
Multipath TCP Packet Scheduling for Streaming Video

Ryota Matsufuji, Dirceu Cavendish, Kazumi Kumazoe, Daiki Nobayashi, Takeshi Ikenaga
Department of Computer Science and Electronics

Kyushu Institute of Technology
Fukuoka, Japan

e-mail: {q349428r@mail, cavendish@ndrc, kuma@ndrc, nova@ecs, ike@ecs}.kyutech.ac.jp

Abstract—Video streaming has become the major source of
Internet traffic nowadays. Considering that content delivery
network providers have adopted Video over Hypertext Trans-
fer Protocol/Transmission Control Protocol (HTTP/TCP) as the
preferred protocol stack for video streaming, understanding
TCP performance in transporting video streams has become
paramount. Recently, multipath transport protocols have allowed
video streaming over multiple paths to become a reality. In this
paper, we propose packet scheduling disciplines for injecting
video stream packets into multiple paths at the video server.
We study video streaming performance when subjected to these
schedulers in conjunction with current TCP variants. We utilize
network performance measures, as well as video quality metrics,
to characterize the performance and interaction between network
and application layers of video streams for various network
scenarios.

Keywords—Video streaming; high speed networks; TCP conges-
tion control; Multipath TCP; Packet retransmissions; Packet loss.

I. I NTRODUCTION

Transmission control protocol (TCP) is the dominant trans-
port protocol of the Internet, providing reliable data transmis-
sion for the large majority of applications. For data applica-
tions, the perceived quality of service is the total transport
time of a given file. For real time (streaming) applications,
the perceived quality of experience involves not only the total
transport time, but also the amount of data discarded at the
client due to excessive transport delays, as well as rendering
stalls due to the lack of timely data. Transport delays and data
starvation depend on how TCP handles flow control and packet
retransmissions. Therefore, video streaming user experience
depends heavily on TCP performance.

TCP protocol interacts with video application in non trivial
ways. Widely used video codecs, such as H-264, use compres-
sion algorithms that result in variable bit rates along the play-
out time. In addition, TCP has to cope with variable network
bandwidth along the transmission path. Network bandwidth
variability is particularly wide over paths with wireless access
links of today, where multiple transmission modes are used to
maintain steady packet error rate under varying interference
conditions. As the video playout rate and network bandwidth
are independent, it is the task of the transport protocol to
provide a timely delivery of video data so as to support a
smooth playout experience.

Recently, multipath transport has allowed video streamed
over multiple IP interfaces and network paths. Multipath
streaming not only augments aggregated bandwidth, but also
increases reliability at the transport level session even when a
specific radio link coverage gets compromised. An important

issue in multipath transport is the path (sub-flow) selection;
a packet scheduler is needed to split traffic to be injected on
a packet by packet basis. For video streaming applications,
head of line blocking may cause incomplete or late frames
to be discarded at the receiver, as well as stream stalling.
In this work, we propose a couple of path schedulers and
evaluate video streaming performance under these schedulers.
To the best of our knowledge, there has not been a study of
path selection mechanisms’ performance of multipath video
streaming in the literature.

The material is organized as follows. Related work discus-
sion is provided on Section II. Section III describes video
streaming over TCP system. Section IV introduces the TCP
variants addressed in this paper, as well as Multipath TCP and
path schedulers used to support multipath transport. Section V
addresses multiple path video delivery performance evaluation
for each TCP variant. Section VI addresses directions we are
pursuing as follow up to this work.

II. RELATED WORK

Although multipath transport studies are plenty in the lit-
erature, there has been few prior work on video performance
over multiple paths [5] [11] [15]. In our previous work [10],
Matsufuji et al. have evaluated multipath video streaming
performance when widely deployed TCP variants are used
in each path. Regarding multipath schedulers, there has been
even less research activity. Yan et al. [16] propose a path
selection mechanism based on estimated sub-flow capacity.
Their evaluation is centered on throughput performance, as
well as reducing packet retransmissions. Yan et al. [2] present
a modelling of multipath transport in which they explain
empirical evaluations of the impact of selecting a first sub-
flow in throughput performance. Hwang et al. [8] propose a
blocking scheme of a slow path when delay difference between
paths is large, in order to improve data transport completion
time on short lived flows. Finally, Ferlin et al. [6] introduces
a path selection scheme based on a predictor of the head-
of-line blocking of a given path. They carry out emulation
experiments with their scheduler against the minimum rtt
default scheduler, in transporting bulk data, Web transactions,
and Constant Bit Rate (CBR) traffic, with figure of merits of
goodput, completion time, and packet delays, respectively.

