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Abstract—Industry 4.0 is the movement towards a fourth indus-
trial revolution that will consist in the digitization and integration
of all value chain. In Europe, this movement is led by the German
RAMI 4.0 (Reference Architecture for Industry 4.0) proposal,
which is attracting a lot of attention from industry, academia
and other practitioners. Under the RAMI 4.0 scope there is an
Administration Shell proposal to abstract physical and logical
assets in a standardized way. Once abstracted, assets become
Industry 4.0 Components and can be fully integrated in the
Cyber Physical Production System or value chain. This work
focuses on the utilization of software components within the
Administration Shell. There is a necessity to represent software
components and their relation to industrial asset. Therefore, con-
trol and monitoring applications involving software components
and other assets can be represented in compliance with the I4.0
Component Model. To address this necessity the Smart Object
Self Description information model is proposed and applied to a
real case study scenario.

Keywords–Information Model; Component Based Software En-
gineering; Smart Component; Administration Shell; Industry 4.0.

I. INTRODUCTION

Industry 4.0 (I4.0) is the movement that aims to transform
the traditional factory into a smart factory. There is a hype
around this movement fueled by great expectations in the way
industry will transform the value chain, business models and
economy [1].

In terms of path to effectively create the smart factory, there
are several of models with different specificities proposed by
different countries [2]. In Europe, RAMI 4.0 [3], proposed by
several German organizations gathered under Platform Indus-
trie 4.0, seems to join the bigger consensus [4]. RAMI 4.0 most
widespread concept is a tree dimensional map that combines:
1) the hierarchy of Industry 4.0 components, according to ISA
95 (International Society of Automation 95); 2) the product
life cycle and it value chain, from conception to disposal; 3)
the factory architecture perspectives, from assets to the whole
organization and business processes. The main objective of this
model is to create a clear understatement of all participants
within the Industry 4.0 and across the value chain [1].

One of the core technological aspects for Industry 4.0
is The Industrie 4.0 Component model [5]. The components
model for Industry 4.0 was developed by the participants of
Platform Industrie 4.0 to help equipment producers and system
integrators to create standardized I4.0 compatible hardware

and software components [1]. This component model specifies
that each asset (logical or physical) must be encapsulated by
a standardized digital container – the Adminsitration Shell –
that will enable description, collaboration and communication
among all I4.0 Components.

A. Administration Shell
The Administration Shell (AS), acts as an interface con-

necting all physical and logical assets to the I4.0 compliant
network, therefore creating an I4.0 compatible Cyber Physical
Production System (CPPS). [6] is a proposal for the general
structure of the AS, as proposed by Plattform Industrie 4.0,
and therefore it was a reference to this work. The things
abstracted by an AS are diverse and some are manufacturer
dependent, so the AS maintains an internal interface specific
for each asset, as in Figure 1. The AS has also an external
interface, which is responsible for communication with the
I4.0 network. Another peculiarity of the AS is that it can
represent passive and active assets. One example of a passive
asset is a purely analogical machine or tool which might be
important to represent digitally. On the other hand, an example
of an active asset is a complex machine incorporating digital
control units capable of processing and communication. The
asset itself can be composed of other assets as is the case of a
machine whose sub-systems can be represented individually, it
is also the case of a production line or even the entire factory.
The representation of an asset, once abstracted by an AS, is
also commonly called the digital twin.

Once an asset is encapsulated by an AS it becomes an
I4.0 Component (Figure 1) and can participate in the I4.0
compatible CPPS, which is formed by other I4.0 Components.
A descriptive diagram explaining the process of encapsulation
and the main advantages of the I4.0 Component Model are
described in detail in [1] [5].

