
Static Detection of Malware and Benign Executable

Using Machine Learning Algorithm

Dong-Hee Kim∗, Sang-Uk Woo∗, Dong-Kyu Lee∗ and Tai-Myoung Chung†
∗Dept of Electrical and Computer Engineering

Sungkyunkwan University, Suwon, Korea
Email: {kkim, suwoo, leedg84}@imtl.skku.ac.kr

†College of Software
Sungkyunkwan University, Suwon, Korea

Email: tmchung@skku.edu

Abstract—One of the popular ways of detecting malware is
signature based pattern matching. However, the signature of
malware should be stored in advance for the pattern matching
detection. Moreover, it calculates the similarity of input data using
stored signature. Therefore, the storage problem and calcula-
tion overheads occur undoubtedly. Also, detection possibility is
dropped, when malicious code is modified. So we use machine
learning algorithm technique for detecting malicious executable
and benign executable. However, previous technique has a limita-
tion on detecting Worms and Trojans. In this paper, distinguished
features of Portable Executable header are used. For the machine
learning algorithm, Classification And Regression Tree (CART),
Support Vector Classification (SVC), and Stochastic Gradient
Descent (SGD) are applied for improving to detection rate.
The performance of each algorithm firstly evaluated to find
the most outperformed algorithm each for classifying benign
executable and malicious executable. And then, these algorithms
were combined to detect malware more precisely.

Keywords–Portable Executable Header; Machine Learning;
Malware Detection; Intrusion Detection System.

I. INTRODUCTION

Traditionally signature-based static method is mostly used
for malware detection. Signature-based method has some
drawbacks. Pattern matching method, one of the signature-
based static method, should possess all the pattern information
of malware samples before the detection. Saving all the pattern
informations, may causes the storage management problem and
matching overheads. Moreover, detection efficiency of pattern
matching method decreases, if pattern is changed by source
code modification (e.g., inserting or removing the opcode).
Therefore, machine learning-based malware detection meth-
ods are being researched [1][2][3][4]. The purpose of using
machine learning algorithm is to study the pattern from the
learning set and to predict the classes or value from the given
data [5]. The acceptable detection rate is described in several
previous researches. The various features of benign code and
malicious code had been considered from many research paper.
Researchers have derived the distinctive characteristics which
are from binary code [6][7], opcode [8][9], and Portable
Executable header (PE-header) of benign executables and
malicious executables [10]. They have evaluated their result
using a variety of machine learning algorithms. The advantage
of using a machine learning technique is the prediction of
unknown class. It can detect not only known malware but also
non-recognized malware through the pattern analysis itself. In

addition, machine learning algorithm can detect a large amount
of malware using relatively small amount of input training sets.

The interested detection method is PE-miner framework
[10]. The PE format is a file format for executables, object
code, DLLs, Font files, and others used in 32-bit and 64-bit
versions of Windows operating systems [11]. In shafiq et al.
paper [10], they have analyzed the distinctive characteristics
of PE-header between malicious executable and benign one.
They categorized malicious executable into 7 types; backdoor
+ sniffer, Constructor + Virtool, DoS + Nuker, Flooder, Exploit
+ Hacktool, Work, Trojan and Virus. From the PE-header,
18 different features are founded by Shafiq. However, PE-
header features might not convey useful information in a
particular scenario. For example, some attribute value could
have too much low value or dummy value, and some could
be counter. Also, considering the application of the many
attributes increases the dimensional spaces in machine learning
algorithm. This is the main reason for time delay in fitting pro-
cess. So, for reducing dimensionality of input feature space, a
preprocessor process is removing or combining the PE-header
information with other similar features. Redundant Feature
Removal (RFR), Principal Component Analysis (PCA), and
Haar Wavelet Transform (HWT) mechanisms are used for
preprocessing the PE-header feature.