In contrast, our work seeks to propose and evaluate mul-
tipath path scheduling mechanisms and their impact on the
quality of video streams. Previously [10], we have evaluated
multipath video streaming using standard MPTCP path selec-
tion scheduler. In this work, we evaluate two new path sched-

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

uler proposals. For performance evaluation, we use widely de-
ployed TCP variants on open source network experiments over
WiFi access links. The use of widely deployed TCP variants
is motivated by the fact that path selection is constrained by
the availability and size of congestion window controlled by
TCP variants on each path.

III. V IDEO STREAMING OVER TCP
Video streaming over HTTP/TCP involves an HTTP server,

where video files are made available for streaming upon HTTP
requests, and a video client, which places HTTP requests to
the server over the Internet, for video streaming. Figure 1
illustrates video streaming components.

cwndrwnd

playout buffer

video
rendering

Client Server

awnd TCP

Application

video file

Internet

packetization

Figure 1: Video Streaming over TCP
An HTTP server stores encoded video files, available upon

HTTP requests. Once a request is placed, a TCP sender is
instantiated to transmit packetized data to the client machine.
At TCP transport layer, a congestion window is used for flow
controlling the amount of data injected into the network. The
size of the congestion window,cwnd, is adjusted dynamically,
according to the level of congestion in the network, as well
as the space available for data storage,awnd, at the TCP
client receiver buffer. Congestion window space is freed only
when data packets are acknowledged by the receiver, so that
lost packets are retransmitted by the TCP layer. At the client
side, in addition to acknowledging arriving packets, TCP
receiver sends back its current available spaceawnd, so that
at the sender side,cwnd ≤ awnd at all times. At the client
application layer, a video player extracts data from a playout
buffer, filled with packets delivered by TCP receiver from its
buffer. The playout buffer is used to smooth out variable data
arrival rate.
A. Interaction between Video streaming and TCP

At the server side, HTTP server retrieves data into the TCP
sender buffer according withcwnd size. Hence, the injection
rate of video data into the TCP buffer is different than the
video variable encoding rate. In addition, TCP throughput
performance is affected by the round trip time of the TCP
session. This is a direct consequence of the congestion window
mechanism of TCP, where only up to acwnd worth of bytes
can be delivered without acknowledgements. Hence, for a fixed
cwnd size, from the sending of the first packet until the first
acknowledgement arrives, a TCP session throughput is capped
at cwnd/rtt. For each TCP congestion avoidance scheme,
the size of the congestion window is computed by a specific
algorithm at time of packet acknowledgement reception by
the TCP source. However, for all schemes, the size of the
congestion window is capped by the available TCP receiver
spaceawnd sent back from the TCP client.

At the client side, the video data is retrieved by the video
player into a playout buffer, and delivered to the video ren-
derer. Playout buffer may underflow, if TCP receiver window
empties out. On the other hand, playout buffer overflow does
not occur, since the player will not pull more data into the
playout buffer than it can handle.

In summary, video data packets are injected into the network
only if space is available at the TCP congestion window.
Arriving packets at the client are stored at the TCP receiver
buffer, and extracted by the video playout client at the video
nominal playout rate.

IV. A NATOMY OF TRANSMISSION CONTROL PROTOCOL

TCP protocols fall into two categories, delay and loss based.
Advanced loss based TCP protocols use packet loss as primary
congestion indication signal, performing window regulation as
cwndk = f(cwndk−1), being ack reception paced. Mostf
functions follow an Additive Increase Multiplicative Decrease
strategy, with various increase and decrease parameters. TCP
NewReno [1] and Cubic [13] are examples of additive increase
multiplicative decrease (AIMD) strategies. Delay based TCP
protocols, on the other hand, use queue delay information
as the congestion indication signal, increasing/decreasing the
window if the delay is small/large, respectively. Compound
[14], Capacity and Congestion Probing (CCP) [3] and Capacity
Congestion Plus Derivative (CCPD) [4] are examples of delay
based protocols.

