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Abstract—Internet of Things (IoT) has attracted a recent spark in
research on Internet of Vehicles (IoV). In this paper, we focus on
one research area in IoV: preserving location privacy of vehicle
data. We discuss existing location privacy preserving techniques
and provide a scheme for evaluating these techniques under IoV
traffic condition. We propose a different strategy in applying
Differential Privacy using k-d tree data structure to preserve
location privacy and experiment on real world Gowalla data
set. We show that our strategy produces differentially private
data, good preservation of utility by achieving similar regression
accuracy to the original dataset on an Long Term Short Term
Memory (LSTM) neural network traffic predictor.

Keywords–Internet of Things; Internet of Vehicles; Location
Privacy; Differential Privacy; Privacy Preservation Scheme.

I. INTRODUCTION

In recent years, a new networking concept has emerged.
From the growing number of devices that are connected to
each other by various means, researchers have coined a term
for this network: the Internet of Things. The Internet of
Things (IoT) has exploded in the last decade, facilitating the
arrival of other novel ideas such as “Big Data”, and many
derivatives have spawned from IoT’s core philosophy which
involves a globally connected society. One of these derivatives
involves facilitating the arrival of automated vehicles. This
network specifically deals with vehicles communicating with
each other, their infrastructure and other connected devices to
form a cohesive, safe environment for automated vehicles to
thrive in. This derivative is appropriately named the Internet
of Vehicles (IoV). IoV is an evolution of traditional Vehicular
Ad Hoc Networks (VANETs) with new enabling technologies
such as Cloud and 5G [1]. Of course, in order to provide the
necessary support for a network of automated vehicles, some
data needs to be exchanged. Such data may include the location
of a vehicle, an ID, and a timestamp. Unfortunately, however,
the integrity of the data could be threatened by malicious
individuals or companies.

In this paper, we focus on protecting the identity of
individuals being revealed from sharing location data in IoV
applications. There are several reasons why location privacy is
challenging in IoT and IoV:

• Compared to relational data, location data imposes
additional challenges in adding privacy protection with
a balance between privacy and utility. For example,
location data from wearable sensors that record an
individual’s trajectory has an uneven geometric dis-
tribution. Downtown areas may have dense trajectory,
whereas, suburbs may have sparse trajectory. Applying

state-of-the-art privacy protection, such as differential
privacy protection to each single point will greatly
affect data utility because the sparsely distributed
location data will be overwhelmed with noise. This
challenge remains true in IoV, where certain areas
have heavier traffic and certain areas have lighter
traffic.

• The utility of location data is very important for many
IoT applications. For example, in location-based social
networks, the preservation of location patterns (com-
binations of locations) are important for the analysis
of protected data. In IoV, traceability poses an even
higher standard on the utility of location data.

• Due to the high velocity and volume of location data
from sensors, it is very challenging to design an
efficient data structure to represent location data in
both IoT and IoV.

II. RELATED WORK

In the traditional location privacy research in VANETs,
a large amount of work have concentrated on the use of
pseudonyms to achieve anonymity and trace-ability at the
same time. Raya and Hubaux [2] propose a Privacy-Preserving
Authentication (PPA) scheme based on traditional Public Key
Infrastructure (PKI) that uses traditional digital signature tech-
niques to authenticate messages. However, this scheme is
not scalable as it adds both a huge storage burden to the
vehicles for preloading the digital certificates and a burden
to communication bandwidth by including the digital cer-
tificates in the message. Wang et al. [3] introduce a Two-
Factor LIghtweight Privacy-preserving (2FLIP) authentication
scheme by using Message-Authentication-Code (MAC) and
hash operations. 2FLIP is the first authentication scheme that
achieves both strong privacy preservation and DoS resilience,
however, it relies on the assumption of additional available
devices. Each vehicle is bonded to a telematics device with
biometric technology to verify the identities of multiple drivers
and to provide evidence to trace each driver. A Tamper-
Proof Device (TPD) is embedded in an On-Board-Unit (OBU)
to store the system key and to sign and verify messages.
Zhong et al. [4] propose a privacy-preserving scheme using a
certificate-less aggregate signature to achieve secure Vehicle
to Infrastructure (V2I) communications. The authors use a
Trace Authority (TRA) to generate pseudonyms and track the
real identity during the communication to achieve trace-ability.
The computation cost is reduced through pre-calculation at the
Road Side Unit (RSU).

54Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet



With regards to location data in IoT, Bates et al. [5]
explore some ideas regarding privacy protection in a fitness
tracking social network using location fuzzing to introduce
“geo-indistinguishability”. However, this only protects large
locations and not the single location scenario that we consider
here. In a recent paper [6], the authors propose an algorithm
LPT-DP-k for location privacy protection of location access
count data. The algorithm first constructs a Location Privacy
Tree (LPT) to preserve relationships among location patterns
(i.e., trajectories of locations). It then selects k location patterns
with probabilities based on access frequency for data sampling.
In the last step, Laplace mechanism for differential privacy
protection is applied to the selected sample patterns. The
authors show that their algorithm achieves high utility and
effectiveness of protecting location access data. However, there
are a few drawbacks of this work, which we will address in
this paper. First, the protection of frequent accessed location
patterns does not protect individual privacy at less popular
locations in ID based IoV data. Second, the LPT data structure
grows exponentially when the number of locations grow,
making the algorithm impractical for large amount of data.

Throughout our research, we find that almost every re-
searcher has had different ideas about what location privacy
should be and how to protect it. Despite efforts in exploring
different techniques in achieving location privacy of IoT data,
there is a lack of consensus on the definition of location
privacy. Furthermore, there are few holistic views of location
privacy breaches and mitigation at different stages of an IoV
application.

The contributions of this paper are as follows:

1) We examine potential attacks of location privacy for
IoV traffic condition service.

2) We provide a novel birds eye view of existing lo-
cation privacy preserving techniques and provide a
scheme of evaluating these techniques for IoV traffic
condition service.

3) We investigate a different strategy of applying Dif-
ferential Privacy (DP) to the real world Gowalla
dataset than the one proposed by [6]. We show
that instead of locations that are accessed frequently,
the locations with less unique visitors are extremely
sensitive. Instead of applying DP to frequencies of
location patterns, we apply DP to aggregated location
groups based on their geometric positions. We use a
k-d tree data structure which is a natural choice for
generalizing the locations so that differential privacy
can be more appropriately applied to protect sensitive
locations. We show that our strategy produces for
differentially private data, good preservation of utility
by achieving similar regression accuracy to the orig-
inal dataset on an Long Term Short Term Memory
(LSTM) neural network traffic predictor the location
groups.

The paper is organized as follows: Section III and Section
IV discuss the necessary motivation, problem and background
knowledge to understand the concepts discussed in this paper.
Section V includes the bird’s eye view of the location privacy
preservation scheme and an overview of the metrics by which
we evaluate each method. Section VI and section VII include
explanation of our experiment in Differential Privacy and

analysis of the results. Finally, we conclude with section VIII
where our contributions are summarized and we propose some
future work for this topic.

III. MOTIVATION

The phrase “data is the new oil” refers to the priceless
value that data has. We have been experiencing the early
stages of the “information age” since the wide adoption of
the world wide web. Only in recent years has the general
public slowly realized the value of the data that they generate
when interacting with internet capable devices. It has become
common to hear about data privacy breaches in various compa-
nies. Facebook, Mariott, and even United States Postal Service
have all been victims of data privacy breaches in the millions
of records within the past year [7]–[9]. These companies all
stored their records in plain text. However, if these companies
had employed some privacy preserving techniques within their
data, this would have prevented attackers from being able to
derive any value from the data. This is one of the reasons
privacy preservation in general is important.

A general IoV model involves communication between
vehicles, infrastructure and a number of other entities. The
data stored in or exchanged between any of these entities
may contain all sorts of sensitive data. Even though it would
be unwise to store a direct universal identifier (e.g., license
plate number for an ID), these systems will need some way
to identify each of the vehicles that are on the network. It has
been shown that even by storing seemingly harmless qualities
of vehicles or individuals, or using weak privacy protection
techniques, it is trivial to re-identify an individual. Qualities
such as age, salary, and geographic location can all lead to re-
identification through a background information attack [10].
These qualities are referred to as “Quasi-identifiers”, and can
be surprisingly elusive if one is not aware of general privacy
attacks and techniques.

