator is inserted in order to 
provide delay.  Although the physical data rate is 1Gbps, the 
frame transmission speed is limited to 100 Mbps using Linux 
traffic control (tc) command.  We establish one MPTCP 
connection between two hosts with two subflows, one 
between 192.168.0.1 and 192.168.0.2 (called fast subflow) 
and the other between 192.168.1.1 and 192.168.1.2 (called 

slow  subflow).  The scheduler is the default one, minRTT.  By 
consulting the results in our previous papers, the delay 
inserted at the network emulator is set to 40 msec for one 
direction, i.e., 80 msec in round-trip.  The send socket buffer 
size is set to 1,048,576 bytes (1 Gibibytes) for the minimum, 
default, and maximum sizes, using the sysctl –w 

net.ipv4.tcp_wmem command.  The receive socket buffer 
at the receiver uses the default value, which is 4,096, 87380, 
and 6,291,456 bytes for the minimum, default, and maximum 
sizes, respectively.   

In the performance evaluation, iperf is used in both hosts 
and bulk data transfer is executed for 10 seconds.  During the 
bulk data transfer, packet traces are collected at the sender side 
by use of tcpdump.  Those traces are examined in detail with 
Wireshark, a network protocol analyzer whose version is 3.2.4.  
We also execute tcpprobe in the sender side in order to collect 
TCP related information like congestion window size during 
data transfer.   

B. Results and Analysis 

We executed five experiment runs under the conditions 
described above.  The throughput measured at the receiver 
side ranges from 42.4 Mbps to 49.8 Mbps.  The average is 
46.8 Mbps and the standard deviation is 3.54 Mbps.  Since the 
link bandwidth of the fast subflow is 100 Mbps, the MPTCP 
connection level throughput is lower than the subflow 
bandwidth.   

Hereafter, we pick up the forth experiment run whose 
throughput is 48.6 Mbps.  Figure 4 shows the time variation 

 
Figure 3.  Network configuration for evaluation. 

Ethernet 1Gbps (traffic 
controlled to 100 Mbps)

sender receiver

Network
emulator

192.168.0.1

192.168.1.1

192.168.0.2

192.168.1.2

inserting delay
(40 msec each)

 
(a) from 0 sec to 2.5 sec. 

 
(b) from 7.5 sec to 10 sec. 

Figure 4.  Time variation of data sequence number. 

50Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



of the data sequence number sent over the fast and slow 
subflows. In this figure, we show the graph focusing on the 
results during the first and the last 2.5 secs.  The two graphs 
show similar tendencies.  The data sequence number is 
increasing in both fast and slow subflows.  The increase itself 
is intermittent, that is, the data transmission in this case repeats 
sending and stopping.  This behavior is considered to be the 
reason for low throughput.   

 Figure 5 shows the time variation of the MPTCP data 
sequence number and the TCP sequence number focused on 
the period between 7.5 sec and 8.1 sec.  By zooming in the 
change of the data sequence number, we can find that there 
are several retransmissions in the fast subflow, e.g., at 7.55 sec, 
7.74 sec, 7.78 sec, some of which are explicitly indicated in 
the figure.  Figure 5(b) shows the increase of TCP sequence 

numbers in the fast and slow subflows, and there are no 
retransmissions in both of them.  This result means that the 
retransmissions shown in Figure 5(a) are the opportunistic 
retransmissions installed in the minRTT scheduler.   

We also measured the values of the congestion window 
size of the fast and slow subflows, at the timing of sender 
receiving ACK segments by use of the tcpprobe module.  
Figure 6 shows the time variation of congestion window size 
in the fast and slow subflows.  The congestion window size of 
the slow subflow increases up to around 700 packets and 
undergoes drops more than 20 times.  We confirmed that there 
were no packet losses in the TCP level, and so these drops are 
caused by the penalization implemented in the minRTT 
scheduler.  The congestion window size in the fast subflow, 
on the other hand, experienced no drops.  The reason that the 
window is kept in a relatively low value is that the congestion 
window validation [18] was effective due to small RTT in the 
fast subflow.   

IV. ANALYSIS OF LINUX MPTCP SOFTWARE 

This section shows the detail of Linux MPTCP software 
and discusses why the performance degradation happens.   