Most TCP variants follow TCP Reno phase framework: slow
start, congestion avoidance, fast retransmit, and fast recovery.

• Slow Start(SS):This is the initial phase of a TCP session.
In this phase, for each acknowledgement received, two
more packets are allowed into the network. Hence, con-
gestion windowcwnd is roughly doubled at each round
trip time. Notice thatcwnd size can only increase in this
phase. So, there is no flow control of the traffic into the
network. This phase ends whencwnd size reaches a large
value, dictated byssthresh parameter, or when the first
packet loss is detected, whichever comes first. All widely
used TCP variants use slow start except Cubic [13].

• Congestion Avoidance(CA):This phase is entered when
the TCP sender detects a packet loss, or thecwnd
size reaches the target upper sizessthresh (slow start
threshold). The sender controls thecwnd size to avoid
path congestion. Each TCP variant has a different method
of cwnd size adjustment.

• Fast Retransmit and fast recovery(FR):The purpose
of this phase is to freeze allcwnd size adjustments in
order to take care of retransmissions of lost packets.

For TCP variants widely used today, congestion avoidance
phase is sharply different. We will be introducing specific TCP
variants’ congestion avoidance phase shortly.

A. Multipath TCP

Multipath TCP (MPTCP) is a transport layer protocol,
currently being evaluated by IETF, which makes possible data
transport over multiple TCP sessions [7]. The key idea is to

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

make multipath transport transparent to upper layers, hence
presenting a single TCP socket to applications. Under the
hood, MPTCP works with TCP variants, which are unaware
of the multipath nature of the overall transport session. To
accomplish that, MPTCP supports a packet scheduler that
extracts packets from the MPTCP socket exposed to applica-
tions, and injects them into TCP sockets belonging to a “sub-
flow” defined by a single path TCP session. MPTCP transport
architecture is represented in Figure 2.

cwndrwnd

awnd-i

MPTCP

Application

sub-flow-i

cwnd-irwnd-i

TCP Receiver TCP Sender

sub-flow-j

cwnd-jrwnd-j

MPTCP
scheduler

MPTCP
receiver

awnd

Figure 2: MPTCP Architecture

MPTCP packet scheduler works in two different configura-
tion modes: uncoupled, and coupled. In uncoupled mode, each
sub-flow congestion windowcwnd is adjusted independently.
In coupled mode, MPTCP couples the congestion control of
the sub-flows, by adjusting the congestion windowcwndk
of a sub-flowk according with parameters of all sub-flows.
Although there are several coupled mechanisms, we focus
on Linked Increase Algorithm (LIA) [12] and Opportunis-
tic Linked Increase Algorithm (OLIA) [9]. In both cases,
a MPTCP scheduler selects a sub-flow for packet injection
according to some criteria among all sub-flows with large
enoughcwnd to allow packet injection.

Multipath Scheduling: MPTCP scheduler has the role of
selecting which sub-flow to inject packets into the network.
The default strategy is to select a path with shortest current
packet delay. Here, we introduce two other path selection and
packet injection mechanisms.

• Shortest Packet Delay(SPD):In shortest packet delay,
the scheduler first rules out any path for which there is no
space in its sub-flow congestion window (cwnd). Among
the surviving paths, the scheduler then selects the path
with small smooth round trip time (rtt). Smooth rtt is
computed as an average rtt of recent packets transmitted
at that sub-flow. Since each sub-flow already keeps track
of its smooth rtt, this quantity is readily available at every
sub-flow.

• Largest packet credits(LPC): Among the sub-flows
with space in their cwnd, this scheduler selects the one
with largest available space. Available space is the num-
ber of packets allowed by cwnd size minus the packets
that have not been acknowledged yet.

• Largest Estimated Throughput(LET): In this case,
among the sub-flows with large enough cwnd to ac-

commodate new packets, the scheduler estimates the
throughput of each sub-flow and selects the one with
largest throughput.