B. PRODUTECH-SIF Project
The work described in this paper was performed in the

scope of PRODUTECH-SIF (Solutions for the Industry of the
Future) project [7]. This is a Portuguese National initiative
with a research agenda that comprises a set of R&D activities
in key domains with the objective of enabling the digital
transformation of the Portuguese industry. One of the base
activities is the study and implementation of base technologies
to create CPPS, whose first results are described in this
paper. As already discussed, the AS is a base technology to
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Figure 1. Representation of the Administration Shell application to an Asset
to form an I4.0 Component [6].

create CPPS. As this concept is proposed under the scope of
RAMI 4.0, the AS was chosen to convert the participating
companies assets in I4.0 Components. Therefore, preparing
the Portuguese industry for the upcoming establishment of I4.0
based technologies.

The methodology followed started with requirements as-
sessed by means of inquiries to all companies participating
in the project. Thereafter, a company responsible to host the
pilot demonstration of the project was visited to prepare a
complete case study, upon which all developments presented
in this paper were based. All hardware requirements are
tackled by a SmartBox described in Section II. The AS of
the project is realized by the SmartObject concept, which
is described in Section III. The case study, based on the
pilot demonstration of the project, is presented in Section IV.
A series of problems and the motivation for this work are
presented in Section V. The main contribution of this work is a
proposal for an information model used for self-description and
(re)configuration of SmartObject’s, presented in Section VI.
The paper finishes with some conclusions and future work in
Section VII.

II. SMARTBOX

The SmartBox is a smart hardware developed over the
National Instruments (NI) cRIO-9040 platform that runs the
SmartObject and enables the remote connectivity with ma-
chines in the shop floor. NI cRIO is a Programmable Au-
tomation Controller (PAC) that allows extremely high speed
measurements and also allows to perform software-defined
hardware through an internal FPGA. One important component
is the modular Real-Time PAC platform that enables flexible
data acquisition and actuation based on hardware modules
that can be incorporated, including machine vision systems. In
particular, the cRIO-9040 has a dual-core 1.3 GHz processor,
2 GB DRAM and 4 GB Storage with 4 slots for different I/O
modules.

In the scope of the PRODUTECH-SIF project, the Smart-
Box was programmed for Device-to-Device (D2D) connections

supported by the OPC-UA protocol and Device-to-Server
(D2S) connections with the MQTT protocol. A SmartBox can
be installed to manage one machine or a groups of machines.
In both cases, the SmartBox acts as an OPC-UA server or
a MQTT publisher of the IIoT system architecture, as an
Edge-Node between sensors and actuators and the information
systems. Figure 2 illustrates the SmartBox that communicates
over EtherCAT with Remote I/Os for shop floor scenarios
where data or command information flows between machine
physically distant from each other. Currently installed on the
SmartBox, there is multifunctional module (NI-9381) with
digital and analogue I/O to receive data from digital sensors or
analogue voltage values between 0V - 5V with medium to low
resolutions needs. The same module is used for actuation. The
SmartBox has also an AC differential input module (NI-9215)
installed, with 4 channel of ± 10 V, 16 bits for acquisition
of analogue signals such as acoustic or vibrations. Another
available module (NI-9239) has a 24 bits ADC, and 4 channels.
It is used for vibrations and small signals measurements
produced by magneto-resistive sensors.

Figure 2. SmartBox with Remote I/Os for scenarios with multiple machines
installation.

What distinguishes the SmartBox from other conventional
controllers is the capacity to implement machine learning
techniques. For example, it can be used to measure vibra-
tions in induction motors and run classification methods that
automatically detects and alerts for anomalies like possible
misalignments of the rotors and worn out bearings and gears.
Another possibility is the forecasting of temperature in specific
machine areas based on the history and based on this, act in the
machine or simply monitor the current state. These are only 2
examples already tested with the SmartBox, but another super-
vised, unsupervised or reinforced machine learning techniques
can be implemented. The SmartBox can be reconfigured by
adding or removing specific hardware modules, and each can
be also reconfigured by software. This versatility is an asset
for the implementation in different scenarios presented by the
industrial partners of PRODUTECH-SIF project.