The purpose of this paper is to evaluate the existing PE-
miner framework [10] and improving the detection rate by
adjusting the attribute of training set and algorithm. We have
chosen the PE feature from many other distinctive character-
istics because it has an almost fixed size of data structure
regardless of program size. If the number of attributes com-
posing the training set is changed depending on data, it will
increase the complexity of training process. We expect that the
attributes that extracted from previous research could not carry
the characteristic of the malware according to the Windows
system changes. Also, in previous research [10], Shafiq et al.
use insufficient amount of training set and sample file. For their
experiment, 1,477 benign sample files and 15,925 malware
sample files were used. The most relevant information is stored
with the highest coefficients at each order of a transform.
The lower order coefficients can be ignored to get only the
most relevant information. Decision Tree (J48), Instance Based
Learner (IBk), Native Bayes (NB), RIPPER (inductive rule
learner), Support Vector Machine using Sequential Minimal
Optimization (SMO) algorithms are used for their experiment.
The outputs of these algorithms were compared with each other

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

and the best performance was evaluated when using the J48
that is achieves more than 99% detection rate with less than
0.5% false alarm rate. However, the most challenging malware
categories for detecting are Worms and Trojans. Trojans are
inherently designed to appear similar to the benign executables.
So, in this paper, Classification And Regression Tree (CART),
Support Vector Classification (SVC), and Stochastic Gradient
Descent (SGD) are used to classify the worms and trojans.
These algorithms are specialized in classification. In addition,
the most challenging malware categories for detecting are
worms and trojans. Trojans are inherently designed to appear
similar to the benign executables [10].

This paper is organized as follows: In Section 2, we
denote the source of collected sample and the explanation of
training data composition. Section 3 describes methodology
of single algorithm based classification process and a simple
characteristic about the used algorithm. Section 4 represents
the result of algorithm performance. Section 5 suggests the
improvement of reducing the error rate. Finally, Section 6
finishes up with a conclusion.

II. SAMPLE COLLECTION AND TRAINING SET

This section specifies the source of samples and evaluation
of PE header features. Also, composition method of training
sets is explained. Benign executable files are collected from
Windows operating system and Malicious executables are
downloaded from internet. PE-header features are extracted
using python module. The training set is made in the form of
a csv file with system independence.

A. Sample collection
We collect the 9,773 executable sample files from system

32 folder in Windows 7 and collect 18 files in Ubuntu Linux
kernel. The files in system32 folder are extracted immediately
right after OS installation with series of updates as long as
it is easy to be forged or tampered by malware. Malicious
executable sample files are downloaded from the VXheaven
website [12]. The total number of malware sample is 271,095
but the 236,707 samples which contain the PE-header are only
used to making training sets. The “pefile” which is one of the
python module was selected to measure the presence of the
PE-header and extracting the PE-header information from the
file [13]. It supports various operating system environments
like Windows, Linux, and Mac OS. The module extracts a file
header data and returns the class instance.

B. Training data
PE-header of benign code and malicious code are evaluated

using 5,000 samples each. The result is shown in Table 1. Com-
paring with previous research [10][14], the network related dll
file is unsuitable for training attribute. The network related dll
file is not only frequently used in malware but also used benign
executable files since many legitimate software use network
resources. As referring to previous study [10], the value of
Number of symbols, Major linker version, Initialize data size,
Major image version, and Dll character shows distinctive
feature between benign and malicious code. The similar result
was evaluated from our test. Referring to Table 1, the average
of COFF characteristic value shows high gap between benign
and malware. The characteristic value in COFF file header

