
Edge-to-Edge Achieved Transfer Throughput Inference Using Link Utilization Counts

Demetris Antoniades and Constantine Dovrolis
School of Computer Science

College of Computing
Georgia Institute of Technology

Atlanta, Georgia
Email: [danton,constantine]@gatech.edu

Abstract—We propose a methodology to infer edge-to-edge
achieved transfer throughput using link utilization counts. Our
method treats variations in the link utilization time-series as
possible transfer starting or ending events. Iteratively following
these variations to the neighboring routers, we then identify the
path the transfer traversed through the monitored network. Our
evaluation shows that this method can identify events larger than
3 Mbit/sec and longer than 2 minutes in duration with more than
95% recall. Additionally, we show that event detection is strongly
correlated with the traffic in the busiest router in the path.
We discuss how a number of applications such as throughput
prediction and DDoS attack source detection can use the inferred
information.

Keywords-throughput inference; edge-to-edge; SNMP; network
performance monitoring.

I. INTRODUCTION

The Simple Network Management Protocol (SNMP) [1],
[2] is widely used to monitor aggregated link usage from net-
work components (routers, switches, etc.). Such data, provide a
valuable resource for network administrators, aiding decisions
about network routing, provisioning and configuration. SNMP
data is simple to collect and maintain, providing a low disk
space option for a log of historical network usage.

On the other hand, Netflow data provides detailed infor-
mation about end-to-end performance. Using Netflow, one can
have information about the communication between two hosts,
the amount of packets and data transferred between them
and the achieved throughput. The enhanced information given
by Netflow comes with additional archival cost and many
privacy concerns. To reduce the cost of collecting Netflow data,
aggressive sampling (i.e., 1:1000 packets) is often employed,
even for relatively low-speed networks [3]. Sampling affects
the accuracy of Netflow data and may limit its applications [4].
Netflow records also include the IP addresses and port num-
bers used by the participating endpoints. Such content raises
significant user privacy concerns [5], [6].

In this work, we propose leveraging SNMP link utilization
data to accurately identify edge-to-edge (e2e) information
about the achieved throughput of large network transfers. We
have developed a methodology for inferring network events
from SNMP traffic utilization time series data. Our method
is the result of two main observations. First, looking at the
time series of a link’s utilization, we observe events where the

utilization of the link increases (or decreases) to a different
level, deviating from the link’s normal behavior up to that
point. These events could be considered as starting (or end-
ing) points of high-throughput transfers. Second, these events
propagate from the input links of a router to the output links
of the same router, and from there to a neighboring router,
allowing us to infer the actual route that the specific event
followed.

Figure 1 illustrates these observations over a network ex-
ample. Each router connects an organization’s internal network
to other organizations or intermediate routers. Using SNMP
link usage data one can form the utilization time-series for
each interface, which represents the traffic transferred between
two connected routers. Looking at the time-series between R7
and R9 one can observe an increase in the link utilization.
This increased utilization lasts for some time and then drops.
Such behavior can be attributed to a transfer initiated from
R7’s access network towards some destination. Following
this increase from R9 to the next router and so on, we can
observe that the corresponding transfer continues through R12
and R14. After R14 the transfer either continues to another
network or is destined to a host in the access network served
by R14. Note that the involved router interfaces do not have
the same traffic variations in general. At the point that this
transfer starts or ends, however, their traffic level changes in
a similar fashion. Other transfers can be identified in different
parts of the network at the same time. For example we can
also observe a transfer between R1 − R11 and two transfers
between R2−R6.

The work presented in this paper is, to the best of our
knowledge, the first that suggests the possibility of inferring
edge-to-edge information from aggregated link utilization mea-
surements. In a related work, Gerber et. al. used flow records
to estimate the achievable download speed [7]. Similarly to
our work, their algorithm eliminates the need for, network
intrussive, active measurements. In contrary to this work, the
use of flow records makes their solution expensive to deploy.
Our contributions can be summarized as follows:

1) We propose a methodology to identify events in
SNMP utilization time series.

2) We propose a methodology to map events in an input
interface of a router to the output interface of the
same router the event is switched to.

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

R1 R3

R2

R4 R9

R14R12

R13

R7

R8

R6 R11

R15

R5 R10

Figure 1. Several traffic utilization increase and decrease events can be identified in each observation period.

3) We evaluate our methodology and show that it can
accurately identify events in a real network.

