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Abstract—Drones enable humans to perform certain high-risk
and attention operations and safety-critical tasks remotely, which
are boosted by the use of Brain-Computer Interfaces. However,
these technologies are correlated with the cognitive state of the
operator, who is prone to stress and diversions, which brings
instability to drone control. In this paper, we propose a decision
making system aiming to decide, upon the operator’s emotional
state, whether the command should or should not be sent to
the drone. By building a predictive operator’s digital twin for
cognitive emotional detection and by benefiting from a visual
facial expression classifier, this system computes the coordinates
and sends them to the drone through a Robot Operating System
2 client. Results show that both the digital twin and the facial
expression classifier are capable of detecting emotions in a real-
time setting and the system provides a reliable and secure way
of commanding drones through the mind.

Keywords—drone; Brain-Computer Interface; digital twin;
Robot Operating System 2.

I. INTRODUCTION

The drone sector has been growing with higher demand
through the years. The common belief is that drones are
singularly used for military affairs; however, they are func-
tional and versatile systems. One major use is providing
monitoring services, i.e., target searching, surveillance for
security purposes and others. Even thought they have attracted
companies due to their visionary application, the most signif-
icant change is how civilians have been incorporating them
for entertainment purposes or as assistive devices to help with
their routines [1]. Still, the most impactful usage of drones
is their applicability to complete high-risk and safety-critical
operations with success, often in locations unreachable and/or
dangerous to humans.

A. Problem Overview

Controlling one drone is already a complex task. Operators
are responsible for, not just to perform standard operations
(takeoff and landing) with success, but also to safely execute
them. When adding unsafe and critical operations to the
task log, the control complexity increases significantly. The
operator needs abilities at their peak, full attention/focus when
performing these operations, to provide a reliable and stable
control.

Hand control allows operators to remotely send commands
to drones; however, as these are critical systems, operators
need to be cautious with the commands they deliver. The
Brain-Computer Interface (or BCI), or Brain-Machine Inter-
face, is an alternative control mechanism. As humans are
prone to fatigue, increasing mental workload and emotions,
the control will become uncertain and insecure, that is, the
operator can potentially mislead the drone with the wrong
commands. In addition, BCIs require operators to have pre-
vious experiences to learn to formulate commands, which
implies multiple training sessions. Even so, these command
classifications are error-prone and contribute to unreliable
control.

B. Proposed Solution

The hypothesis of this work is that by adopting a digital
twin [4] to virtually represent the operator and by using
machine learning techniques, it is possible to process, filter
and predict whether the human operator has high mental
workload and/or impactful emotions and decide whether the
commands produced by the operator should or should not be
sent to the drones. With the goal of validating the formulated
commands, the digital twin is complemented with a visual
emotion recognizer that will classify the operator’s visual
facial expression into a set of emotional states. Additionally, a
Robot Operating System 2 (or ROS2) client node can be used
in order to send the commands to the drone.

II. STATE-OF-ART

A BCI is defined as ”a device that connects the brain to
a computer and decodes in real time a specific, predefined
brain activity” [2]. This technology can use direct or indirect
methods to do so, namely by evaluating the nerve cells activity
or by assessing the levels of blood oxygen for these cells [2].
This technology has proved its relevance in many areas, for
instance, there was a study aiming to deliver accurate real-
time and precise command classification for drone reliable
control. An Electroencephalography (or EEG) headset was
used to record the brain activity, followed by a motor imagery
acquisition. This mechanism involved four tasks, based on the
subject visualizing physical movements instead of performing
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them. Then, a classification methodology was developed by
combining the Common Spatial Paradigm (or CSP) and the
Linear Discriminant Analysis algorithms (LDA) [3]. Using
this method, the authors were able to improve classification
precision in real time. The solution was validated using a fixed-
wing drone use case [3].

Another crucial component of this work is the digital twin.
Nowadays, a virtual twin is described as a virtual representa-
tion that carries information to realistically behave and change
as a physical hardware [4]. This technology is constantly
evolving to serve each project needs. One variant that derives
from it is the digital twin environment [4] with predicting
capabilities. The main goal is to train the digital twin to gain
predictive capabilities in order to anticipate the hardware’s
response or behaviour in situational events during run time.
One example is a research work that proposes a framework
to improve the estimates of certain measurements of physical
systems, more specifically a drone, by implementing a virtual
layer, i.e., a digital twin, that would represent the real device
and predict its performance [5]. This approach implies that
each piece of the drone has its own prediction models that
should learn and be updated through time to, ultimately,
accurately anticipate some metrics that are valuable to the end-
user.

III. IMPLEMENTATION

As a starting point, we chose the Emotiv Epoc+ headset
for data acquisition due to its portability and reliability as a
commercial BCI. In addition, this headset is connected with
an application, EmotivBCI, that aids users as it provides a
platform for direct command and facial expression’s training
and monitoring of multiple data streams. For accurate detec-
tion of command patterns, the application is supported by a
machine learning prediction model to build a profile and refine
it each time the user has a training session. For the purpose of
this work, it was necessary that the operator was subjected to
multiple sessions of command training to ensure its accuracy.
After this stage, the operator was able to formulate right and
left commands, and establish a neutral one (stationary state).