A. Model Setting and Problem Statement
For the purposes of this paper, we are concerned with

vehicle’s data, specifically the storage of this data in the IoV
Cloud. Each data record includes some ID, a Timestamp,
and Location. The Cloud stores such information to perform
operations on it in order to provide services to automated
vehicles such as traffic condition services which we will
focus on here. Traffic condition services are a classification
of services that provide solutions to the problem of avoiding
traffic related issues or gaining traffic related information. The
Traffic condition service model consists of three main stages.

• The first stage is concerned with vehicles updating
the Cloud with its ID, location, and timestamp. This
is essential for being able to support basic traffic
related services as it provides information about where
vehicles are at a particular time.

• The second stage regards the vehicle querying the
Cloud about traffic information around a particular
location. An example query may look like: “How
many vehicles are at location X?” The Cloud will
compute the query and return the answer to the vehicle
that queried the Cloud via the third stage of this model.
It is clear that the data about a vehicle or group of
vehicles contain extremely sensitive information, and
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should be stored with the utmost privacy in the data
storage unit (the Cloud in this case).

• Although the data are stored in the Cloud, they may
be requested for a number of reasons that do not fall
under the use case of providing the traffic condition
service. The data may be published to allow for the
research community to experiment ideas on real data
sets in order to fine tune, improve and innovate new
services. Additionally, and unique to traffic data, the
data here may be audited by an insurance company
in the event of a vehicle insurance claim. The data
may also be requested by a police department or other
law enforcement agency to aid in the investigation or
search for a criminal. These requirements alone cast a
wide and complicated net when considering how best
to store the data so that it maintains realistic utility,
and preserves the privacy of the individuals using the
services.

In our paper, we analyze location privacy preservation in the
three stages of data handling for IoV traffic condition service.
We take this opportunity to outline some of the potential
attacks that can be carried out on this model. We assume for
the first two following attacks menitoned below, the Cloud uses
some ID for each user, that the adversary does not initially
know. However, the Cloud does not utilize any other privacy
protection techniques. In the last attack, we assume that the
Cloud is the adversary and would like to track a user through
the user’s queries.

B. Attack 1: Simple UserID background attack
The first attack involves an adversary querying the Cloud

to gain an individual’s location based on their user ID. The
adversary does not know the user’s ID in the Cloud. However,
with a small amount of background information, the adversary
can easily obtain this ID as we will demonstrate. Assume our
victim is Officer Tom. Each day Tom checks in at a military
base that only he has access to. Therefore he is the only person
that is ever at this location. The adversary happens to know
this, as well as the location of the military base. The adversary
decides they would like to find out Tom’s user ID but cannot
query this directly. So the clever adversary decides to query
the Cloud with the following instead: “SELECT * FROM DB
WHERE UserID = (SELECT UserID FROM DB WHERE
location = X)”, where X is the location of the military base.
Since Officer Tom is the only person ever at this base, the
Cloud will return a single row from the database that contains
Tom’s UserID. Now the adversary can learn the location of
Officer Tom even when he is not at the military base.

C. Attack 2: Dynamic UserID background attack
This attack is similar to Attack 1, however in this case, the

Cloud employs the use of dynamic UserIDs, where the ID for
any user is mapped to a unique list of values that change from
time to time, so that even if an adversary obtains one of their
UserIDs, they cannot successfully track the location of that
particular user. However, we show that this approach is still
not effective to ensure location privacy. Consider the situation
from Attack 1, where Officer Tom is still the only resident
at a military base that the adversary knows the location of.
The adversary can determine whether Officer Tom is there at
a given time or not. Suppose the adversary runs the query:

“SELECT count(*) FROM DB WHERE location = X”, again
where X is the location of Officer Tom’s military base. The
Cloud will return a value, 0 or 1 indicating whether Officer
Tom is there or not at the current time.