The rest of the paper is organized as follows. Section II pro-
vides a detailed description of our methodology also listing the
specific challenges we came across in each step. In Section III
we provide a detailed evaluation of the proposed methods.
Section IV list a number of sample applications that can benefit
from our method. Section V discusses open challenges for our
method. Finally, Section VI concludes our work.

II. METHODOLOGY

Out method consists of the following three steps:

Event inference: In the first step, we identify transfer-start
and transfer-end events in the link utilization time series. This
is an online processing step. We first transform the utilization
time series into a 2-step differentiated time series, and identify
as “events” those differences that are larger than a specific,
user defined, threshold. The threshold can be defined based on
the utilization and variations of the interface(s) of interest. We
also propose a simple outlier detection method able to identify
events by examining if the link’s utilization at the current time
period (last 30 seconds) has deviated significantly from the
utilization of the link in a recent time window.

Mapping incoming events to outgoing interfaces: After
we identify an event (either transfer-start or transfer-end) at an
input interface, we proceed to identify the output interface at
the same router that the event is forwarded to. Our algorithm
considers all transfer events that appear at any router input
interface in that time period, and tries to find the most likely
outgoing interface that each of those transfer events also
appears in.

Identify edge-to-edge path: This step aims to identify
the next router that each identified transfer is forwarded to.
This step is accomplished easily when we have the network
topology of the given network, including the IP address of
every router interface in that network. If this information is
not available it can be inferred by a matching process between
the current output interface and all other input interfaces.

Note that all the three steps of our algorithm can be
executed in real-time as new traffic utilization data become
available for each link.

Figure 2. SNMP utilization time series of a link during a number of 100
Mbits/sec transfers traversing that link.

A. Event inference

SNMP periodically, every ∆ seconds, reports the number
of bytes that traversed a specific router link over the previous
interval (t − ∆). Using these byte counts, we can extract
the average throughput utilization Ui(t) for a link i over the
interval (t−∆, t), Ui(t) = Bytes(t−∆,t)×8

∆ (1).

Using the link utilization time series we are interested in
identifying changes in the utilization of a link I that are created
when a high-throughput flow starts or ends. We refer to these
changes as flow events e at interface I and denote them with
I(e).

Figure 2 plots the SNMP traffic utilization time series as
seen in a single network interface. A number of 100 Mbits/sec
transfers were active during this time period, traversing the
link. Vertical lines show the actual start (green) and end
(blue) times of each transfer. We can observe the transfers
to gradually appear in the SNMP utilization time series. This
can be explained by two reasons: (i) the actual flow events
are not aligned with the utilization reporting times and (ii)
the utilization time series is an average over all the events at
that ∆. Depending on when the flow event appears relatively
to the interval start it will affect the average differently.
Considering these observations, just using the difference in
the utilization between consecutive intervals gives misleading
information regarding the flow’s throughput since it will only
account for the difference in the interval t. If the flow started
in the end of interval t − 1, then the difference will be
close to the actual flow throughput. However, if the flow
started towards the beginning or the middle of t − 1 then
the difference will be far from the actual flow throughput. V
takes into account these non-alignment and averaging effects.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

0 20 40 60 80 100
Diff (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F xe-1-3-0
so-3-1-0
xe-2-3-0
xe-2-1-0
xe-1-0-0
xe-0-0-0

(a) ESnet router

0 100 200 300 400 500
Diff (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

507
515
534
516
559
196
202
549
518
509

(b) Commercial router: Busy links

0 100 200 300 400 500
Diff (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

507
534
524
196
537
202
549
538
530
529

(c) Commercial router: Highly variate links

Figure 3. CDF of event magnitude for different links and routers.

To identify the events we first transform the utilization time
series of I to the 2-step differential time series V , where
Vi(t) = Ui(t + 1)− Ui(t− 1) (2). V provides the time series
of the link utilization difference between two intervals with
distance 2×∆. The previous equation will result to the time-
series of the utilization difference between two intervals with
distance 2×∆. This difference is more likely to be closer to
the actual flow throughput since it allows for the transition of
the traffic utilization from the base (Ui(t− 1) in this case) to
base + flow throughput (Ui(t+ 1)), in the case of a flow start.
In the following we describe two methods to identify these
transitions.