A. Internals of Linux MPTCP Software 

When an application sends a data using MPTCP, function 
tcp_sendmsg_locked() processes this request.   Figure 7 
shows its outline.  The main part of this function is a while 
loop for handling data given by an application.  In the loop, 
the buffer status is checked at first.  If there is no send socket 
buffer space, checked by sk_stream_memory_free(), or if 
the socket buffer for a data segment cannot be allocated, done 
by sk_stream_alloc_sk(), then the control is jumped to 
wait_for_snnbuf.  Here, this module will wait for some 
period by sk_stream_wait_memory().  On the other hand, 
if the send socket buffer has enough space, the data is copied 
to the allocated buffer (skb_add_data_nocache()) and 
transmitted (__tcp_push_pending_frames() or 

 
(a) data sequence number 

 
(b) TCP sequence number 

Figure 5.  Detailed behavior between 7.5 sec and 8.1sec. 

 
Figure 6.  Time variation of congestion window size. 

 
Figure 7. Outline of tcp_sendmsg_locked().  

51Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



tcp_push_one()).  The latter two functions will eventually 
call mptcp_write_xmit() to perform actual sending out.  
This program structure tells that the waiting on the send socket 
buffer shortage follows a different processing path from the 
sending data segment.   

 Figure 8 shows the relationship of function calls in the 
data sending and receiving.  As described above, the data 
sending is handled in mptcp_write_xmit(), which calls 
mptcp_next_segment() for obtaining the data segment 
being sent next, and tcp_write_xmit(), which sends the 
data segment out to the IP module.  Within the 
mptcp_next_segment() function, mptcp_rcv_buf_ 

optimization() is called to check whether to perform the 
RP mechanism.  When the RP mechanism is performed 
actually this function returns the buffer addresses that contains 
the data segment to be transmitted.   

This figure also describes the function calls when 
receiving a data or ACK segment.  When the TCP module 
receives a segment in the ESTABLISHED state, 
tcp_rcv_eshtablished() is called.  In this function, the 
segment itself and its parameters are checked in 
tcp_validate_incoming(), which calls mptcp_handle 
_options() for processing a DSS option.  In this function, 
mptcp_process_data_ack() is called for a data ACK 
parameter, and then this function calls 
mptcp_write_xmit() eventually.  In this function, the RP 
mechanism is performed when it is necessary.   

The following two points need to be mentioned.  First, the 
waiting for buffer release in sk_stream_wait_memory() 
and the other processing are completely independent.  
Especially, the behavior of sending data requested from the 
upper layer stops completely during this waiting, because 
tcp_sendmsg_locked() is the only function to handle the 
data send request from the upper layer and it is blocked in this 
waiting function.  The other is that the RP mechanism is 
applied to the subflows other than the one invoked the 
mptcp_rcv_buf_optimization() function.   

B. Behaviors of Linux MPTCP Software 

Figure 9 shows the time variation of congestion window 
sizes in the fast and slow subflows from 7.5 sec to 8.1 sec.  

During this period, the window of the slow subflow is reduced 
twice, between 7.6 sec and 7.7 sec, and between 8.0 sec and 
8.1 sec.   

In order to analyze the MPTCP software behavior in Linux, 
we modified the Linux kernel to generate the timestamps of 
the entry and exit of sk_stream_wait_memory(), and 
those of the penalization in mptcp_rcv_buf_ 

optimization().  Figure 10 shows those results between 
7.5 sec and 8.1 sec.  In this figure, the blue line is the situation 
of the processing of wait-for-memory timer.  The upper side 
in the graph means the timer is on, i.e., the function is blocked 
by waiting for memory release.  The lower side indicates the 
function is not blocked but working.  The black points indicate 
that the penalizations are invoked.   

This figure suggests the followings.  First, the tcp_ 
sendmsg_locked() function blocks very often in order to 
wait for the send buffer release, and the blocking keeps long 
and so the tcp_sendmsg_locked() function seems to be 
almost always blocked.  During the blocked periods, the 
function cannot perform anything for resolving the throughput 
degradation.  The other is that the penalization that reduces the 
congestion window size of the slow subflow does not occur so 
many times as the send socket buffer starvation.  During the 
0.6 sec shown in the figure, only two sets of penalization occur.   
It should be noted that, at each set of penalization, the actual 
window reduction occurs multiple times.  In the case of this 
figure, three reductions happened at each penalization.  
Throughout a 10 sec data transfer analyzed here, the buffer 
starvation happened 278 times.  On the other hand, the 

 
Figure 8.  Function calls of data sending and receiving. 

 
Figure 9.  Time variation of congestion window size  

between 7.5 sec and 8.1 sec.   

 
Figure 10.  Behavior of wait for memory and penalization.   

52Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



penalization occurred 28 times, each of which included one to 
three window reductions.   