The rationale for the proposed schedulers is as follows.
LPC addresses the path scenario in which a large rtt path has
plenty of bandwidth. In default scheduler, this path may be
less preferred due to its large rtt, regardless of having plenty
of bandwidth for the video stream. LET addresses the scenario
of a short path with plenty of bandwidth. The default scheduler
may select this path due to its short rtt. However, if the short
rtt has a smaller cwnd, LET will divert traffic away from this
path, whereas default scheduler will continue to inject traffic
through it. In summary, a significant difference between these
two proposed schedulers and the default scheduler is that path
selection relies on path characteristics that are more dynamic
(cwnd, in flight packet count) than packet delay (rtt).

B. Linked Increase Congestion Control

Link Increase Algorithm [12] couples the congestion control
algorithms of different sub-flows by linking their congestion
window increasing functions, while adopting the standard
halving ofcwnd window when a packet loss is detected. More
specifically, LIA cwnd adjustment scheme is as per (1):
AckRec : cwndik+1 = cwndik +min(αBackMssi∑

n

0
cwndp

, BackMssi

cwndi)

PktLoss : cwndik+1 =
cwndi

k

2 (1)

whereα is a parameter regulating the aggressiveness of the
protocol,Back is the number of acknowledged bytes,Mssi is
the maximum segment size of sub-flowi, andn is the number
of sub-flows. Equation (1) adoptscwnd in bytes, rather than
in packets (MSS), in contrast with TCP variants equations to
be described shortly, because here we have the possibility of
diverse MSSs on different sub-flows. However, the general
idea is to increasecwnd in increments that depend oncwnd
size of all sub-flows, for fairness, but no more than a single
TCP Reno flow. Themin operator in the increase adjustment
guarantees that the increase is at most the same as if MPTCP
was running on a single TCP Reno sub-flow. Therefore, in
practical terms, each LIA sub-flow increasescwnd at a slower
pace than TCP Reno, still cuttingcwnd in half at each packet
loss.

C. Opportunistic Linked Increase Congestion Control

Opportunistic Link Increase Algorithm [9] also couples the
congestion control algorithms of different sub-flows, but with
the increase based on the quality of paths. More specifically,
OLIA cwnd adjustment scheme is as per (2):

AckRec : cwndik+1 = cwndik +
cwndi

(rtti)2

(
∑

n

0

cwndp

rttp
)2

+ αi

cwndi ,

PktLoss : cwndik+1 =
cwndi

k

2 (2)

whereα is a positive parameter for all paths. The general idea
is to tunecwnd to an optimal congestion balancing point (in
the Pareto optimal sense). In practical terms, at each OLIA
sub-flow increasescwnd at a pace related to the ratio of its
rtt and rtt of other subflows, still cuttingcwnd in half at each
packet loss.

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

D. Cubic TCP Congestion Avoidance
TCP Cubic is a loss based TCP that has achieved

widespread usage as the default TCP of the Linux operating
system. During congestion avoidance, its congestion window
adjustment scheme is:

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (3)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time
of packet loss detection, and t is the elapsed time since the
last packet loss detection (cwnd reduction). The rationalefor
these equations is simple. Cubic remembers the cwnd value
at time of packet loss detection - Wmax, when a sharp cwnd
reduction is enacted, tuned by parameterβ. After that, cwnd
is increased according to a cubic function, whose speed of
increase is dictated by two factors: i) how long it has been
since the previous packet loss detection, the longer the faster
ramp up; ii) how large the cwnd size was at time of packet
loss detection, the smaller the faster ramp up. The shape of
Cubic cwnd dynamics is distinctive, clearly showing its cubic
nature. Notice that upon random loss, Cubic strives to return
cwnd to the value prior to loss detection quickly, for small
cwnd sizes.

E. Compound TCP Congestion Avoidance
Compound TCP is the TCP of choice for most deployed

Wintel machines. It implements a hybrid loss/delay based
congestion avoidance scheme, by adding a delay congestion
window dwnd to the congestion window of NewReno [14].
Compound TCP cwnd adjustment is as per (4):

AckRec : cwndk+1 = cwndk +
1

cwndk + dwndk
(4)

PktLoss : cwndk+1 = cwndk +
1

cwndk
where the delay component is computed as:

AckRec : dwndk+1=dwndk+ αdwndKk − 1, if diff < γ

dwndk − ηdiff, if diff ≥ γ

PktLoss : dwndk+1 =dwndk(1− β)−
cwndk

2
(5)

wherediff is an estimated number of backlogged packets,
γ is a threshold parameter which drives congestion detection
sensitivity, andα, β, η and K are parameters chosen as a
tradeoff between responsiveness, smoothness, and scalability.