1) Threshold based event identification: After this point
we consider each value in the Vi(t) time series as a possible
transfer start (positive values) or end (negative values). We
leave it up to the user to decide which of the events she
considers significant. Figure 3 plots the CDF of the magnitude
of all events for all the interfaces of an ESnet router located
in Atlanta (left) and for the 10 most busiest (middle) and most
variable (right) interfaces of an edge router connecting GaTech
to the commercial Internet. We calculate variability for a link
by estimating the Coefficient of Variation (CoV = σ

µ) for the
traffic time series of the interface. We then select the links with
the highest CoV values for Figure 3(c). Note that the events’
magnitude can vary significantly at different links. Some links
allow for the identification of rather minor events, i.e., less
than 3 Mbit/sec, while in other links most of the events are
larger than 100 Mbits/sec. Depending on the link (or path) of
interest the user can appropriately set the threshold value for
event identification.

2) Outlier based event identification: The first step of this
process is to identify significant changes in the differentiated
time series V . To identify them we need an outlier detection
method that is (i) robust to the utilization variability, (ii)
robust to any periodicity in the time-series (iii) does not
assume any predefined distribution of the data and (iv) is
able to detect outliers online as new data become available.
A simple such method is running a robust moving window
average over the data, and estimating the Median Absolute
Deviation (MAD) from the median during the observation win-
dow. This method is also known as the Hampel identifier [8],
[9]. The method is controlled by two parameters (a) the size
N of the observation window and (b) the multiplicative factor
c that defines how strict the outlier detection method is. If c is
large then a value should be significantly far from the median
to be identified as an outlier. If c is small then values that
create small deviations can also be considered outliers. We
empirically examine appropriate values for these parameters
in the next section.

t - Δ t t + Δ
(b)

t - Δ t t + Δ
(a)

Figure 4. Event time approximation.

Eliminating surrounding outliers: As noticed earlier, a
transfer event gradually appears in the utilization time series.
As a result a single transfer event might correspond to more
than one outliers. Each of the outliers corresponds to one step
in the gradual appearance of the flow in the utilization time
series. To accurately estimate the throughput of the event and
also avoid having multiple values for each event we decide
to keep only a single value for each sequence of consecutive
outliers of the same trend. To do so, we sum, for each
such sequence, the non-overlapping outliers, i.e., Vi(t) for not
consecutive t’s. For each outlier sequence we then keep the
maximum of these sums.

Event time approximation: In both the above methods,
the time t of the identified event gives the time of the event
relative to the closest utilization interval. To more accurately
approximate the event time Te we use the following equation:
Te = t− (∆× |U(t)−U(t−∆)|

|U(t+∆)−U(t−∆)|). Figure 4 illustrates how this
approximation works. The plots show sample link utilization
time series. The box underneath each plot shows a transfer
starting at specific time. When the transfer started close to t−
∆, it will count in the estimation of the throughput utilization
Ut in the interval (t −∆, t) and thus result to a larger value
for Ut−∆ (Figure 4(a)). This results to a large fraction, moving
Te closer to the beginning of interval t − ∆. In the opposite
case that the transfer started closer to the end of the interval
(t−∆, t), the fraction will be small and the estimate Te will
be closer to t (Figure 4(b)).

B. Mapping input events to output interfaces

The previous section described how we identify transfer
events in the utilization time series of a link. Our next step is
to identify the output interface the event will be forwarded to.
This procedure is not trivial and may not have a definite answer
at all times. That is because an identified event Ei(t) at input i
may actually be the aggregation of a set of transfers S(Ei(t)),
such as Ei(t) = (ex(t) ∈ S(Ei(t))), each with rate equal to
r(ex(t)), that appear at input i at time t. The rate change Vi(t)

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

we observe associated with Ei(t) is Vi(t) =
∑

r(ex(t)). The
mapping problem then becomes: Given a rate change Vi(t) for
every input and output i of a router, at a given time t, determine
the switch mappings I(e) → O(e) for every transfer e(t) at
that time step.

One can easily show that this problem cannot be solved in
the general case. Consider, the case of two aggregated events
EI1 and EI2 at input interfaces I1 and I2. Suppose that all
transfers in those aggregate events are switched to two outputs,
creating the aggregate events EO1 and EO2 at outputs O1
and O2 as follows: EI1 = {e1, e2}, EI2 = {e3, e4}, EO1 =
{e1, e3} and EO2 = {e2, e4}. The only relationship we can
find in this scenario, considering all possible combinations of
inputs or outputs, is VI1 +VI2 = VO1 +VO2. This is obviously
not sufficient to solve the problem defined above. To solve the
problem we consider the following four conditions:

Condition-1: Every transfer appears individually at both
its input and output interface. Assuming that each event has
a distinct rate, we can solve the problem by identifying for
every input rate change an (approximately) equal rate change
at one of the router outputs.