III. SMARTOBJECT

The SmartObject (SO) is an implementation of the Smart-
Component concept [8], defined by Smart Component’s com-
munity [9] [10]. In the scope of the PRODUTECH-SIF project,
the SO implementation is being extended to consider the AS
requirements defined in [6]. Therefore, the SO will act as the
AS for encapsulating and converting the case study assets in
I4.0 Component’s. To make assets transparent to each other,
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i.e., capable of mutual cooperation and understatement, each
SO will maintain and make available to the CPPS a manifest
describing each asset. This paper focuses on the common
data model created for that purpose, the Smart Object Self
Description (SOSD).

Figure 3. SmartObject Block Diagram.

In software terms, the SO is a component framework [11]
constituted by a composition tool and a runtime environment.
The diagram of Figure 3 shows the main components of
the runtime environment, which will be deployed in each
SmartBox. The composition tool allows to develop, maintain
and deploy software components compatible with the runtime
environment. During deployment an user can create a new
composition or modify any one running in a certain SO. The
deployment environment embeds a canvas that displays the
composition and allows new components to be dragged in
and interconnected by means of it’s interfaces. This way, a
control engineer doesn’t need to know any specific details
of software. All he sees is a set of black boxes whose
functionality and interfaces are well documented and that can
be used to build control or monitoring applications. Neto and
Gonçalves [12] explain and survey component frameworks
applied to industrial environments. A comprehensive state of
the art of software engineering in industrial automation is
presented by Vyatkin [13].

IV. CASE STUDY

The pilot demonstration of the PRODUTECH-SIF project
defines the case study for this work. A Portuguese company
produces labels and technical narrow fabrics for clothing and
other applications is the application target. A part of the
production line consists in a variety of looms that produce
the labels. Due to its business nature, the company has been
acquiring new looms across the years, having now a diversified
set of machines, from older to new ones. A set of intermediate
aged looms were chosen to constitute the pilot and therefore
the application requirements. To support the pilot description
one can refer to Figure 4, which illustrates the physical
architecture of the case study. These machines have some
control electronics and are capable of signaling some errors

related to severe failures and others related to small production
issues, like rupture of the threads and fabrics. Despite that,
these machines are not capable of communication and the
only way to acknowledge production problems is through
a warning light tower connected to the loom. An operator
regularly checks the light towers for faults. A small screen
used to upload the label design can also be used to check
error codes. The company identified a set of problems that
should be tackled by the proposed combination of SmartBox
and SmartObject:

Figure 4. Case Study Physical Architecture.

• P1: The power cabinet of the machines is cooled by a
fan. Due to mechanical wear, or due to the amount
of dust in the air, generated by the threads being
processed, the fan fails compromising the cooling. The
machine is not prepared to react to this problem and
sometimes happens that the power components heat
up too much leading to severe failure.

• P2: The loom has a cutting system based on electrical
resistance elements which can be positioned to cut the
fabric according with the required label dimensions.
These elements sometimes fail and the machine has
no sensing to detect the issue.

• P3: The part of the loom which controls the nee-
dles is a complex electric-mechanical system called
Jacquard. This part can sometimes overheat disrupting
the mechanical elements of the system and leading to
unexpected failures that the machine cannot predict or
warn due to the lack on sensing.

• P4: There are several issues related with the threads
and fabric processed as these break very often. The
warning is given by the light tower and there is no
automatic way to warn the loom is stopped. Also,
related to this, there is no way to know for how
long the machine has stopped and what is the rate
of production.

V. PROBLEM, REQUIREMENTS AND MOTIVATION

Table I shows the solution proposed for each problem of the
case study. A set of requirements result from these proposals.
All the hardware aspects are solved by the SmartBox modular
capacity. All the software aspects are dealt by the SO as
follows. The SO will act as a runtime environment and AS
for the assets outlined in the case study. People from the
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company in charge of the production line will configure the
SO through the composition tool discussed in Section III. The
tool will have a list off all assets in the shop floor, so that the
operator can drag and drop the assets in the canvas to create
the desired application. New associations can be made between
machines, components, sensors, actuators and software com-
ponents to create control or monitoring applications defined by
the composition workflow. Figure 7 illustrates the vision that
the control engineer will have of the monitoring application
for the described case study.