TABLE I. MEAN AVERAGE VALUES OF PE-HEADER FEATURES

Name of
Feature Benign Malware

characteristic
in COFF File Header 7232.26 13369.88

Symbols 0.21 60.5 x 106

Maj Linker Ver 8.87 7.29
Init Data Size 21.1 x 104 61.8 x 106

Maj Img Ver 107.31 31.86
Dll Char 4274.99 545.34

represents summary of image that calculated in sum of charac-
teristic field value [15]. For the average value of Characteristic
in benign executable is 7232.26 and for malicious is 13369.
Comparing to average value of Number of Symbols, malicious
sample shows 29 x 107 greater than benign. The greater the
value, meaning the more system options are used. Benign file
has the value of 8,000 around and some of them are 100
under. But in malicious sample, most of the them shows 10,000
and only few samples are 100 under. However, the average
value of Number of Symbols tend to represent distinguished
feature in previous system (e.g, Windows XP), but it does not
show the clear differences between the benign and malicious
sample because, most of benign and malicious executables
have value of 0, but few of malicious file has extremely large
value to increase the average value [15]. Moreover, Major
Linker Version value does not show great gap but the value
maintains constant value in both benign and malicious. It
expects that both benign and malware use similar version of
linker. Matter of fact, this field was a very distinctive feature in
previous research result [10]. But now, it is featureless value
that only increases the dimensional spaces. So, we decided
to get rid off a Number of Symbols field and Major Linker
Version field from the training sets. Other fields, Initialized
Data Size, Major Image Version, and Dll Characteristic, are
still showing their own feature. Malicious Initialize Data Size
value is 292 times greater than the benign executable. Major
Image Version of benign executable is approximately three
times greater than malicious. Also, Dll Characteristic value
of benign program is about 4 times greater than malware.
Finally, we have made training sets with 4 attributes which
are Charateristic in COFF File Header, Init Data Size, Maj
Img Ver, and Dll Characteristic.

Training data including attribute and target value that
represents the benign or malicious executable were created and
saved as a CSV file type. We prepared the 10 sets of training
data with different amount of samples. We divided the samples
into 10 blocks. One block for benign sample contains 950
files and for malware sample contains 23,000 files. And the n
sets composed with n blocks of benign sample and n blocks
of malware. For example, composing third set, 3 blocks of
benign samples and 3 blocks of malware samples are needed.
Thus, 2,850 benign files and 69,000 malware files are used
for composing the training data. To get precise result, test is
proceed 10 times with different combination of training data.

III. ALGORITHM PERFORMANCE EVALUATION

Two experiments were performed. First experiment is to
find the best algorithm for each benign and malware. From
this experiment, we have found that some algorithms are

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

outperformed for predicting the benign files and some are
outperformed in malware. Therefore in second experiment, we
combined the two best algorithm to evaluate the prediction
performance.

A. Methodology
The methodology of the first experiment, single machine

learning classification method is divided into three parts as in
Fig 1. First, in training process (tiny dash line), the machine
learning algorithms (CART, SVC, and SGD) are trained using
the training data which was explained in the previous section.
To check the detection efficiency depending on the amount
of sample that used for training, training data is prepared
with 10 different sets as mentioned in previous section. Each
algorithm generates classifier when training data is assigned.
In Second, input file filtering process (dash line) is conducted.
The “pefile” module checks the existence of PE-header or the
architectural maintenance from the input executables. It has a
purpose to maintain service availability. If wrong PE format
file is conducted to classifiers, it ceases the input file and call
the next file. The total number of input file is 246,497. Input
file for benign is 9,790 and malicious is 236,707. Input file
contains not only trained samples but also unrecognized sam-
ples. Finally, in classify process (dotted line), machine learning
classifier classifies the input files. Classification results are
written to a csv file with the original target value. But in wild,
the classifier can predict the result right away without reporting
them. The experimental environment for classification of files
is as follow: CPU with i5-3.90 GHz and 16GB ram and the
operating system is Ubuntu desktop.

Figure 1. Single algorithm based classification methodology

B. Algorithm Explanation
In this section, a brief description of each algorithm and

the options that we applied to this experiment is described. In
this research, the scikit-learn Python module is used for the
classification of data. Scikit-learn is one of the most widely
used machine learning module in Python [16].

1) Classification And Regression Tree: CART is one of
the decision tree algorithm. A decision tree is a rooted tree
with internal nodes corresponding to attributes and leaf nodes
corresponding to class labels. CART is similar to C4.5, but it
not only supports discrete target value but also numerical target
value and does not compute rule sets. CART constructs binary
trees using the feature and threshold that yields the largest
information gain at each node [16]. Fig. 2 is the partial example
of our CART model. The CART algorithm is structured as a
sequence of questions where in the next question is determined
depending on the answers. Algorithm is designed to keep
continue questioning until the end of the node. The end of
the node is the prediction result of the target value. When
training data comes, the algorithm starts with tree growing
process. The basic idea of tree growing is to choose a split
among all the possible splits at each node so that the resulting
child nodes are the purest. The next step is splitting criteria and
measuring impurity. If the impurity measurement occurs, the
splitting criterion corresponds to a decrease in impurity. The
tree is not continuously growing either by customer options or
algorithm design itself. If a node becomes pure or node has
the identical value, it stops growing. For our CART model,
we use Gini impurity criterion for growing tree. Limitation of
maximum feature, depth, and the number of leaf nodes are not
set. Therefore, the tree used all the training data attributes and
grows until the stopping rule initiated.