Condition-2: Every event appears individually at its input
but not necessarily so at its output. Assuming that any possible
combination of events has a distinct aggregate rate, we need
to find the set of inputs Ij such that

∑
Ei∈Ij VEi = Oj , for

every output interface Oj .

Condition-3: Every event appears individually at its output
but not necessarily so at its inputs. Similarly to condition-2 we
need to find the set of outputs Oj such that

∑
Ei∈Oj

VEi = Ij ,
for every input interface Ij .

Condition-4: Every event appears individually at its input
or output or both. Without loss of generality, consider that
an event e appears individually at its input, say Ie. If this
event appears individually also at its output, we can identify
its switch mapping as in Condition-1. Otherwise, say that e is
part of an aggregate event Ek at output k. Then, the rest of the
events in Ek must appear individually at their inputs (based on
Condition-4). So, we can identify their switch mappings as we
did in Condition-2. Similarly, if an event appears individually
at its output.

Our algorithm for identifying the switch mappings first
considers all possible combinations of output interfaces for
every input interface to find a matching aggregate rate as in
Condition-3. Then, it considers all possible combinations of
inputs for every output to find a matching aggregate event, as in
Condition-2. Since small rate variations may occur internally in
the router, when traffic switches from the input interface to the
output, we use the similarity function S = ||VI |−|VO||

max(|VI |,|VO|) (3),
to compare the input and output variations at each step. We
consider the mapping that minimizes S as the most likely
mapping between the input and output events of interest. An
input combination might be also rejected if any of the indi-
vidual interfaces in that combination (or smaller combinations)
better matches the outgoing interface. Similarly for the reverse
scenario. We evaluate appropriate similarity thresholds in the
next section. Algorithm 1 presents the pseudocode of our
switch mapping method.

Algorithm 1 Mapping Input to Output interfaces
1: procedure FIND OUTPUT(Ei(t), E(t), Vo(t))
2: IN ← all combinations of Ei(t) with events E(t) from the other

input interfaces
3: OUT ← all combinations of 2-step differential at time t for all output

interfaces Vo(t)
4: RES ← ∅
5: for all o ∈ OUT do . For all output event combinations
6: S =

absEi(t)−|o|
max(Ei(t),o)

. Calculate similarity with input event
7: if |S| ≤ D then
8: RES ← |S|
9: end if

10: end for
11: for all i ∈ OUT do . For all input event combinations
12: for all e ∈ Vo(t) do . for all single events in the output

interfaces
13: S =

|i|−|o|
max(i,o)

. Calculate their similarity
14: if |S| ≤ D then
15: RES ← |S|
16: end if
17: end for
18: end for
19: if RES 6= ∅ then
20: r ← argmin(RES) . Get pair with the maximum similarity
21: return r
22: else
23: return NULL
24: end if
25: end procedure

C. Identify the edge-to-edge path

This step aims to identify the edge-to-edge path the event
will follow. In this paper we only consider the case where
a complete connected view of the monitored network is
available. That means that information for all routers the event
traverses is available. If we already know which two routers a
link connects, we can proceed from one router to the other. We
can then infer the path by identifying the switch mappings for
all routers in the path step by step, using the method described
in the previous section. After we identify the outgoing interface
in router R1 we can then proceed to router R2, that the
corresponding link connects to. In this case the outgoing event
EO(t) in interface O of R1 becomes the incoming event in
the interface I of R2. Using the switch mapping method we
can now identify the outgoing interface of the event in R2.