As illustrated by Figure 1, this system is composed by
4 components: (1) the digital twin, (2) the visual classi-
fier/component, (3) the decision making component and (4)
the ROS2 component.

The digital twin is a virtual representation of the operator
and its goal is to classify, in real-time, the operator’s emotional
state. It relies on data collected by the BCI to build a cognitive
profile, adapted to the operator. It is the core component
of the proposed solution and provides decisive information
to ascertain the destination of the command. The remaining
components that follow are designated to support the digital
twin and add complementary information for the decision.
Three of the data streams, recorded by the Emotiv Epoc+
headset, are collected: the band power, i.e., power of the
EEG data according to the sensor and frequency band; the
motion, based on the built-in gyroscope of the headset and
the facial expressions, recorded from facial muscle motions.

The system communicates with the cortex API to send requests
for these data subscriptions and receive JSON responses with
the resulting data streams as well as the classified commands,
for the time period of the subscription. Since each request and
response are unique to each stream, the newly collected data
is integrated according to the nearest point in time of each ob-
servation, resulting into a single dataset. Columns with unique
values are eliminated from this dataset, as well as features that
do not add any value for the resolution of the problem. Motion
related-features (categorical data) are transformed into binary
columns, representing each type, through an one hot encoder.
In addition, 2 features were added to the dataset: arousal and
valence values, that are computed according to certain values
of band power (according to [6]).

For the classification of the operator’s emotional states, a
set of classes were selected to represent positive and negative
states. The positive classes are calm and focused, representing
a stable cognitive state to send commands to the drone, as
opposed to the negative classes (i.e., stressed and distracted)
that detail an unstable cognitive state and, therefore, unaccept-
able state to send commands. In this work, the same operator
simulated all the four emotions, at multiple days, in sessions
of 8 seconds, reproducing a balanced dataset of about 19500
observations per emotion. In this work, we split 70% of the
data for training the algorithms and 30% for testing and eval-
uated 8 classifiers in 4 performance metrics. As presented in
Table I, Random Forest outperforms the remaining algorithms
and is chosen for the training and modeling of the digital twin.

TABLE I
EVALUATION OF ALGORITHMS

Algorithms Performance Metrics
Accuracy Precision Recall f1-Score

Decision Tree 0.995 0.995 0.995 0.995
k-NN 0.997 0.997 0.997 0.997
LDA 0.911 0.916 0.911 0.912
Naive Bayes 0.614 0.645 0.614 0.617
Random Forest 0.999 0.999 0.999 0.999
Support Vector Machine
(or SVM) (linear kernel)

0.994 0.994 0.994 0.994

SVM (rbf kernel) 0.888 0.923 0.888 0.894
Neural Networks 0.948 0.949 0.948 0.948

Regarding the visual component of the system, a camera
captures the real-time image of the operator and uses a Con-
volutional Neural Network based-prediction model [7] from an
open-source project [7], modeled and trained with the FER-
2013 emotion dataset, to classify the visual expressions of the
operator as a set of emotions. This component can output:
positive emotions as happy and neutral and negative emotions
as angry, disgust, fear, sad and surprise.

While the EmotivBCI application classifies the reproduced
commands from the operator, the digital twin receives infor-
mation from the headset and classifies the cognitive state of
the operator. The visual component receives the image from
the camera and classifies the facial expressions. This process
results in three input variables for the decision component.
This decision module will decide whether the operator is stable
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Figure 1. System architecture.

by mentally and visually evaluating his state. Only positive
emotions detected on both components will allow the operator
to send the command. Considering the confidence percentage
of the command and the digital twin upon the classification,
the decision module, in case of an overall positive emotion
detection, will compute the drone coordinates accordingly and
send them through a ROS2 node.

For the connection between the system and the drone, a
ROS2 client-server architecture is created between what is
called the base station, meaning the server machine that man-
ages the drone, and the client node that sends requests through
a service scheme, specific to a certain operation (takeoff,
relative motions and landing). The client node is implemented
as a gateway of the decision module, sending a request with the
coordinates; the server receives the coordinates and forwards
them to the drone in real-time.

IV. EXPERIMENTS

It is expected that, after the operator training session and
digital twin training, the system is capable of detecting mul-
tiple emotional states of the operator in real-time and handle
the drone accordingly. So, to validate this approach, it was
assembled a physical environment for secure and controlled
drone flight demonstrations, composed by a four square meter
indoor zone, called the arena, and a pair of anchors on each
vertex, forming a positioning system that locates the drone by
referencing its absolute coordinates. This arena was used for
operating a crazyflie quadcopter in real-time.

To evaluate the different impacts of the solution, function-
alities were split in a multi-level manner that go from the
lowest experiment to the highest level (solution as a whole) to
emphasize its value on securing a stable control environment
for the drone. These experiments are: (1) the baseline test,
defining the current state of drone control without the support
of emotion recognition, (2) the level 1 test, representing the
implementation of the core of the solution which is the
cognitive emotion recognition system, (3) the level 2 test,
the same as the previous test but with the addition of the
computation of distances according to the confidence of both
the mental command and classified cognitive state of the
subject and (4) the full test, having all the above functionalities
and the support of the visual emotion recognition.