TABLE I. CASE STUDY PROPOSED SOLUTIONS.

Problem Solution

P1
Install a temperature sensor in the power cabinet.
Use a software component programmable alarm to alert for excessive
temperature.

P2
Install a temperature sensor in the cutting element.
Use a software component programmable alarm to alert for excessive
temperature.

P3
Install a temperature sensor in the Jacquard.
Use a software component programmable alarm to alert for excessive
temperature.

P4 Install an inductive/encoder sensor in the loom.
Use a software component to convert the sensor impulses into meters.

For all the functionalities discussed so far to be possible,
there was a necessity to use an information model that would
be capable of tackling the following requirements:

• The SO must abstract all machines and its components
(loom and respective power cabinet and Jacquard),
sensors and actuators.

• The SO must abstract all software components used
and the respective instances.

• The SO must allow for any external actor to subscribe
data produced by any device or software component
instance.

• The SO must allow to define hierarchy and subscrip-
tion relations among all devices, software component
instances and external actors.

Although the RAMI 4.0 defines ontologies and information
models to support communication and representation of several
industrial assets throughout its respective life cycles [14] [15],
it seems to lack in specification for the composition of logic
assets – such as software components [16] – in workflows.
A set of applications that are of great importance for a smart
factory, such as: condition monitoring, predictive maintenance,
self-reconfiguration, quality control and fault detection; de-
pends of software components. Therefore, there should be an
information model which could represent all software compo-
nent peculiarities and its relation with industrial assets to form
applications. In this paper, we propose such an information
model.

VI. SMART OBJECT SELF DESCRIPTION

The SOSD defines classes and properties for all assets
specified in the use case, taking in consideration the following
requirements:

• Physical Assets: The model is capable of repre-
senting: machines, machine components, sensors and
actuators. It also must be capable of representing
dependencies and connections between these. This

is of major importance if we want to contextualize
information of a given sensor, or if components need
to be represented as parts of some machine. As an
example, in Figure 7, it can be seen that there are:
1) relations between a machine and it’s constituent
parts, the hierarchical references between the Loom
and it’s Power Cabinet and Jacquard components;
2) relations of contextualization between machines
or machine parts and sensors, as between the Loom
and Inductive Sensor, or between the Jacquard/Power
Cabinet and the Temperature Sensors. For repre-
senting physical assets the class SOSD:DeviceType
(left in Figure 7) is used. This class has sub-types:
1) Device, to represent machines; 2) Component, to
represent machine components; 3) Sensor, to represent
sensors; 4) Actuator, to represent actuators.

• Services and Service Instances: A service, in the
SOSD context, represent some algorithm or computa-
tional process that is available in the CPPS network.
A SO or any other node in the CPPS can announce its
services and respective capabilities, e.g. data process-
ing services like a Fast Fourier Transform (FFT) or
a simple alarm. A service corresponds to a software
component that can be instantiated by including it in
the composition design. Each new instance created can
be interfaced with providers and subscribers, e.g. the
Alarm and Impulses to Meters instances in the view
of Figure 7 are fed by sensors and feed external nodes
in the CPPS. Class SOSD:ServiceDescriptionType,
represented in Figure 8 under the folder Ser-
viceDescriptionSet, is used to represent software
components maintained by the SO composition
tool. Class SOSD:ServiceInstanceType, represented
on the left side of Figure 7, is used to represent
instances of software components running in a SO.

• Points: A Point represent a node in the CPPS network,
e.g. an Human Machine Interface (HMI) device used
by the operators to check production variables or
an Industrial Internet of Thing’s (IIoT) Platform to
maintain production telemetry data. In the compo-
sition of Figure 7, the HMI and IIoT Platform are
notified each time the Alarm or Impulses to Meters
service instances produce a new output value. The
class SOSD:PointDescriptionType, on the left side
of Figure 7, is used to represent other nodes in the
CPPS with which the SO can communicate.