In the case where we do not know which two end-points
a link connects, we need to identify this hop using some of
the available information. Since a link between two routers is
a physical link both end points will most probably observe
the exact traffic (with minimal variation due to reporting
synchronization). With this fact in mind we can compare
either the traffic utilization of the current output host with
all input interfaces in the network and identify the incoming
interface with the closest traffic utilization time series. One
option is to use the Euclidean distance to calculate the dis-
tance (d) between each two interfaces for a time window n,
(d =

√∑n
t=1(Uo(t)− Ui(t))2 (4)), An alternative approach

would be to use the 2-step differentiated time series for
calculating the distance, instead of the actual traffic utilization
time series. Note that we do not need to run the above step
for every identified event. Physical links do not change often
and thus only verifying the routers connecting the links every
few days should be enough.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

0 2 4 6 8 10
Flow throughput (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(a) Transfer throughput

15 30 45 60 75 90 105 120 135 150 165 180
Flow Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(b) Transfer duration

60 120 180 240 300 360 480 600
Flow Spacing (sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(c) Transfer spacing

Figure 5. Recall when varying specific transfer properties (c = 1 and W = 20min).

0 2 4 6 8 10
Flow Throughput (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

(a) Transfer throughput

15 30 45 60 75 90 105 120 135 150 165 180
Flow Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

(b) Transfer duration

30 60 120 180 240 300 360 480 600
Flow Spacing (sec)

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

(c) Transfer spacing

Figure 6. Precision when varying specific transfer properties (c = 1 and W = 20min).

III. EVALUATION

A. Datasets

The methodology presented in the previous section aims at
inferring the achieved throughput for transfers with a signif-
icant amount of data, i.e., high throughput and long duration
transfers. In this section we try to identify the lower limits our
method has in terms of (i) transfer throughput, (ii) transfer
duration and (iii) spacing between two consecutive transfers.
Additionally, we identify appropriate values for the method
parameters that allow for high accuracy transfer inference.

To evaluate our methodology we create a number of artifi-
cial datasets, composed by TCP transfers of specific character-
istics, between a machine in Georgia Tech (GT) and Lawrence
Berkeley National Lab (LBL). The created transfers traverse
only the ESnet network, for which we have access to all the
intermediate router utilization data. We also know the routers
and interfaces each link connects. We use the nuttcp network
performance tool to create the transfers. Depending on the
desired transfer characteristic, we keep all other characteristics
constant and vary the value of the characteristic in question.

We evaluate the accuracy of our algorithm by calculating
(i) recall and (ii) precision. Recall is defined as the number of
true positives (TP), i.e., the number of actual transfer-events
our method identified, over the total number of events we
created. Precision is calculated as TP

TP+FP , where FP is the
number of false positives, i.e., events detected by our method
that were not part of the artificial dataset.

B. Outlier based event identification method

Minimum event throughput: Figure 5(a) plots recall as
a function of the transfer’s throughput. Our method manages
to achieve more than 95% recall for transfers with throughput
2 Mbits/sec and larger. Figure 6(a) plots the precision of the
method. Precision reaches values larger than 0.95 for transfer
throughput larger than 3 Mbits/sec. We consider the latter value
to be a reasonable throughput threshold.

0 2 4 6 8 10
c

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

5 min

10 min

15 min

30 min

60 min

(a) 120 seconds

0 2 4 6 8 10
c

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

5 min

10 min

15 min

30 min

60 min

(b) 180 seconds

Figure 7. Effect of TCP transfer duration in the selection of w and c values
on method recall.

Minimum transfer duration: Figure 5(b) plots recall as
a function of the transfer duration. We can observe that our
method can achieve recall larger than 95% for duration larger
than ∆. Looking at the method’s precision (Figure 6(b)), we
can see that our method can achieve precision larger than 0.9
when the duration of the transfer is close to 2 minutes.

Minimum transfer spacing: Figure 5(c) plots recall as a
function of the interval between the transfers. Recall increases
to values larger than 85% when the transfer spacing is 2
minutes. After that point it stabilizes to similar or larger values.
The precision remains high as the transfer spacing increases
(Figure 6(c)).

Method parameters: Figure 7 examines how the choice
of W and c affect the method’s recall as transfer duration
varies. Small window sizes only work well with small c values,

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

0
.0
1

0
.0
5

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

Similarity threshold D

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

Condition-1

Condition-2

Condition-3

Condition-4

Figure 8. Recall as a function of the similarity threshold between input and
output mappings.

resulting to low recall when c > 2. For both transfer duration
values we can say that a window larger than 15 minutes
and a c smaller or equal to 5 provide acceptable accuracy.
The precision did not show any variability with the method’s
parameters when c > 1 and W > 5 minutes.

