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Abstract— To ensure the safety and security of workplaces and 

homes, parts replacement of mechanical/electric/electronic 

devices is inevitable, because they will gradually break down. 

Users have to search for the appropriate part numbers from a 

parts database to order and replace the parts. In many cases, 

users make phone calls to the support center of the vendors 

instead of searching by themselves, which can be inconvenient 

for the support center staff. In this paper, to reduce the 

number of phone calls to support centers, we propose a 

prototype of an automatic part number answering system from 

natural language. This system consists of open-source speech-

to-text conversion and Structured Query Language (SQL) 

generation from the natural language. Preliminary evaluation 

results show that 83% of the voice questions returned the 

correct part numbers. In addition, the search with our system 

was executed an average of 3.86 times faster than with the 

conventional manual keyword search. 

Keywords-speech-to-text; SQL generation; natural language 

processing. 

I.  INTRODUCTION 

To ensure the safety and security of workplaces and 
homes, parts replacement of mechanical, electric, and/or 
electronic devices in factories, construction sites, and homes 
is inevitable, as such devices will gradually deteriorate and 
break down. Before a malfunction occurs, device users have 
to search for the part numbers on a parts database to order 
and replace parts. However, generally speaking, users do not 
know the correct part names, thus they cannot use the 
conventional manual keyword search. Instead, they make 
phone calls to the support center of the device vendors, 
which inconveniences the support center staff, who 
invariably have little time to improve their productivity or 
the quality of their support. To reduce the number of phone 
calls or even completely eliminate them, one potential 
solution is an automatic answering system for the part 
number. 

In this paper, we propose an automatic part number 
answering system using speech recognition (speech-to-text) 
and SQL generation from natural language and make a 
preliminary evaluation of its functionalities and performance. 
We use an open-source software for speech-to-text and 
develop a SQL generation algorithm. More specifically, we 

assume that “ask back” processing of the system is new and 
more pragmatic than previous studies in real industry fields. 

In Section II of this paper, we review related work. In 
Section III, we describe the architecture of our system and 
Graphical User Interface (GUI). The preliminary evaluation 
results are reported in Section IV. In Section V, we discuss 
the functionalities and the performance, followed by a 
conclusion and future study in Section VI. 

II. RELATED WORK 

In this section, we review speech-to-text technology and 
SQL generation technology from natural language. First, we 
focus on speech-to-text. Table I shows the comparison of 
speech-to-text technologies offered by various providers. 
Amazon Transcribe on Amazon Web Services (AWS) 
handles 14 languages, but does not handle Japanese and has 
no sound model customization [1]. Cloud Speech-to-Text on 
Google Cloud Platform (GCP) can recognize 120 languages 
and dialects, including Japanese, and can customize the 
sound model. However, it does not have a user dictionary [2]. 
Watson Speech to Text on IBM Cloud handles Japanese, has 
a user dictionary, and can customize the sound model, but is 
proprietary [3]. Speech-to-Text on Microsoft Azure handles 
Japanese and can perform sound model customization. 
However, it does not have a user dictionary [4]. 

 

TABLE I.   COMPARISON OF SPEECH-TO-TEXT TECHNOLOGIES. 

Name 
Japan-

ese 

User 

Dictionary 

Sound 

Model 

Custom-

ization 

Open 

Source 

Software 

Amazon 

Transcribe 
 ✓   

Google Cloud  
Speech-to-Text 

✓  ✓  

IBM Watson 

Speech to Text 
✓ ✓ ✓  

Microsoft  
Speech-to-Text 

✓  ✓  

Julius  

(This Study) 
✓ ✓ ✓ ✓ 
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Figure 1. Overview of our system. 

 
Julius is an open-source, speech recognition engine with 

a large vocabulary. It supports statistical N-gram model and 
rule-based grammars as a language model and Hidden 
Markov Model as a sound model [17]. Julius translates 
Japanese speech into Japanese text, has a user dictionary, can 
customize the sound model, and is open-sourced [5]—in fact, 
no speech-to-text technology other than Julius is open-
sourced. In addition, Julius can be deployed on the intra-
company cloud and has less risk of information leak. For 
these reasons, we opt to utilize Julius for our system. 