D. Attack 3: Untrusted Cloud attack
For this final attack, the Cloud is untrusted and is the

adversary. We assume that the users are innocent and trusted.
The Cloud contains traffic conditions of various locations that
a user may be interested in but does not have this particular
user’s location. The Cloud would like to find the location of
the user, say user Tom. If Tom queries the Cloud regarding
a particular location, then the Cloud can infer that Tom may
be interested in this location and may either be heading there
at some time in the future, or Tom may already be in that
location. If the Cloud’s method for identifying individual users
are unclear, the Cloud can still determine which locations are
popular and which are not based on the number of queries
about a particular location. Although, this attack is less likely
to happen in practice, it is important to be considered.

In the following section, we describe work that has been
conducted on data privacy in general that is relevant to the
techniques we explore in this paper.

IV. BACKGROUND: PRIVACY TECHNIQUES

This section details the core concepts of the privacy tech-
niques that we have chosen to consider in our paper, as well
as some pros and cons of these techniques as a whole.

A. Differential Privacy
Differential Privacy is first presented in 2006 by Dwork

[11]. Differential privacy is a technique used in long-term
data storage or data publishing. The core idea here is to
eliminate the risk of an individual joining a statistical data set
[12] (i.e., the risk is the same as if you had not joined the
set). Differential Privacy involves comparing two databases
that differ by at most one row [11]. Differential Privacy is
achieved if the probability of selecting any two rows from
the databases is the same or worse than a coin flip [12]. This
effectively removes the possibility of a background knowledge
attack since the likelihood of picking any two rows is the
same, regardless of what an individual knows about the data
set. Specifically, we explore ε-differential privacy. To achieve
ε-differential privacy, noise is added among the rows of a
database using a Laplace distribution, according to the value
of ε [12]. As ε is increased, the utility of the data is increased
and privacy is decreased. As ε is reduced, the opposite happens
and we achieve better privacy at the cost of losing utility [12].
Generally, Differential Privacy is superior to many other data
privacy techniques such as k-anonymity [10], t-closeness [13],
l-diversity [14] and their variants since Differential Privacy
provides privacy and removes the possibility of a background
knowledge attack, which all of these other techniques are
susceptible to [15]. ε-Differential Privacy can also be extended
to group privacy or individuals that contribute more than one
row to the data set. Although Differential Privacy is a valuable
concept and an admirable goal, it is not perfectly private. To
be perfectly private would mean not releasing any data at all,
ever. However in order to be productive, as a society we need
to agree that the benefits of sharing some data outweigh the
risks [12].
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B. Private Information Retrieval
Private Information Retrieval (PIR) is a concept that is

proposed in 1997 by Chor et al. [16]. The authors of this
original paper realize that although there are many techniques
developed to protect the privacy of data stored in a database,
there are no techniques to protect the users that query the
database. For example, if a user queried the database about
some points of interest at some location, this implies that the
user has some interest and may be heading to this location,
or is already at this location. The authors achieved this private
information retrieval by encrypting the user’s query and giving
the database the encrypted query. Then, the database will
run some computation on the encrypted query and return an
encrypted result. Here the database has no idea what has been
queried or returned. A recent improvement on PIR for vehicles
is known as PIR in Vehicle Location-Based Services (VLBS)
proposed by Tan et al. [17] in 2018. This technique is designed
to work well in the vehicular setting and is much faster than
standard PIR. PIR in VLBS allows the user to filter the queried
data set such that privacy is maintained. This is achieved by
partitioning the queryable area into segments and assigning
Points of Interest (POI) to certain areas based on their distance
from a road segment. The size of the groups of POI are always
the same, and since the query and response are encrypted,
there is no way for the adversary to know what data have
been requested or returned.

C. Garbled Circuit
Garbled Circuits are a relatively old concept presented

by Yao in 1986 [18]. This concept provides an environment
for secure (and therefore private) computation between two
parties, where the receiving party (evaluator) is only able to
perform computation on the encrypted result of the sending
party’s (garbler’s) message. In circuit logic, a set of gates can
be mapped to a simple truth table, where the gates represent
logical operations. In a garbled circuit however, the mapping
to the truth table is rearranged by the garbler. The garbler
will take input values to a gate and encrypt them, so that
the other communicating party does not know the input. The
garbler will perform the gate operation on the input values
prior to encryption to obtain the output value. Then, each
encrypted input is paired with the corresponding output and the
value is stored together in the re-arranged truth table. Figure
1 follows from [19], here WY

X is mapped from X = Y , so
W 0
G = (g = 0):

Figure 1. The garbling of an AND gate [19]

Now the evaluator would like to decrypt exactly one
ciphertext from the garbled truth table, to revel the values of
g and e that correspond to W g

G and W e
E that the garbler has

sent [19]. The evaluator also receives the garbled gate from the
garbler. But there are some restrictions on this decryption. The
evaluator cannot be sent both W 0

E and W 1
E because then the

evaluator can decrypt two ciphertexts [19]. The evaluator can
not ask for which specific value they want either since they

do not want the garbler to know which specific value they are
after. This is called oblivious transfer and allows the evaluator
to find out only W e

E without revealing e to the garbler. The
evaluator also needs to know when decryption succeeds and
when it does not in order for this technique to succeed [19].

The next section will describe techniques that we consider
will achieve vehicle location privacy, as well as some attacks
and mitigation that can be imposed on these techniques.

V. OVERVIEW OF PRIVACY TECHNIQUES AND PROPOSED
ATTACKS, WITH SOLUTIONS

We evaluate the techniques using three metrics. As shown
in Table I, each metric is concerned with location privacy at
a different stage in our model. The three metrics are: location
privacy at traffic update, location privacy at traffic storage (or
trajectory privacy) and location privacy at traffic query. The
number of ticks represents the effectiveness of a technique
for a particular privacy concern. Table II shows that each
technique uses a slightly different model in terms of which
communicating party is identified as the adversary. In certain
techniques, the Cloud is the adversary, and the vehicle is an
innocent user. In other techniques, the Cloud is trusted and the
vehicle is not trusted.Some models may also involve a trusted
third party, in addition to the Cloud and the vehicle. This third
party is commonly referred to as a Trusted Authority (TA) in
IoV literature.

TABLE I. LOCATION PRIVACY METRICS IN IOV FOR TRAFFIC CONDITION
SERVICE

Privacy Concerns Dynamic
Pseudonym

Differential
Privacy

Private In-
formation
Retrival

Trusted Agency
+ Garbled Cir-
cuit

Location Privacy
at Traffic Update

X X

Location Privacy
at Traffic Storage

X XX XX

Location Privacy
at Traffic Query

X XX XX

TABLE II. LOCATION PRIVACY PARTIES IN IOV FOR TRAFFIC CONDITION
SERVICE

Parties Dynamic
Pseudonym

Differential
Privacy

Private In-
formation
Retrival

Trusted Agency
+ Garbled Cir-
cuit

Third Party
Agency

Trusted N/A N/A Trusted

Cloud Not
Trusted

Trusted Not
Trusted

Not Trusted

Vehicle Trusted Not
Trusted

Trusted Trusted

A. Dynamic Pseudonyms
The first technique we examine involves the use of

pseudonyms. The Cloud is the adversary and the vehicle and
TA are trusted. This technique is centered around the idea of
protecting a user’s location by mapping their real identifier to
a constant pseudonym that is generated by the TA. Here, the
TA is used as an intermediary between the vehicle and the
Cloud. However, this technique is susceptible to Attack 1. So
location privacy is not adequately preserved here.

An alternative pseudonym technique that is also considered
is the dynamic pseudonym, where, a user’s real identifier is
mapped to a list of pseudonyms that change at a predetermined
time, and therefore appear different to the Cloud. Only the
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TA is able to determine the real identity of the mapped
pseudonyms. This technique is, however, susceptible to At-
tack 2. Therefore the pseudonym approach does not achieve
location privacy for an individual.

B. Differential Privacy
The second technique we consider involves adding Differ-

ential Privacy to the Cloud that stores our data. In this model,
we have only the Cloud and the vehicle involved in communi-
cations, where the Cloud is trusted however the vehicle/ user
is not. Here the user will attempt to gain information about
other users using seemingly harmless queries. As is standard
in Differential Privacy, noise is added to the database rows to
add privacy. However if an adversarial user queries the Cloud
regarding traffic information in various locations they may be
able to obtain a picture of what the general traffic concentration
appears to be. Another weakness of this technique is the fact
that vehicles are constantly checking in their locations to the
Cloud with updates. This breaks Differential Privacy if the
Cloud is not dynamically updating its records. Making an
attack similar to Attack 1 or Attack 2 viable.

C. Private Information Retrieval
For our third technique, we explore a special case of Private

Information Retrieval. PIR in VLBS can be utilized to provide
privacy at query time. Here the Cloud is the adversary and the
vehicle is trusted. Since the queries to the Cloud are encrypted,
the Cloud has no way of knowing what the vehicle’s are
querying. However, the Cloud attempts to figure this out based
on which rows are returned after a query. But according to PIR,
a group of the same number of rows are returned each time
a query is asked making it impossible to pin point exactly
what the vehicle was querying about. However, if a vehicle
chooses to update the Cloud at any point, its exact location
will be revealed to the adversary. As a consequence of this,
the vehicle’s location privacy at storage is not maintained since
the vehicle checks in to update its location over time.

D. Garbled Circuit
Finally, our fourth technique involves using a garbled

circuit in conjunction with a TA. This technique attempts to
satisfy each metric that we are evaluating with. In this model,
the Cloud is our adversary and is untrusted once again, and
the vehicle/ user is trusted, along with the TA. Consider the
situation where the vehicle updates the Cloud with its location.
The Cloud only receives encrypted data to store and cannot
directly decrypt this without some assistance from the TA,
which does not expose the location of the vehicle without the
vehicle’s permission. On this same note, location privacy of a
vehicle is preserved over the long term as the data stored is
encrypted. On a query about traffic related to a certain location,
the Cloud is not aware of the value that is being requested
for. Therefore location privacy is preserved once again. This
technique seems to be the most private, however it is also the
most complex.

VI. EXPERIMENT

As shown in section 2, row based location data is suscep-
tible to attacks that may personalize sensitive location data.
In our experiment section, we investigate Differential Privacy
to centrally stored location data in the same real dataset used

by Yin et al. [6]. The location check in data Gowalla was a
location-based social network that was active between 2007
and 2012. The dataset includes a total of 6,442,890 check-
ins of these users over the period of Feb 2009 and Oct 2010.
Figure 2 shows a snapshot of the Gowalla dataset. Although

Figure 2. Snapshot of Gowalla Dataset

the dataset is not strictly IoV data, it shares similairty with
IoV data by having location, timestamp, and ID in each
row. It should be mentioned that since this dataset is not
strictly traffic data and does not necessarily have continuous
timestamps for each user by minutes or hours, this issue can be
rectified by generalizing timestamps to dates and then building
a contingency table with missing dates, as we will discuss in
a later subsection.

We generalize individual locations to location groups by
splitting the geometric plane using k − d tree such that each
group has roughly the same amount of locations. Each row of
the aggregated data includes timestamp, location group, and
unique count of users. We then apply Laplace noise to the
user count to achieve ε−Differential Privacy for the location
data. The programs are written in Python, and the experiments
are run on a MacBook Pro with 2.3 GHz Intel Core i5 and 8
GB 2133 MHz LPDDR3.

A. Data Cleaning
After plotting the normalized Gowalla locations, we notice

some outliers that affect the generalization of geometric dis-
tribution. As shown in Figure 3, a few outliers at the topright
corner greatly affects the performance of k − d tree.

Figure 3. Gowalla Locations With Outliers

We remove these outliers by removing 37 locations with
large z scores, a statistical metric of a value relative to the
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sample mean and standard deviation. Figure 4 shows the plot
of normalized Gowalla locations after the outliers are removed.