C. Traffic switch mapping

We now examine the accuracy of the method for inferring
the outgoing interface an event, identified by the previous
method, will be forwarded to. To evaluate this method we
create a number of high throughput transfers (> 3 Mbits/s).
We use information from Paris traceroute as the ground truth
for the interface mapping. A true positive (TP) in this case
is an event where one of the possible options given by
Paris traceroute was included in the outgoing mapping result.
Figure 8 plots recall for all different conditions explained
in Section II-B as a function of the similarity threshold D.
We can observe that condition-1 is the one that provides the
mapping in most of the cases. Using condition-4 we can get
an improvement of about 15% in all cases. Regarding the
similarity threshold, a difference of 10% (D = 0.1) gives recall
values larger than 80% in all cases. Condition-4 gives more
than 95% recall values for any value of D larger than 0.1.

D. Edge-to-edge throughput inference

In the previous subsection, we focused on the evaluation of
the event identification and switch mapping methods individu-
ally. In this subsection we evaluate the accuracy of our method
in inferring edge-to-edge events and reporting their achieved
throughput. To do so, we create a second dataset where we
create number of transfers between GaTech and LBL. Using
nuttcp we limit the average transfer throughput to values in
the range of 5 - 110 Mbits/sec. Using our method, described
in the previous section, we then try to identify these transfers
in the SNMP utilization data.

Figure 9 plots the recall value as a function of the achieved
throughput of each event. The left plot shows recall for the
whole path between Gatech and LBL (only routers belonging
to the ESnet infrastructure). We can see that our method
achieves recall values larger than 0.5 for transfer events
larger or equal to 20 Mbits/sec. For transfers larger than 200
Mbits/sec, recall ranges to values larger than 0.8. To understand
the low recall values for small throughput values, Figure 9
plots the recall values for each router in the path. We can
observe that in most routers we can achieve recall values larger
than 0.8 independent of the transfer achieved throughput. For
one router in the path the recall values drop to values close

0.5 for small throughput values and increase as the transfer
throughput increases to values larger than 20 Mbits/sec. Our
intuition behind this behavior is that the specific router is a
busiest network hub, than the other routers. This means that
traffic from different interfaces (“noise” traffic) in that router
mixes with the traffic we created. This “noise” traffic affects
the IN/OUT interface mapping of small events. To verify this
intuition Figure 10 (a), plots the average traffic in the two
interfaces of interest (input and output) during the time of the
actual events we try to identify. Traffic in a specific instance is
calculated as the sum of the traffic on all interfaces of interest
in that instance. We can observe that recall drops as the traffic
in these interfaces increase. Figure 10 (b) plots the recall as
a function of the average traffic in all interfaces of the router.
Looking at the average traffic in all the router interfaces we can
see how busy the router is and how additional traffic from other
interfaces affects out method. We can observe that as the traffic
traversing the router increases, the recall drops. This suggests
that in an overall busy router the mapping process becomes
more difficult since additional traffic from other interfaces
might merge with the traffic of interest.

IV. APPLICABILITY OF THE METHOD

Improvements of throughput prediction: TCP through-
put prediction applications are usually based on historical
transfers between the end points of interest [10]. The extensive
sampling and limited availability of NetFlow data usually
limits the applicability of these type of prediction approaches.
The achieved transfer throughput values inferred through our
method can be used as additional samples in the presence of
NetFlow data. Furthermore, in cases where NetFlow data are
not available, our method can provide a sample of transfer
throughput measurements.

DDoS attack initiator inference: Spoofed traffic is a
common method used by attackers to create Distributed Denial
of Service (DDoS) attacks [11]. Using our method one can
infer the actual source of spoofed traffic, by following the
identified events to the source network and not relying to the
IP address.

V. CHALLENGES

Incomplete Data: Access to SNMP data from every router
in the network of interest is not always possible. For example,
data may traverse routers that are not owned by the monitoring
party, and thus cannot be collected. Additionally, equipment
may fail and data might be lost for several reasons. We are
exploring ways to take into account these cases, in our method,
matching events that may appear to non-adjacent routers.

Transfer identification: An interesting next step would be
to identify the actual transfers that traversed the path. This
step would need to identify both transfer start and transfer end
events and match them. This step is not trivial since transfer
throughput might change through the duration of the transfer,
or a number of transfers might be active during the same time
at the path. We are considering several methods for transfer
identification in our ongoing work.