Compound TCP dynamics is dominated by its loss based
component, presenting a slow responsiveness to network avail-
able bandwidth variations, which may cause playout buffer
underflows.

F. Capacity and Congestion Probing TCP

TCP CCP was our first proposal of a delay based congestion
avoidance scheme based on solid control theoretical approach.
The cwnd size is adjusted according to a proportional con-
troller control law. The cwnd adjustment scheme is called at
every acknowledgement reception, and may result in either

window increase or decrease. In addition, packet loss does not
trigger any special cwnd adjustment. CCP cwnd adjustment
scheme is as per (6):

cwndk =
[Kp(B − xk)− in flight segsk]

2
0 ≤ Kp (6)

whereKp is a proportional gain,B is an estimated storage
capacity of the TCP session path, or virtual buffer size,xk is
the level of occupancy of the virtual buffer, or estimated packet
backlog, andin flight segs is the number of segments
in flight (unacknowledged). Typically, CCP cwnd dynamics
exhibit a dampened oscillation towards a given cwnd size,
upon cross traffic activity. Notice thatcwndk does not depend
on previous cwnd sizes, as with the other TCP variants. This
fact guarantees a fast responsiveness to network bandwidth
variations.

V. V IDEO STREAMING PERFORMANCE OFMULTIPATH

SCHEDULERS

Figure 3 describes the network testbed used for emulating a
network path with wireless access link. An HTTP video server
is connected to two access switches, which are connected to a
link emulator, used to adjust path delay and inject controlled
random packet loss. A VLC client machine is connected to
two Access Points, a 802.11a and 802.11g, on different bands
(5GHz and 2.4GHz, respectively). All wired links are 1Gbps.
No cross traffic is considered, as this would make it difficult
to isolate the impact of TCP congestion avoidance schemes
on video streaming performance. The simple topology and
isolated traffic allows us to better understand the impact of
differential delays on streaming performance.

PC1

(WEB Server)
PC2

(Client)

Router 1

Router 2

Emulator

Wireless

LAN

Bridge

Wireless

LAN

Bridge

Link1 : IEEE 802.11a

Link2 : IEEE 802.11g

Figure 3: Video Streaming Emulation Network

TCP variants used are: Cubic, Compound, CCP, LIA and
OLIA. Performance is evaluated for various round trip time
path scenarios, as per Table I.

Table I: EXPERIMENTAL NETWORK SETTINGS

Element Value
Video size 409Mbytes
Video rate 5.24Mbps

Playout time 10mins 24 secs
Encoding MPEG-4

Video Codec H.264 MPEG-4 AVC
Network Delay (RTT) 100, 200 msecs

TCP variants Cubic, Compound, CCP, LIA, OLIA

The VLC client is attached to the network via a WiFi link.
Iperf is used to measure the available wireless link bandwidth.
UDP traffic injection experiments show that each wireless
interface is limited to 5Mbps download speeds, which is lower
than the video nominal playout rate of 5.24Mbps. Packet loss
is hence induced only by the wireless link, and is reflected in
the number of TCP packet retransmissions.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

Performance measures adopted, in order of priority, are:
• Picture discards: number of frames discarded by the

video decoder. This measure defines the number of
frames skipped by the video rendered at the client side.

• Buffer underflow: number of buffer underflow events
at video client buffer. This measure defines the number
of “catch up” events, where the video freezes and then
resumes at a faster rate until all late frames have been
played out.

• Packet retransmissions:number of packets retransmit-
ted by TCP. This is a measure of how efficient the TCP
variant is in transporting the video stream data. It is likely
to impact video quality in large round trip time path con-
ditions, where a single retransmission doubles network
latency of packet data from an application perspective.

We organize our video streaming experimental results into
the following sub-sessions: i) Equal path delay; ii) Differential
path delay. Each data point in charts represents five trials.
Results are reported as average and min/max deviation bars.

A. Equal Path Video Streaming Performance Evaluation

Figures 4, 5, and 6 report on video streaming through-
put performance over equal paths delay of 100 msecs, for
SPD, LPC, and LET schedulers, respectively. Notice first that
under SPD, Cubic and Compound TCP variants deliver best
video performance. In contrast, OLIA, CCP, and LIA deliver
worse performance. When comparing SPD, LPC, and LET
schedulers, video streaming performance under OLIA variants
improves using LPC or LET schedulers, while it remains the
same for Cubic and Compound TCP variants.

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 5000

 10000

 15000

 20000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 4: SPD Scheduler Streaming Perf.; rtts=100-100msecs

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 5000

 10000

 15000

 20000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 5: LPC Scheduler Streaming Perf.; rtts=100-100msecs

B. Differential Path Video Streaming Performance Evaluation
In these scenarios, default MPTCP scheduler tends to select

the path with shorter delay, ifcwnd permits it. Only when TCP
sender of the path with shorter delay happens to set itscwnd
to a very low value as compared with the longer path does
MPTCP scheduler inject packets into the longer path.

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 5000

 10000

 15000

 20000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 6: LET Scheduler Streaming Perf.; rtts=100-100msecs

Figures 7, 8, and 9 report on video streaming and TCP
performance under two paths, the first path (802.11a) with
a shorter 100msec delay, and the other (802.11g) with a
longer 200msec delay, for SPD, LPC, and LET schedulers,
respectively. Under default (SPD) scheduler, we continue to
see better video performance under Cubic and Compound than
CCP or coupled LIA and OLIA variants. When comparing
schedulers, video streaming performance under CCP variant
improves using LPC scheduler, it worsens for OLIA variant,
and remains the same for Cubic and Compound TCP variants.
CCP variant improvement comes at a cost of larger packet
retransmissions, however.

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 10000

 20000

 30000

 40000

 50000

 60000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 7: SPD Scheduler Streaming Perf.; rtts=100-200msecs

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 10000

 20000

 30000

 40000

 50000

 60000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 8: LPC Scheduler Streaming Perf.; rtts=100-200msecs

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 10000

 20000

 30000

 40000

 50000

 60000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 9: LET Scheduler Streaming Perf.; rtts=100-200msecs

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

Figures 10, 11, and 12 report on video streaming and TCP
performance under two paths, the first path (802.11a) with a
longer 200msec delay, and the other (802.11g) with a shorter
100msec delay, for SPD, LPC, and LET schedulers, respec-
tively. Under default (SPD) scheduler, all TCP variants deliver
similar video performance except CCP. When comparing path
schedulers, video streaming performance under CCP variant
improves using LPC scheduler, while it remains the same for
the other TCP variants. Again, CCP video improvement comes
at a cost of higher packet retransmissions.

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

 300

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

 300

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 50000

 100000

 150000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 10: SPD Scheduler Streaming Perf.; rtts=200-100msecs

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

 300

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

 300

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 50000

 100000

 150000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 11: LPC Scheduler Streaming Perf.; rtts=200-100msecs

a) VLC performance b) TCP packets retransmitted

 0

 50

 100

 150

 200

 250

 300

CCP Cubic
Compound

LIA OLIA
 0

 50

 100

 150

 200

 250

 300

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

TCP variant

buffer underflow
picture discard

 0

 50000

 100000

 150000

CCP Cubic Compound
LIA OLIA

R
e
tr

a
n
s
m

it
 P

a
c
k
e
t
[p

k
t]