Second, we examine SQL generation technologies from 
natural language [6][7]. Precise [8] constructs systematic 
natural language queries that are easy to translate into SQL 
queries. Rao et al. [9] convert inquiries that are written in 
natural language and whose words are in the user-defined 
dictionary into SQL queries. They cannot make queries 
interactively. Safari and Patrick [10] transform general 
natural language queries into restricted natural language 
queries first and then convert them into SQL queries. NaLIR 
[11] makes a syntax analysis of the natural language query 
and shows its result to the user. Next, the user manipulates 
the result manually and modifies the syntax tree to one that is 
easy to convert into an SQL query. Sukthankar et al. [12] 
generate complex SQL queries that include WHERE clauses. 
Seq2SQL [13] converts natural language queries into SQL 
queries by using reinforcement learning. However, the 
accuracy of the generated SQL queries is about 50–60%. All 
the systems above lack interactive functionalities on mobile 
devices or have insufficient accuracy of the generated SQL 
queries. In contrast, our system interactively converts the 
natural language questions into SQL queries on mobile 
devices such as an iPad® and does not show the details of 
the analysis or the transformation. Moreover, it can generate 
complex SQL queries using WHERE clauses. Preliminary 
evaluation results show that 83% of the generated SQL 
queries are correct. 

 
 
 

Real world applications, such as Apple Siri [14], Google 
Assistant [15], and Amazon Alexa [16], resemble our system. 
However, they cannot use intra-company proprietary 
databases. Our system can deal with such databases. 

III. OVERVIEW OF OUR SYSTEM 

In this section, we provide an overview of our system. 
The device user makes a conversational input consisting of 
the part information, such as the machine type name 
(RX200), the component name (Frame), and the part name 
(Bolt), to the system. The system analyzes the information 
and returns the corresponding part number (B1234). 

This process is shown in Figure 1. First, in step 1, the 
user talks to the conversation agent on the iPad®, saying (for 
example) “RX200, Frame, and Bolt”. In step 2, the 
conversational agent accepts the utterance, formats it as 
Moving Picture Experts Group (MPEG)-1 Audio Layer-3 
(MP3)  and sends it to the speech-to-text engine (Julius) on 
the intra-company cloud. 

 
(a) Complete question  

 
(b) Incomplete question  

Figure 2. GUI images on an iPad®. 
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Julius transcribes the utterance to text and sends it back to 
the search agent on the iPad®. In step 3, the search agent 
generates the SQL query. Words from the text are embedded 
in WHERE clause. Finally, the search agent executes the 
query on the parts database. The example SQL is as follows: 

 SELECT part_number FROM parts_database WHERE 
type=’RX200’ AND component=’Frame’ AND 
part=’Bolt’. 

The parts database returns the part numbers to the search 
agent. If the search agent does not get a unique part number 
from the SQL query, in step 4, it generates an additional 
SQL query from the answer, as follows: 

SELECT component FROM parts_database WHERE 
type=’RX200’ AND part=’Bolt’. 

The answer of the additional SQL query is displayed as 
selection buttons on the iPad®. The device user taps the 
appropriate button for the component name, that is, the 
search agent asks back the device user what the component 
name is. Finally, the search agent shows the part number, 
which in this case is “B1234”, on the iPad® in step 5. 
Manual correction of the speech recognition result can be 
performed if the user finds incorrect results. 

Next, we present the GUI of our system. Figure 2(a) 
shows an example where a complete question is asked, 
which includes a type name, a component name, and a part 
name. The user verbally inputs the complete question and the 
system transcribes it (red box in the figure). Then, the user 
selects the appropriate text and the system replies with the 
part number. 

The case of an incomplete question is shown in Figure 
2(b), where some of the required information is lacking in 
the question—in this example, a component name. The 
system analyzes this incomplete question and shows 
candidates for necessary information that is missing in the 
voice input (“ask back” processing, red boxes in the figure). 
The user taps the appropriate candidate button and the 
system replies with the part number. 

IV. PRELIMINARY EVALUATION 

In this section, we report our preliminary evaluations of 
the functionalities and performance of our system. All 
evaluations are done in Japanese. We use the Apple® iPad® 
(6th Generation) and the intra-company cloud for the 
evaluation.  