Figure 2. CART algorithm sample

2) Support Vector Classification: SVM is supervised learn-
ing models that analyze data used for classification and re-
gression analysis. SVC (Support Vector Classification) is one
of the SVM method for specializes in classification and is
effective in high dimensional spaces. Calculating the best fitted
decision function is important. If the subset of training point in
decision functions are well-defined, then memory is efficient.
SVC has various kernel functions and it is important to select
suitable kernel functions for improving the pattern recognition
ratio [17]. Customized kernel can be designed depending on
its purpose. Thus in case insufficient kernels exist, then user
create his own kernel. For our SVC model, we select rbf
(Radial-Basis Function) kernel mode. Rbf kernel handles the
set weights for finding a curve fitting problem. Rbf kernel has
the advantages when the weights are in higher dimensional
space than the original data. Training is equivalent to finding
a surface in high dimensional space that provides the best fit
to training data. We set degree value as 3 and gamma for
0.167. Gamma value calculated with formula that 1/number of

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

features.

3) Stochastic Gradient Descent: SGD algorithm is a
stochastic approximation of the gradient descent optimization
method for minimizing an objective function that is written as
a sum of differentiable functions. SGD has been researched in
the past, but recently it has been proven that SGD shows high
classification ratio when 105 training samples and 105 features
are trained [16]. Therefore, this algorithm is often used to
classify the natural languages and recognition of characters.
SGD has plenty of parameters (loss regularization, alpha,
shuffle, verbose etc.) to elaborately control the decision point.
In this paper, we select the loss regularization for perceptron
which is a source of neural network. Perceptron is a basic
processing element. It has inputs that may come from the
environment or may be driven by other perceptrons [18].
Perceptron is a type of linear classifier. It predicts based on a
linear predictor function combining a set of weights with the
feature vector. Curved model is already adopted in SVC, thus
we tried to use linear model of decision point. The alpha value
is set to 0.0001 and regularization set to l2 as a normal.

IV. ALGORITHM PERFORMANCE RESULT

In this section, the algorithm performance is evaluated in
two cases. One is false-negative and the other is false-positive.
Fig. 3 represents the false-negative rate of each algorithm.
False-negative refers to the error when a benign application
is classified as malicious. 23,950 samples (950 for benign
and 23,000 for malware) trained CART classifier shows about
2.58% error. The false-negative rate continually decreases as
number of trained samples increases. When 215,550 sample
which is 90% of total sample was trained, it showed 0.2%
of error rate which is the lowest. In this case, CART classifier
incorrectly predicted 20 files from overall 9,790. This classifier
outperformed 13 times in prediction comparing to 23,950
sample trained classifier. On the other hand, SVC algorithm
performs 40.36% false-negative rate when 23,950 samples
are adapted. The error rate of SVC also keeps decreasing
as training sample are increasing. But still it shows high
error rate compare to CART algorithm. For SGD, it shows
80% of error value, but it drops most significantly among
the three algorithms. Nevertheless, SVC and SGD show high
error rate comparing to CART algorithm. CART algorithm
is outperformed approximately 14 times than SVC and is 60
times more efficient than SGD algorithm.

The false-positive rate of each algorithm is shown in Fig.
4. False-positive is when the malicious is predicted as a
benign. CART error rate is decreasing steadily by increasing
the number of training sample. The highest error rate is shown
to be 0.086% when the trained sample is 23,950, and the lowest
error rate is 0.0034% when the 215,550 training samples used.
Just 8 files were misclassified among the 236,707 malware
samples. The false-positive rate of 215,550 sample trained
CART classifier is improved about 25 times comparing to the
23,950 sample trained CART classifier. On the other hand,
even from the beginning, the SVC algorithm shows error
rate of 0.0097%. Only 23 files were misclassified among
236,707 malware samples. As the number of training samples
increased, only 2 files were misclassified from the overall
malware samples. For SGD algorithm, the lowest error rate
is 0.8154%. The value seems to be acceptable enough, but

compared to other algorithm, this value is 1,020 times higher
than SVC algorithm.