Based on those considerations, we can summarize the 
reason of the throughput degradation is the followings.  First, 
the handling of send socket buffer starvation is done in the 
very beginning of TCP data send processing, and the way is 
just to block the control for some period.  During this waiting 
period, no mechanisms to recover degraded throughput, such 
as the RP mechanism, can be invoked.  Second, these 
mechanisms may be invoked when an MPTCP sender 
receives ACK segments, but the frequency of these 
invocations are much less than that of buffer starvations.   

V. CONCLUSIONS 

In this paper, we pointed up the MPTCP performance 
degradation in the situation that subflows have different 
transmission delays and the send socket buffer size is 
insufficient.  We showed this situation by the experiments 
using the in-house network and discussed the details of the 
MPTCP parameters during the degradation.  We also showed 
the internal structure of Linux MPTCP software focusing on 
the buffer starvation and the MPTCP scheduler.  In the end, 
we showed a possible reason why the performance 
degradation occurs.  We are going to propose a new scheduler 
function to resolve this degradation caused by the insufficient 
send socket buffer size.   

REFERENCES 

[1] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural 
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar. 
2011. 

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions 
for Multipath Operation with Multiple Addresses,” IETF RFC 6824, 
Jan. 2013. 

[3] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control 
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011. 

[4] M. Scharf and S. Kiesel, “Head-of-Line Blocking in TCP and SCTP: 
Analysis and Measurements,” IEEE GLOBECOM ’06, pp.1-5, Nov. 
2006.  

[5] Icteam, “MultiPath TCP – Linux Kernel implementation, Users:: 
Confiugre MPTCP,” https://multipath-tcp.org/pmwiki.php/Users/ 
ConfigureMPTCP.   

[6] C. Raiciu, et al., “How Hard Can It Be? Designing and Implementing 
a Deployable Multipath TCP,” 9th USENIX Symposium on 
Networked Systems Design and Implementation (NSDI ’12), pp.1-14, 
Apr. 2012. 

[7] O. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental 
Evaluation of Multipath TCP Schedulers,” 2014 SIGCOMM 
Workshop on Capacity Sharing Workshop (CSWS ’14), pp.27-32, Aug. 
2014. 

[8] N. Kuhn, et al., “DAPS: Intelligent delay-aware packet scheduling for 
multipath transport,''  IEEE ICC 2014, pp. 1222-1227, Jun. 2014 

[9] F. Yand, Q. Wang, and P. D. Amer, “Out-of-oder Transmission for In-
order Arrival Scheduling for Multipath TCP,” 28th International 
Conference on Advanced Information Networking and Aplications 
Workshops, pp. 749-752, May 2014.   

[10] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking 
Estimation-based MPTCP Scheduler for Heterogeneous Networks,” 
IFIP Networking 2016, pp. 431-439, May 2016.   

[11] C. Paasch, R, Khalili, and O. Bonaventure, “On the Benefits of 
Applying Experimental Design to Improve Multipath TCP,” 9th ACM 
Conference on Emerging Networking Experiments and Technologies 
(CoNEXT ’13), pp.393-398, Dec. 2013. 

[12] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Impact of 
Path Characteristics and Scheduling Policies on MPTCP Performance,” 
28th International Conference on Advanced Information Networking 
and Applications Workshops, pp.743-748, May 2014. 

[13] J. Kim, B. Oh, and J. Lee, “Receive Buffer based Path Management for 
MPTCP in Heterogeneous Networks,” 2017 IFIP/IEEE Symposium on 
Integrated Network and service Management (IM), pp.648-651, May 
2017.  

[14] F. Zhou, et al., “The Performance Impact of Buffer Sizes for Multi-
Path TCP in InternetSetups. In: 2017 IEEE 31st International 
Conference on Advanced Information Networking and Applications 
(AINA), pp.9-16, Mar. 2017. 

[15] P. Dong, et al., “Performance Evaluation of Multipath TCP Scheduling 
Algorithms,” IEEE Access, Vol. 7, pp. 29818-29825, Feb. 2019.   

[16] T. Kato, M. Tenjin, R. Yamamoto, S. Ohzahata, and H. Shinbo, 
“Microscopic Approach for Experimental Analysis of Multipath TCP 
Throughput under Insufficient Send/Receive Socket Buffers.,” 15th 
International Conference WWW/Internet 2016, pp.191-199, Oct. 2016. 

[17] T. Kato, A. Diwakar, R. Yamamoto, S. Ohzahata, and N. Suzuki, “How 
Insufficient Send Socket Buffer Affects MPTCP Performance over 
Paths with Different Delay,”  6th World Conference on Information 
Systems and Technologies (WorldCIST 18), pp. 614-624, Mar. 2018.   

[18] N. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window 
Validation,” IETF RFC 2861, Jun. 2000.   

 

53Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet


