
Study on Enhancement of Emulator to Incapacitate Analysis Evasion by Android 

Malicious Apps 

 

Mijoo Kim, Woong Go, and Tae Jin Lee 

Cyber Security R&D Team 

Korea Internet & Security Agency (KISA) 

Seoul, Korea (Republic of) 

e-mail: {mijoo.kim, wgo, tjlee}@kisa.or.kr 

 

 

Heung Youl Youm 

Department of Information Security Engineering 

Soonchunhyang University 

Asan, Chungnam, Korea (Republic of) 

e-mail: hyyoum@sch.ac.kr 

 

Abstract—While smartphones are closely intertwined with our 

daily lives, with their influence expanding as their use has 

become more popular, security threats such as leak of personal 

information, illegal billing, and sending of spam using 

malicious apps that cause damage to smartphone users and 

give rise to social problems are also increasing. To solve such 

problems, security companies, research institutes, and 

academe worldwide are developing technologies to detect and 

cope with mobile malicious apps. Note, however, that malicious 

apps are also becoming more intelligent and elaborative to 

increase survivability by bypassing the existing detection 

means and countermeasures. As such, this paper describes the 

techniques of mobile malware to evade dynamic analysis and 

proposes measures to enhance emulators to incapacitate such 

analysis evasion by Android malicious apps. 

Keywords-evasive mobile malware; dynamic analysis; 

android malicious apps. 

I. INTRODUCTION 

Smartphones have evolved in close relation to our daily 
lives that we feel the global smartphone market has reached 
saturation. They have greatly changed our life pattern as 
smartphones help find the optimal route to a destination, 
check exercise, conduct financial transactions, and create 
new value-added services in combination with various 
Information Technology (IT) convergence technologies, 
such as Internet of Things (IoT). 

Although people enjoy greater convenience in life with 
smartphones, they also experience the adverse effects of 
being exposed to security threats in various forms such as 
leak of sensitive information like personal information and 
account information, invasion of privacy by wiretapping text 
messages, infection by malware, inducement of billing such 
as small amount payment, control of terminal with illegally 
obtained privilege, and smishing. Moreover, the scope and 
level of damage from such security threats to smartphones 
are increasing, causing social problems. Android terminals 
are particularly prone to such smartphone security threats 
because of their openness and high market share. According 
to the smartphone Operating System (OS) market share 
analyzed by IDC [1] for the second quarter of 2015, Android 
had the largest market share with 82.8%; a joint report by 
Interpol and Kaspersky [2] disclosed in October 2014 

indicated that 98.05% of mobile malware targeted the users 
of Android smartphones. 

To minimize security threats to smartphone including 
Android, security companies, research institutes, and 
academe worldwide are developing countermeasure 
technologies; app markets have introduced analysis systems 
to detect malicious apps, and they are carrying out various 
programs to cope with mobile malware. 

However, malicious apps are also becoming more 
intelligent and elaborative to increase survivability by having 
built-in self-protective technologies to bypass the existing 
detection systems and countermeasures in a same way as 
x86-based malware. 

According to a report by LastLine [3], analysis-evading 
malware more than doubled from 35% in January 2014 to 
80% in December, and such high figure has been maintained 
since then. Although there has been no report on the statistics 
of mobile malware, one can predict that it will evolve to a 
form similar to x86-based malware considering the typical 
evolution of malware. 

The analysis evasion techniques of mobile malware 
target the dynamic analysis systems/services used by app 
markets and others for automated runtime analysis of a large 
volume of apps. They evade the analysis mostly using the 
environmental and time limitation of dynamic analysis. In 
February 2012, Google unveiled “Bouncer” as the malicious 
app analysis system for its Android Market and disclosed 
that the number of malicious apps decreased by 40% after 
Bouncer was introduced [4]. Note, however, that many 
technologies for detecting the Bouncer environment and 
evading analysis have emerged. Moreover, although various 
dynamic analysis tools and services were developed to detect 
and analyze Android-based mobile malicious apps, there are 
academic papers proving that they could be evaded through 
bypass technology as in the case of Bouncer. 

In this paper, we propose measures to enhance emulators 
to incapacitate such analysis evasion by Android malicious 
apps. And the rest of this paper is organized as follows; 

Section 2 describes the existing techniques of mobile 
malware to evade dynamic analysis. Section 3 specifies the 
proposed measures to enhance emulator to incapacitate 
analysis evasion and the result of experiment. And then we 
conclude in Section 4. 

36Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet



II. TECHNIQUES OF EVADING ANALYSIS OF MOBILE 

MALICIOUS APPS 

The review of the trend in studies of evasion of dynamic 
analysis of mobile malicious apps shows that the cases can 
be mainly categorized into two types. 

The first type is detecting the app running environment 
and not operating or executing the malicious behavior if it is 
not an actual terminal. A representative case of such type can 
be the bypassing of Google Bouncer announced by Jon O. 
and Charlie M. at SummerCon2012 [5]. The technique 
bypassed the verification system and enabled a malicious 
app to be registered in the Android Market by modifying the 
code when it receives the environment data under which the 
app runs during the verification stop when an app is 
registered. The “BrainTest” app, which actually got 
registered in Google Play in 2015 and infected more than 2 
million devices, detected the analytical environment of 
Google Bouncer by checking the Internet Protocol (IP) 
address and domain character string and bypassed the 
analysis. 

Techniques of evading analysis by detecting the virtual 
environment have been reported in many papers or 
presentations. 

Timothy V. and Nicolas C. [6] showed that the analysis 
could be evaded after detecting the dynamic analysis system 
-- which was a virtual terminal -- by analyzing the difference 
of behavior between an actual terminal and a virtual terminal, 
performance, hardware and software components, and 
system design. Methods using the difference in behavior 
include checking the data that have the characteristics of 
emulator using Android Application Programming Interface 
(API), detecting the network emulations, and detecting the 
underlying emulator. The method using the performance 
difference detects the emulator by comparing the 
performances of Central Processing Unit (CPU) and graphic 
of actual terminals and emulator. The study also described 
the method of detecting the virtual environment according to 
the existence of hardware and software component.  

Thanasis Petsas, et al. [7] deduced the static elements, 
dynamic elements, and hypervisor elements for detecting a 
dynamic analysis system. Static elements are the fixed values 
of a virtual terminal distinguishable from an actual terminal, 
and they include International Mobile Station Equipment 
Identity (IMEI), International Mobile Subscriber Identity 
(IMSI), and routing table. Dynamic elements are the values 
that dynamically change in an actual terminal but are fixed or 
are not provided in a virtual device; they include various 
sensors such as accelerator sensor, magnetic field sensor, 
rotation vector, proximity sensor, and gyroscope. Hypervisor 
elements use the configuration difference between a Virtual 
Machine (VM) emulation and the actual OS such as 
identifying the Quick Emulator (QEMU) scheduling and 
execution. The study tested 12 tools for the dynamic analysis 
of malicious apps including DroidBox [8], TaintDroid [9], 
Andrubis [10], CopperDroid [11], and Apk Analyzer [12] 
using 10 malicious apps that attempt to evade detection using 
the static, dynamic, and hypervisor elements and found that 
almost all dynamic analysis tools could not detect the 

evasion attempt except in the case of the attempt to evade 
detection using very simple static elements such as IMEI. 

Yiming Zing, et al. [13] proposed Morpheus, a 
framework that automatically generates heuristics to detect 
an Android emulator by analyzing the difference between an 
actual terminal and a virtual terminal. Using Morpheus, they 
deduced more than 10,000 types of heuristics including basic 
heuristics such as network, power management, audio, USB, 
radio and software components, and configurations as well 
as the heuristics to detect QEMU, such as QEMU, Goldfish 
virtual hardware, Bluetooth, Near Field Communication 
(NFC), and vibrator and heuristics to detect VirtualBox and 
Personal Computer (PC) hardware. Their study showed that 
various evasion technologies can be applied against the 
dynamic analysis of malicious apps under the virtualization 
environment. 

At HITCON2013, Tim Strazzere [14] announced various 
methods of evading emulators. He showed that an emulator 
can be detected with the checking of system attributes, 
checking of QEMU pipe to communicate with the host 
environment and checking of terminal contents such as 
address book, Short Message Service (SMS) transfer history, 
call list, and battery level. 

The second type of technique of evading malicious app 
analysis is in logic bomb form by specifying the malicious 
behavior to be carried out only when the specific predefined 
conditions based on user interaction, time, and environment 
are satisfied. 

The case of carrying out malicious behavior by detecting 
user interaction is similar to the technique of bypassing the 
analysis though a sandbox in the existing x86-based malware 
since it remains in hiding until it detects the intervention of 
human user such as mouse click and intelligent response to a 
dialog box. User interaction in the mobile environment 
occurs in the form of touch on a screen, touch on a popup, 
and information input. Although user interaction can be 
easily generated using a monkey that generates an event for a 
random coordinate value when simple interaction such as 
popup and button touch is required, there is a limitation as to 
what the monkey can do when an intelligent interaction such 
as continuous and accurate button touch or information input 
based on user judgment is required. An example is the 
“Horoscope” app, which attempted to leak the information 
by disguising as an app providing horoscope information. 
The Horoscope app [15] induced the user to touch a button 
twice continuously and accurately to obtain horoscope 
information in an attempt to leak the information stored in 
the smartphone. 

Malicious behavior based on time condition is a case of 
carrying out malicious behavior not right after the app is run 
but after a specific period has passed or when a particular 
time is reached. A typical tool for the dynamic analysis of 
malicious app runs an app for a very short period since it 
cannot spend too much time analyzing an app. Therefore, it 
cannot detect a malicious app if the malicious app does not 
carry out malicious behavior during a short period. For 
example, Bouncer determines malicious behavior by 
observing an app for 5 minutes for dynamic analysis. It 
means that a malicious app designed to carry out malicious 

37Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet



behavior in 5 more minutes, being judged as a normal app 
since it does not show malicious behavior during the period 
of dynamic analysis. The “BrainTest” app used the time 
condition in addition to the detection of virtual environment 
so that it did not carry out malicious behavior during 
verification by Good Play but ran the malicious code at the 
command of the attacker after the app was downloaded. 

The type based on environmental condition is a case of 
initiating malicious behavior when the predefined terminal 
environment conditions, such as network environment 
change (Long Term Evolution (LTE) <-> Wireless Fidelity 
(Wi-Fi)) or use of Global Positioning System (GPS) are 
satisfied. 

The analysis can also be bypassed by initiating malicious 
behavior on various conditions such as combination of two 
or more normal apps, receipt of command by the attacker, 
receipt of text message containing a specific keyword, call 
from a specific number, and receipt of text message. 

III. ENHANCEMENT OF EMULATOR TO INCAPACITATE 

ANALYSIS EVASION BY ANDROID MALICIOUS APP 

Most malicious app analysis tools and services that are 
currently available cannot detect evasive malware, and tools 
that claim to handle evasive malware use the actual terminals 
for the analysis. Note, however, that using the actual 
terminals has limitations in terms of analysis of a large 
volume of apps, restoration, and maintenance cost. 

As such, this paper describes ways to enhance the 
emulator to incapacitate analysis evasion by malicious apps. 

TABLE I.  API LIST FOR EMULATOR DETECTION 

 API value 

1 Build.ABI armeabi 

2 Build.ABI2 unknown 

3 Build.BOARD unknown 

4 Build.BRAND generic 

5 Build.DEVICE generic 

6 Build.FINGERPRINT generic 

7 Build.HARDWARE goldfish 

8 Build.HOST android-test 

9 Build.ID FRF91 

10 Build.MANUFACTURER unknown 

11 Build.MODEL sdk 

12 Build.PRODUCT sdk 

13 Build.RADIO unknown 

14 Build.SERIAL null 

15 Build.TAGS test-keys 

16 Build.USER android-build 

17 TelephonyManager.getDeviceId() All 0’s 

18 TelephonyManager.getLine1 Number() 155552155xx 

19 TelephonyManager.getNetworkCountryIso() us 

20 TelephonyManager.getNetworkType() 3 

21 
TelephonyManager.getNetworkOperator() 

.substring(0,3) 
310 

22 
TelephonyManager.getNetworkOperator() 

.substring(3) 
260 

23 TelephonyManager.getPhoneType() 1 

24 TelephonyManager.getSimCountryIso() us 

25 TelephonyManager.getSimSerial Number() 89014103211118510720 

26 TelephonyManager.getSubscriberId() 310260000000000 

27 TelephonyManager.gerVoiceMailNumber() 15552175049 

 

The analysis of malicious apps using an emulator can 
overcome various limitations of using actual terminals. Note, 
however, that many recently announced malicious apps 
check the runtime environment of the app and do not carry 
out malicious behavior if it is an emulated environment. 
Considering the trend of x86-based malware, it can be 
predicted that more evasive malicious codes will appear in 
the mobile environment. 

Therefore, enhancement of the emulator is needed so that 
the evasive malicious app cannot recognize the virtual 
environment. This study modified the framework of the 
emulator such that the data used in analysis evasion were the 
same as the actual terminal so that the malicious apps cannot 
recognize the emulator environment. 

TABLE I shows the key APIs and values that can be 
used by malware for the recognition of emulator according to 
a study [6]. Each value means running environment is 
emulator or likely emulator or possibly emulator. 

The Android framework of data corresponding to the 27 
APIs was modified to change the emulator default values. As 
an example, Fig. 1 shows the changed source code of IMEI 
value called by build.DEVICE API. Fig. 2 shows the before 
and after the modification of IMEI value. 

 

 

Fig. 1 Modification of IMEI value 

 

 

Fig. 2  IMEI data before and after emulator modification 

And the result of experiment to verify effectiveness for 
emulator modification, the app developed to check the IMEI 
data for emulator environment -- and terminate the process in 
the case of emulator -- did not run normally in the case of 
default emulator but ran normally in the case of emulator 
with modified framework as shown in Fig. 3. 

 
 

38Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet



IV. CONCLUSION 

This study reviewed the issues of dynamic analysis 
evasion that incapacitates malicious app detection and 
analysis by bypassing the existing dynamic analysis system 
as a means of self-protection by mobile malicious apps, 
which are becoming more intelligent and elaborative. The 
review shows that current dynamic analysis technologies 
have limitations. 

Dynamic analysis evasion technologies include the type 
that does not show malicious behavior by detecting the 
virtual environment such as emulator and the type that 
evades analysis by initiating malicious behavior only when 
specific conditions such as user interaction, time, and 
environment are met. 

As such, this study proposed the enhancement of the 
emulator to incapacitate the analysis-evading behavior of 
malicious apps in an Android malicious app dynamic 
analysis system and showed that such analysis evasion can 
be incapacitated by modifying the Android framework 
without using the actual terminal. 

Nonetheless, additional studies are needed to enable the 
analysts to change the data dynamically since the modified 
data are hardcoded and can be evaded. Moreover, it is 
necessary to conduct studies to return the actual terminal 
value of sensors, batteries, and levels in addition to the 
terminal attribute-specific data corresponding to 27 APIs 
listed in this study, and we plan to continue studies to solve 
such issues. 

 

ACKNOWLEDGMENT 

This work was supported by Institute for Information & 

communications Technology Promotion(IITP) grant funded 

by the Korea government(MSIP) (No.R0132-16-1004, 

Development of Profiling-based Techniques for Detecting 

and Preventing Mobile Billing Fraud Attacks). 
 
 

REFERENCES 

[1] IDC, http://www.idc.com/prodserv/smartphone-market-
share.jsp, retrieved: October 2016. 

[2] Kaspersky, “Mobile cyber threats”,Kaspersky Lab&Interpol 
Joint Report, 2014. 

[3] Lastline, “Labs Report at RSA: Evasive Malware’s Gone 
Mainstream”, 2015 

[4] Google Mobile Blog, “Android and Security”, 2012. 

[5] J. Oberheide, C. Miller, “Dissection the Android Bouncer”, 
SummerCon, 2012. 

[6] T. Vidas and N. Christin, “Evading Android Runtime 
Analysis via Sandbox Detection”, ASIA CCS’14, pp. 447-458, 
2014. 

[7] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis 
and S. Ioannidis, “Rage Against the Virtual Machine: 
Hindering Dynamic Analysis of Android Malware”, 
EuroSec’14, Article No. 5, 2014. 

[8] DroidBox, https://github.com/pjlantz/droidbox, retrieved: 
October 2016. 

[9] TaintDroid, http://appanalysis.org/, retrieved: October 2016. 

[10] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. 
Fratantonio, V. Veen and C. Platzer, “Andrubis – 1,000,000 
Apps Later: A View on Current Android Malware Behaviors”, 
BADGERS’14, pp. 3-17, 2014. 

[11] CopperDroid, http://copperdroid.isg.rhul.ac.uk/copperdroid/, 
retrieved: October 2016. 

[12] Apk Analyzer, https://www.apk-analyzer.net/, retrieved: 
October 2016. 

[13] Y. Jing, Z. Zhao, G. Ahn and H. Hu, “Morpheus: 
Automatically Generating Heuristics to Detect Android 
Emulators”, ACSAC’14, pp. 216-225, 2014.  

[14] T. Strazzere, “Dex Education 201 Anti-Emulation”, 
HITCON2013, 2013. 

[15] C. Zhengm, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han and W. 
Zou, "SmartDroid: an Automatic System for Revealing UI-
based Trigger Conditions in Android Applications", SPSM'12, 
pp. 93-104, 2012. 

 
Fig. 3  The result of the experiment 

 

39Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

http://www.idc.com/prodserv/smartphone-market-share.jsp
http://www.idc.com/prodserv/smartphone-market-share.jsp
https://github.com/pjlantz/droidbox
http://copperdroid.isg.rhul.ac.uk/copperdroid/
https://www.apk-analyzer.net/