Figure 3. False-negative rate

Figure 4. False-positive rate

Both false-negative and false-positive rate of CART shows
prediction accuracy over the 99%. Especially when 90% of
samples are trained, the false-negative prediction accuracy is
99.8% and the false-positive prediction accuracy is 99.99%.
Result of SVC false-negative rate is notable. It presents
97.23% of prediction accuracy. However, CART is more
appropriate for predicting the benign executable. Nevertheless
SVC algorithm is more efficient when detecting the malicious
executable. The accuracy of SVC for predicting the malicious
executable represents 99.9992%. CART error rate is 0.0034%.

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

This seems to be little difference in error capacity, but if
even a single malicious code passed into system harms all.
Therefore, the malware detector should lessen the error rate.
Also, SVC can show efficient prediction accuracy even though
small amount of sample are trained.

From this experiment, the number of samples are the same,
but the test results are done repeatedly by applying a different
training data 10 times to machine learning algorithms. We have
noticed that both CART and SGD case, types of trained sample
and the number of training data both are affected. However, in
the case of the SVC, the result has a constant value, regardless
of the type of data but it is influenced by number of training
data. Because CART considered all the training sample data
to make best result of information gain. But, SVC algorithm
defines the hypothesis space according to kernel function. So,
the sample distribution that scattered in hypothesis space does
not change significantly.

V. IMPROVEMENT OF DETECTION EFFICIENCY

This section proposes the improved methodology com-
bining the two algorithms. When using the combination of
CART algorithm which is excellent for detecting benign exe-
cutable and SVC algorithm which well detects the malicious
executable, we expect to determine the unknown executable
better. For the last part of this section, the combined algorithm
efficiency is evaluated.

Figure 5. Two algorithm combined classification methodology

A. Methdology
The input executable files are always in unknown state

whether it is benign or malicious. The combination of the two
algorithms are adapted for detecting the unknown state of file.
The classifier assume the predicted result of CART is trust-
worthy only for benign case. If CART returns the prediction
result that pointing malicious, then it should toss to SVC for
re-inspection. As in Fig. 5, procedure is also divided into 3 part
as mention in Section 3. First of all in training process, CART

and SVC make a classifier using same training data. Secondly,
input file filtering process exceed. They filter the non-proper
PE-header or PE-header non-existence files. Finally, in the
classify process, CART algorithm predicts whether the input
executables are benign or malicioys. If CART classifies the
input executable as benign, it believes the result and pass them.
But if, CART predicts the input file as malicious executable, it
sent to SVC algorithm for re-inspection. It takes time to check
one file again. But time requirement of inspection took 0.01
seconds. It is not a big loss as it guarantees the security.

Figure 6. Total error of three algorithms and combined algorithm

B. Experimental result and Discussion
The misclassification error rate is represented in Fig. 6.

For the first, SGD algorithm shows about 6% of error in the
beginning, but when 215,550 samples are trained, it represents
99% of prediction accuracy. SGD perceptron algorithm shows
high classification ratio, if more than 105 training samples and
105 features are trained. However in this experiment, only 4
features are applied when making a training set, and because of
limitation of samples, the training is insufficiently conducted.
So, it displays relatively high error than others, but if enough
samples are trained, it will perform better.

SVC algorithm begins with 1.6% error because the per-
formance of classifying a benign code dropped significantly.
However, after learning the 71,850 sample data, the detection
rate represents value of 99%, and eventually only 0.111% are
misclassified. In particular, the SVC is specialized in detecting
malicious code. The improvement of capability of classifying
the benign code can exhibit better performance than CART.

CART algorithm has high detection accuracy in both be-
nign and malware, so it has an accuracy rate of 99% or more

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

from the beginning. It shows a 0.011% error when 215,550 of
training samples are used. CART algorithm has an advantage
in single uses from restricted condition as malware detection
performance is degraded than the SVC algorithm. However, if
the configuration of a robust system is desired, it is possible to
reduce the false positives through the combination of CART
and SVC. From Fig. 6, The combined algorithm presents the
error of 1.6 times better performance than 0.112% of the initial
value of CART. By continuing the training the algorithm, it
sharply reduces the error rate. This error rate of 0.0009%
(about 12 times better than the first time) is shown when
215,550 sample are trained. Only 22 samples are fault detected
from the total 246,497 samples.