Figure 4. Normalized Gowalla Locations Without Outliers

B. Building Contingency Table
In order to prepare a differentially private dataset for shar-

ing and publishing, it is important to make sure a contingency
table is built on top of the original generalized data and before
Differential Privacy is applied [20]. For our data, building a
contingency table means to create continuous dates for each
location group and unique user combination. To do this, we
calculate the minimum and maximum dates in the dataset, and
add missing dates to all location groups with user count set
to 0. Note that the original dataset has timestamps based on
hours and minutes, however it is less common for a user to
visit a location on an hourly basis and more common for
the user to visit the location at different times of different
dates. Therefore, we generalize the timestamp to dates to avoid
excessive numbers of rows being added to the contingency
table, which affects the data utility.

C. Generalization
We experimented different depths of 4, 5, 6 of the k − d

tree for the generalization of locations. Through evaluation we
determine that depth 6 is proper for the group generalization
as it provides more granularity. After each location is assigned
a group ID, the original dataset is aggregated to a dataset
with dates, location groups, and count of unique users at the
date/location group combination. The data cleaning and gen-
eralization shrinks 6,442,890 checkins to 40,128 aggregated
records. Figure 5 shows the generalized location data of the
Gowalla dataset.

D. Differential Privacy
For each generalized data point, Lap(1/ε) is added to the

user counts. In our experiments, we tried ε = 0.1, 0.5, 1.0.
Figure 6 shows 0.1−differentially private Gowalla dataset.
From the first glance, this dataset shares similar distributions
as the original dataset. At a closer look, we can notice the
noise added to each location group.

Figure 5. Gowalla Location Groups and User Counts (k − d tree depth = 6)

Figure 6. Gowalla Location Groups and User Counts with Differential
Privacy (k − d tree depth = 6)

VII. EVALUATION AND ANALYSIS OF RESULTS

A. Data Quality

In order to quantify the utility of our differentially private
dataset, we measure and compare the regression accuracy of
a traffic predictor when it is trained by the original dataset
and the differentially private dataset. This approach is similar
to the evaluation of classification quality in Mohammed et al.
[20]. We use an LSTM traffic predictor utilized in Fu et al.
[21] and train two models using 2009-02-04 to 2010-08-31 of
the original and differentially private datasets as training data
respectively, and then we use the 2010-09-01 to 2010-10-23
of the original dataset as test data. The model is trained with a
sliding window of 7 (representing one week) and iteration of
600. After successfully training our predictors, we measure

TABLE III. LOCATION GROUP 63 PREDICTION COMPARISON OF
DIFFERENT TRAINING MODELS

Measurement Orig
model

DP ε =
0.1

DP ε =
0.5

DP ε =
1.0

Explained variance
score

0.713 0.670 0.390 0.469

RMSE (root mean
squared error)

45.676 48.893 56.583 50.343

R2 score 0.513 0.442 0.253 0.409

the regression accuracy of the predictors in terms of explained
variance score, Root Mean Squared Error (RMSE) and R2
score using the metrics package of Python scikit-learn [22].
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Figure 7. Location Group 63 Real Data vs. Prediction

Table III shows the comparison of predictions made by models
trained by different versions of location data for Gowalla
location group 63. We observe that the predictor trained with
0.1−differentially private data has very close accuracy to the
model trained with original data. Figure 7 shows that in
general, the predicted data by all DP-data-trained models are
reasonable compared to the real data.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we conduct a thorough study of location
privacy in IoV traffic condition service through investigation
of potential attacks and mitigations. Based on this knowledge,
we develop a novel overview of location privacy preservation
scheme. Lastly, we develop a Differential Privacy strategy to
centrally store location data and demonstrate the preservation
of data utility quantitatively.

There is a lot of potential for future work. Section V leaves
many avenues open for pursuing research on the techniques
we have proposed here. Private Information Retrieval can
be studied much more extensively to determine its overall
effectiveness and to examine whether there is another variant
of PIR or some existing technique coupled with PIR to
satisfy location privacy using the three metrics designed in this
section. Conducting some experiments on the TA and Garbled
Circuit technique could also be an important step to implement
a robust location privacy preserving technique as it provides
the most utility and the most privacy of all models observed
in this paper.
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