With the exception of the baseline test, which gives no
importance to the mental state of the subject, each test covers
the four mental states (focused, calm, distracted and stressed)
individually, each one with sessions of 8 seconds. The subject
had to be put under the same conditions in which he used to
simulate the four emotions on the training phase.

V. RESULTS AND DISCUSSION

Given the environment set-up described in Section IV, the
number of observations per emotion and per experiment, for
the same subject that trained the commands in the EmotivBCI
application, are described in Table II:

TABLE II
NUMBER OF OBSERVATIONS PER EMOTION

Emotions Group of Test
Level 1 Test Level 2 Test Full Test

Calm 142 120 85
Focused 94 101 90

Distracted 124 135 104
Stressed 134 120 112

From the number of observations, it was computed the
success rate, or accuracy, for each emotion and per experiment
(Figure 2). This metric is calculated by dividing the number
of correctly classified observations by the total amount of
observations. For the calm state, the highest accuracy of the
digital twin was 87,5%, for the focused state a 98,8%, for the
distracted state a 93,5% and for the stressed state a 100%, as
described by the round values on Figure 2.

Even with a high average of success rate for detecting the
subject’s mental states, the most accurately classified emotion
was the stressed state. The difference between them can be
due to the distinct way the model is trained in this segment,
which involves more physical movement to denote agitation,
rather than a low on motion condition on the remaining ones.

Lower success rate depicted on level 1 for the focused
state can be explained by the different background noise and
movement between the training and test phase. This caused
the subject to deviate his attention, explaining the occurrences
of distracted classifications during this period. In the next test
levels, this value is no lower that 80%, which is explained by
the calmer environment. As opposed to this situation, the lower
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Figure 2. Success rate bar chart.

success rate on level 2 for the distracted state classification
can be explained by the lower amount interference or other
diversions derived from background movement which led to
short occurrences of focus by the subject.

Regarding the classification of the negative emotional spec-
trum (distracted and stressed states), Tables III and IV give
some insight about the number of sent commands under an
incorrect classification.

TABLE III
DISTRACTED EMOTION RECOGNITION

Positive Group of Test
Detections Level 1 Test Level 2 Test Full Test

Total number 6 11 10
Nº of neutral commands 4 7 6

Nº of sent commands 2 4 1
BCI positive, visual negative N/A N/A 3

As registered in Table III, at level 1 were detected 6 positive
states, 2 of them sent; at level 2 were detected 11 positive
emotions, 4 were sent and at the full test, 10 positive emotions
were detected, 1 command was sent to the drone and 3 were
prevented due to the detection of a negative emotion by the
visual component.

TABLE IV
STRESSED EMOTION RECOGNITION

Positive Group of Test
Detections Level 1 Test Level 2 Test Full Test

Total number 0 0 2
Nº of neutral commands 0 0 1

Nº of sent commands 0 0 0
BCI positive, visual negative N/A N/A 1

As registered in Table IV, at the full test were detected 2
positive emotions and none were sent to the drone. One of
them was a neutral command and the other was associated
with a negative visual emotion, detected by the visual emotion
component.

Since the training of mental commands is a task that requires
time to practice and refine, it is challenging to reproduce a
command at a live setting and in an equivalent environment
the subject trained. Even with a digital twin inaccurate classi-
fication, most commands detected by the BCI are neutral ones,

which have no impact on the trajectory of the drone. However,
the command classifier can incorrectly output a right or left
commands and these can potentially be sent to the drones.
With the extra layer of the visual component, these unique
situations are assessed by it and some of those errors are
prevented. At a mission environment, where the operator needs
to follow a sequence of commands, if there is a cancellation
of a certain command, the operator will observe it and has
enough time to reproduce the needed operation.

Considering that this is a 4-class classification problem,
there is a probability of 25% that a baseline classifier correctly
categorizes the subject emotion state and, in the baseline test
characterized by the lack of machine learning, all commands
are sent to the drones, regardless of the operator’s emotional
state, which could only be beneficial if the subject has perfect
cognitive condition at all times.

VI. CONCLUSION

In this work, we analysed EEG data captured by the BCI
Emotive Epoc+ of a drone operator and, using machine
learning techniques, we were able to build a digital twin
of the operator capable of predicting its emotional state and
decide whether the commands should be sent to the crazyflie
quadcopter. The classification of the emotional state not only
is supported by EEG data but also by a visual component
that analyses the facial expressions. In addition, the commu-
nication between the system and the drone is done through
a ROS2 client node. Multiple machine learning algorithms
were validated and Random Forest was the best fitted and
therefore used for training the digital twin. Results showed
that the digital twin can accurately discriminate the operator’s
emotional states at a live setting and the combination of
classification models improved the security and reliability of
the system to decide upon the broadcasting of the reproduced
commands. In the future, the goal is to adapt the current system
to a swarm of drones, improving the training of the mental
commands, the digital twin’s accuracy and the efficiency of
the digital twin’s training and validate this approach with a
larger number of subjects with different demographics.
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