Multipath transfers: A common practice for load balancing
network links is to use multiple paths to connect two networks.
Some of the flows transferred simultaneously from a source

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

0 20 40 60 80 100 120
Transfer throughput (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

(a) Path recall vs. Actual transfer throughput

0 20 40 60 80 100 120
Transfer throughput (Mbits/sec)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca
ll

hous-cr5
atla-cr5
atla-sdn1
nash-cr5
elpa-cr5

(b) Per router recall vs. Actual transfer throughput

Figure 9. Total path and per router Recall values as a function of the achieved transfer throughput.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 150 200 250 300 350 400 450 500

R
ec

al
l

Average traffic (Mbits/sec)

atla-cr5

hous-cr5 elpa-cr5
nash-cr5

atla-sdn1

(a) IN/OUT interfaces of interest

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

R
ec

al
l

Average traffic (Mbits/sec)

atla-cr5

hous-cr5 elpa-cr5
nash-cr5

atla-sdn1

(b) All router interfaces

Figure 10. Per router in/out mapping recall vs. average traffic in router.

to a destination network are split among different paths that
may not share any common routers apart from the source and
destination ones. In this case, it is more difficult to identify a
matching output link for an event observed in the source router,
since split transfers will have lower magnitude. Currently, our
methodology does not take these cases into account. We plan
to further analyze the intermediate router variations in order to
identify the several paths that the transfer could be traversed
through. Also, correlation of non-adjacent router interfaces
may give some indication for multipath transfers.

Research Vs. Commercial Networks: One may argue that
ESnet, as a NREN, has very different traffic patterns than
commercial networks and that our method would not apply in
such data. Our results showed that we can also identify small
magnitude events. In our future work we plan to investigate
the applicability of our method in commercial environments
with thousands of small flows starting and ending each mea-
surement epoch.

VI. CONCLUSION

In this paper, we provide evidence that using SNMP link
counts we can infer the achieved throughput of Edge-to-
Edge transfers taking place in the network. Our method first
identifies significant variations in the link counts, and tags
them as possible transfer starting or ending points. Iteratively
following these variations to the neighboring routers, we are
then able to identify the path the specific transfer traversed
through the monitored network. Our ongoing work is designed
to further evaluate our methodology. Additionally, we plan to
test the applicability of the inferred e2e transfers to a number
of applications, such as throughput prediction, traffic matrix
estimation.

VII. ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy under grant number DE-FG02-12ER26065.

REFERENCES

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network
management protocol (snmp),” 1990.

[2] D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for de-
scribing simple network management protocol (snmp) management
frameworks,” rfc 3411, Dec, Tech. Rep., 2002.

[3] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in ACM SIGCOMM CCR. ACM, 2002.

[4] B. Choi and S. Bhattacharyya, “On the accuracy and overhead of cisco
sampled netflow,” in ACM LSNI, 2005.

[5] S. Coull, M. Collins, C. Wright, F. Monrose, and M. Reiter, “On
web browsing privacy in anonymized netflows,” in Proceedings of 16th
USENIX Security Symposium. USENIX Association, 2007.

[6] M. Foukarakis, D. Antoniades, S. Antonatos, and E. Markatos, “Flexible
and high-performance anonymization of netflow records using anon-
tool,” in SecureComm. IEEE, 2007.

[7] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman, “Speed
testing without speed tests: estimating achievable download speed from
passive measurements,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 424–430.

[8] L. Davies and U. Gather, “The identification of multiple outliers,”
Journal of the American Statistical Association, vol. 88, no. 423, 1993,
pp. 782–792. [Online]. Available: http://www.jstor.org/stable/2290763

[9] P. Menold, R. Pearson, and F. Allgower, “Online outlier detection and
removal,” 1999.

[10] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer tcp throughput,” in ACM SIGCOMM CCR. ACM, 2005.

[11] F. Lau, S. H. Rubin, M. H. Smith, and L. Trajkovic, “Distributed denial
of service attacks,” in Systems, Man, and Cybernetics. IEEE, 2000.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-349-0

INTERNET 2014 : The Sixth International Conference on Evolving Internet

http://www.jstor.org/stable/2290763

	Introduction
	Methodology
	Event inference
	Threshold based event identification
	Outlier based event identification

	Mapping input events to output interfaces
	Identify the edge-to-edge path

	Evaluation
	Datasets
	Outlier based event identification method
	Traffic switch mapping
	Edge-to-edge throughput inference

	Applicability of the method
	Challenges
	Conclusion
	Acknowledgments
	References