• Variables, Parameters and Methods: All static and
dynamic variables and parameters associated to as-
sets, services or endpoints must be represented. Static
variables represent information about some entity, e.g.
in case of machine, the manufacturer, model and se-
rial number. Dynamic variables represent information
generated during production, e.g. a sensor value or a
service output. Parameters represent values that can
be changed to modify or tune some process, e.g. a
welding machine laser power or an alarm minimum
and maximum thresholds. A Method represents an
simple routine that can be invoked, e.g. a calibration
method for a sensor or a stop routine for a machine.
For simplicity and compatibility reasons, each Vari-
able and Parameter defined under the classes proposed
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by SOSD, are represented using BaseDataTypes, Vari-
ableTypes and Method semantic from the OPC UA In-
formation Model (OPC UA Specification: Part 5) [17].
In Figure 8, under the main classes representation,
examples of properties and variables are illustrated.

Figure 5. OPC UA Server with SOSD (Adapted from [18]).

OPC UA is the de facto standard communication protocol
under the RAMI 4.0 proposal [19]. For that reason, the SO net-
work interface embeds an OPC UA Server. The SOSD model
was entirely mapped in the OPC-UA native and Data Access
types and information model. Once an asset is physically or
wireless connected to the SmartBox, its information will be
mapped in the SOSD model (Figure 5), and make available to
the CPPS by a local OPC-UA server instance.

Figure 6. SmartObject Component Developer View.

Figure 5 illustrates the functionality details of an OPC UA
server embedded in the SO. Each node represented by a SOSD
class will have a direct dependency to the SOSD model. Each

property, variable or method of an SOSD class will reference
the OPC UA Base Model.

Figure 7. SmartObject Control Engineer View.

The combination of the SOSD with the OPC UA views
allows to separate the visions of the software developer and the
industrial domain expert. Figure 6 relates to how the software
components developer sees the composition running in the
SO. In the bottom there are the components that implement
the drivers for the temperature and impulse sensors. In the
middle there are the components that implement the alarms and
impulse to meters algorithms. In the top there is a component
with an embedded OPC UA driver. The software architect can
grasp the SO composition and develop, modify and reuse com-
ponents as needed by the domain experts. Figure 7 relates to
how the industrial domain expert sees the composition running
in the SO. Each block in the figure corresponds either: 1) to a
physical asset as discussed in the case study (Section IV); 2)
to a software component as discussed previously. The figure
shows a monitoring application that the control engineer could
assemble by dragging and dropping the blocks using the SO
composition tool.

Another important concept provided by OPC UA is the
views. Figure 5 gives a general idea of views: Control View,
Business View and Development View. These views define
which nodes are presented to different users groups. A control
engineer, who has the expertise to build control and monitoring
applications, only cares about nodes relevant to build or
watch technical compositions, as in Figure 7. A software
component developer only cares about nodes relevant to the SO
architecture, as in Figure 6. The business view, although not
represented, can be used to specify users only interested in see
components related to production performance and other Key
Performance Indicators. By creating only the essential classes
and structures, and combining these with the OPC UA features,
the SOSD was demonstrated to tackle all requirements of
the Case Study, constituting a solid start point for software
component models assembled under the scope of AS and SO.
Figure 8 shows a tree view of the SOSD model embedded in
a working SO OPC UA server. Due to constraints in size and
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Figure 8. SmartObject OPC UA Server SOSD Model View.

simplification this representation cannot include all details, but
it gives a general idea of how the model works in practice.

VII. CONCLUSIONS AND FUTURE WORK

This work proposes the SOSD information model, whose
objective is to establish a standard for the representation of
software components, assets and compositions between them.
This model was successfully embedded in a OPC UA server
and used to model a real case study.

Future work will involve the modeling of more complex
scenarios and the extension to support real-time quality of
service requirements in the composition. The capability of
defining specific views for different components also needs
to be explored to support a business perspective.
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