A. Functional Evaluation 

We manually make 100 artificial oral questions to test the 
coverage of the system. Each question is composed of a 
machine type name, a component name, and a part name. 
That is, all questions are complete question cases. All 
combinations of the names in the questions are different 
from each other. Examples of questions are “RX200, Frame, 
and Bolt” or “RX78, Generator, and Chain”. One of the 
authors orally inputs these questions in the office. 

Table II lists the functional evaluation results. As shown, 
the system delivered the correct part numbers for 83 of the 
questions. However, 12 questions exhibited inappropriate 
speech recognition, and there were five error results. 

TABLE II.   FUNCTIONAL EVALUATION RESULTS. 

Results 
Number of 

Questions 

Correct part number 83 

Inappropriate speech recognition 12 

Other errors 5 

Total 100 

 

TABLE III.   BREAKDOWN OF 83 SUCCESSFUL RESULTS 

Voice 

Input 

Additional 

Info Needed 

Manual 

Correction 

Number of 

Questions 

✓   0 

✓ ✓  2 

✓  ✓ 40 

✓ ✓ ✓ 41 

 

 
Figure 3. Speedup over the conventional search. 

 
Table III shows the breakdown of the successful 83 

results. In the case of voice input only, there were no results. 
When we used the voice input and the additional information 
input required by the system (“ask back” processing), there 
were two results. Using the voice input and the manual 
correction of the small speech recognition mistake, there 
were 40 results. When all three items were used, there were 
41 results. 

B. Performance Evaluation 

Next, we evaluate the performance of the system. We 
prepare 11 additional oral questions from the device users. 
These 11 questions are different from the 100 questions in 
the previous section in that they were actually used by the 
device users in real engineering fields. Some questions are 
incomplete, such as “RX78 and Generator”. One of the 
authors orally inputs these questions in the office, too. Figure 
3 shows the speedup of the search time over the conventional 
search. The conventional search specifies the correct part 
name manually using a keyboard and then searches for it. If 
the search does not get the part number within 300 seconds, 
we assume the search time to be 300 seconds. When we 
tallied the results, we found that our system had a speedup 
larger than 1 in all questions except #6 (0.88 times). The 
average speedup was 3.86. 
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V. DISCUSSION 

     In this section  we will discuss the functional and 

performance evaluation results. 

A. Functional Evaluation Results 

First, our system could not transcribe 12 questions 
properly due to a deficiency of the synonym dictionary for 
terms such as “urea”. We need to expand the synonym 
dictionary to include domain-specific terms. The other five 
errors are currently under investigation. 

Second, 81 of the 83 questions that led to the correct part 
number required manual correction of the transcribed text. 
This is because Julius failed to detect the pauses between 
words, as the background noise of the evaluation 
environment was not exactly small. A noise-resistant system 
is a future consideration. Parameter tuning of Julius may 
improve the situation. 

Third, 43 questions required additional information to 
reach the correct part number. This is because the same part 
and component names appeared in a device type. In such 
cases, the system asks back the device user which 
information is needed. To automate this issue, we propose to 
display probable combinations of names and the user to 
select proper one. 

B. Performance Evaluation Results 

In the conventional search, the device user needed to 
know the correct type/component/part name before the 
search. In addition, some questions lacked information (e.g., 
component name). As a result, the user could not input the 
correct search keywords and six of the 11 questions did not 
lead to correct part numbers within 300 seconds. In contrast, 
our system could obtain all the correct part numbers within 
300 seconds. In several cases, questions about the missing 
information were automatically asked back by the system. In 
question #6, the tester coincidentally knew the correct part 
name, so the conventional search was executed faster than 
our system. 

Additionally, our system acquired the part numbers an 
average of 3.86 times faster than the conventional search. 
We assume that the automatic “ask back” processing in our 
system helped reduce the search time. 

VI. CONCLUSION 

To reduce the number of phone calls to support centers, 
we have developed an automatic part number answering 
system consisting of an open-source speech-to-text software 
and SQL generation from natural language (Japanese). 

The functional evaluation results demonstrated that 83% 
of the questions returned the correct part numbers. Moreover, 
the performance evaluation results showed that our system 
executed the search an average of 3.86 times faster than the 
conventional search. 

In future work, we will examine how to improve the 
accuracy of voice recognition under noisy environments and 
decrease latencies of the system for speedup. In addition, we 

are planning to evaluate the performance and robustness of 
the SQL generation algorithms. 
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