TCP variant

flow1
flow2

Figure 12: LET Scheduler Streaming Perf.; rtts=200-100msecs

In conclusion, Largest Packet Credit MPTCP scheduler
improves video streaming performance of CCP variant overall,
while having positive or no enhancement on the other TCP
variants. We also detected that OLIA delivers better video
experience than LIA coupled TCP variant across all path
scenarios. We notice, however, that a two path transport
scenario is constraining, in the sense that if one of the paths
is blocked for transmission, for instance, due to some packet
loss and smallcwnd, all schedulers will select the other path,
and hence will likely deliver the same performance. In our
scenario, we traced a larger packet loss behavior of flow 2,
which leads to different utilization of paths and performance
if comparing 100-200msec delay scenario with 200-100msec
delay scenario. Increasing the number of paths is a possibility,
albeit such scenario may not be realistic in the near future.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two new path schedulers
and evaluated them on Multipath TCP transport of video
streaming, using widely deployed TCP variants, as well as LIA
and OLIA coupled TCP variants under consideration by IETF.
We have characterized MPTCP performance with default and
proposed path schedulers when transporting video streaming
over two wireless network paths via open source experiments.
Our experimental results show that injecting packets at thepath
with largest packet credits (cwnd - in flight packets) yields
better video performance for OLIA coupled TCP variant and
CCP. Cubic and Compound TCP variants deliver the same
performance under all path schedulers studied. Hence, from
a video performance viewpoint, either MPTCP in uncoupled
mode or coupled with largest packet credit scheduler shouldbe
used. We are currently analyzing path schedulers’ performance
on more diverse multipath network scenarios.

ACKNOWLEDGMENTS

This work is supported by JSPS KAKENHI Grant Number
16K00131. REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”

IETF RFC 2581, April 1999.
[2] B. Arzani et al., “Deconstructing MPTCP Performance,” In Proceedings

of IEEE 22nd ICNP, pp. 269-274, 2014.
[3] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “Capacity

and Congestion Probing: TCP Congestion Avoidance via Path Capacity
and Storage Estimation,” IEEE Second International Conference on
Evolving Internet, best paper award, pp. 42-48, September 2010.

[4] D. Cavendish, H. Kuwahara, K. Kumazoe, M. Tsuru, and Y. Oie, “TCP
Congestion Avoidance using Proportional plus Derivative Control,”
IARIA Third International Conference on Evolving Internet, best paper
award, pp. 20-25, June 2011.

[5] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, andG. Simon,
“Cross-Layer Scheduler for Video Streaming over MPTCP,” ACM 7th
International Conference on Multimedia Systems, May 10-13,2016,
Article 7.

[6] S. Ferlin, et. al., “BLEST: Blocking Estimation-based MPTCP Scheduler
for Heterogeneous Networks,” In Proceedings of IFIP Networking
Conference, pp. 431-439, 2016.

[7] A. Ford, et al., “Architectural Guidelines for Multipath TCP Develop-
ment,” IETF RFC 6182, 2011.

[8] J. Hwang and J. Yoo, “Packet Scheduling for Multipath TCP,” IEEE
7th Int. Conference on Ubiquitous and Future Networks, pp.177-179,
July 2015.

[9] R. Khalili, N. Gast, and J-Y Le Boudec, “MPTCP Is Not Pareto-Optimal:
Performance Issues and a Possible Solution,” IEEE/ACM Trans. on
Networing, Vol. 21, No. 5, pp. 1651-1665, Aug. 2013.

[10] R. Matsufuji et al., “Performance Characterization ofStreaming Video
over Multipath TCP,” IARIA 8th International Conference onEvolving
Internet, pp. 42-47, November 2016.

[11] J-W. Park, R. P. Karrer, and J. Kim,, “TCP-Rome: A Transport-
Layer Parallel Streaming Protocol for Real-Time Online Multimedia
Environments,” In Journal of Communications and Networks,Vol.13,
No. 3, pp. 277-285, June 2011.

[12] C. Raiciu, M. Handly, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, 2011.

[13] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft, draft-rhee-tcpm-ctcp-02, August 2008.

[14] M. Sridharan, K. Tan, D. Bansal, and D. Thaler, “Compound TCP: A
New Congestion Control for High-Speed and Long Distance Networks,”
Internet Draft, draft-sridharan-tcpm-ctcp-02, November2008.

[15] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “StreamingHigh-
Quality Mobile Video with Multipath TCP in Heterogeneous Wireless
Networks,” IEEE Transactions on Mobile Computing, Vol.15,Issue 9,
pp. 2345-2361, 2016.

[16] F. Yan, P. Amer, and N. Ekiz, “A Scheduler for Multipath TCP,” In
Proceedings of IEEE 22nd ICCCN, pp. 1-7, 2013.

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