VI. CONCLUSION

We have analyzed current characteristics of PE-header.
The result shows that the Characteristic in COFF header has
a prominent features and the network related dll does not
face distinguished characteristics between benign program and
malware program. Also, Number of symbols and Major Linker
Version are featureless for current Windows system.

The experimental result was obtained by using more than
270 thousand malicious samples and 9 thousand benign sam-
ples. When classifying the benign executable, the use of
CART algorithm is worthy. This algorithm represents more
than 99 percent of prediction accuracy with 0.2 percent of
false-negative rate. SVC is suitable for detecting the malware.
It properly predicts malware with 99.99 percent. However,
CART is more efficient than SVC according to the total error.
Based on the result of our evaluation, we notice that there is
specialized algorithm for predicting the malicious executable
or benign executable. Therefore the combination of two al-
gorithms were proposed. The result of the proposed method
shows the low error rate compared to single use of CART. In
addition, the combined mechanism clearly demonstrates the
efficiency of classification on malware, including Worm and
Trojan. But, the use of two algorithms has a disadvantage
for time and resource consuming. Even though it has some
drawbacks, the proposed method is needed to provide a stable
protection for the system. Now, we are interested in improving
the efficiency of a single use of SVC algorithm. This will leave
for the future works.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Education(NRF-2010-
0020210)

REFERENCES
[1] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine learn-

ing to network intrusion detection,” in Computer Security Applications
Conference, 1999.(ACSAC’99) Proceedings. 15th Annual. IEEE, 1999,
pp. 371–377.

[2] J. Bergeron et al., “Static detection of malicious code in executable
programs,” Int. J. of Req. Eng, vol. 2001, no. 184-189, 2001, p. 79.

[3] C. Smutz and A. Stavrou, “Malicious pdf detection using metadata
and structural features,” in Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 2012, pp. 239–248.

[4] D. Maiorca, G. Giacinto, and I. Corona, “A pattern recognition system
for malicious pdf files detection,” in International Workshop on Machine
Learning and Data Mining in Pattern Recognition. Springer, 2012, pp.
510–524.

[5] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[6] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify mali-
cious executables in the wild,” Journal of Machine Learning Research,
vol. 7, no. Dec, 2006, pp. 2721–2744.

[7] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang, “Malicious codes
detection based on ensemble learning,” in International Conference on
Autonomic and Trusted Computing. Springer, 2007, pp. 468–477.

[8] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using
opcode sequences in single-class learning to detect unknown malware,”
IET information security, vol. 5, no. 4, 2011, pp. 220–227.

[9] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based un-
known malware detection,” Information Sciences, vol. 231, 2013, pp.
64–82.

[10] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner: Mining
structural information to detect malicious executables in realtime,” in
International Workshop on Recent Advances in Intrusion Detection.
Springer, 2009, pp. 121–141.

[11] C. Visual and B. Unit, “Microsoft portable executable and common
object file format specification,” 1999.

[12] “Vxheaven,” http://vxheaven.org/vl.php, 2016, accessed November 2,
2016.

[13] E. Carrera, “erocarrera/pefile,” https://github.com/erocarrera/pefile,
2016, accessed November 2, 2016.

[14] M. Z. Shafiq, S. Tabish, and M. Farooq, “Pe-probe: leveraging packer
detection and structural information to detect malicious portable exe-
cutables,” in Proceedings of the Virus Bulletin Conference (VB), 2009,
pp. 29–33.

[15] “image file header structure (windows),” https://msdn.microsoft.
com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx, 2016,
accessed November 2, 2016.

[16] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, 2011, pp. 2825–2830.

[17] L.-P. Bi, H. Huang, Z.-Y. Zheng, and H.-T. Song, “New heuristic
for determination gaussian kernels parameter,” in 2005 International
Conference on Machine Learning and Cybernetics, vol. 7. IEEE, 2005,
pp. 4299–4304.

[18] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-516-6

INTERNET 2016 : The Eighth International Conference on Evolving Internet

