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Abstract—In this paper, we introduce certain models which arise
in investigating some vibration problems of bio-inspired, vibrissa-
like sensor models. Some approaches to the modeling of the
biological paragon vibrissa use rigid body models in which a rod-
like vibrissa is supported by a combination of spring and damping
elements modeling the viscoelastic properties of the follicle-sinus
complex. However, all the rigid body models can only offer limited
information about the functionality of the biological sensory
system. Therefore, we deal with bending problems of continuous
beam systems. We present various beams with different supports
(clamped and pivoted with discrete viscoelastic couplings) which
are to model the biological tissues. This is new in and different
from literature. We focus on investigations of the natural fre-
quency spectra of various systems. The knowledge of dynamical
characteristics is important for the design of artificial sensors.
A close examination of vibrissa-like beam models with boundary
damping exhibits features which are unlike in comparison to
classical vibration systems.

Keywords–Bending beam vibration; Boundary damping; Natu-
ral frequency; Bio-inspired sensor; Vibrissa.

I. INTRODUCTION

The classical Euler-Bernoulli beam is often used to analyze
the vibration behavior of systems in technical disciplines like
mechanical engineering, automotive engineering (e.g., power
train vibration), microsystems technologies (e.g., cantilever
vibration). In recent years, this classical model is used to
model and to understand effects of vibrissa sensor systems
in biomechanics [14]. This is the background of the work
presented in the paper. Due to the biological paragon, we set up
various mechanical models and analyze them in an analytical
and numerical way. In contrast to works from literature [3]
[17] [29], we focus on vibrissa dynamics, precisely, we try
to get information about an obstacle contact in determining
the spectrum of natural frequencies and calculate its shift
according to an obstacle contact (sudden change of boundary
conditions) [30]. In contrast to literature, we incorporate spring
and damping elements, representing the biological tissue of
animal skin and support of the vibrissa. This is rarely done in
literature. Hence, we extend results in [21].
For this, we start an introduction to the biological paragon,
describing its functionality, presenting the state of art in mod-
eling animal vibrissae, and introduce the analytical treatment
of transverse vibrations of beams due to [32] in the following.

A. Biological paragon animal vibrissa

Mice and rats use their vibrissae (in the mystacial pad)
to acquire information about their surroundings. The vibrissa
itself (made of dead material) is mainly used as a lever for
the force transmission. But, in contrast to ordinary hairs,
vibrissae are stiffer and have a (assumed hollow) conical
shape [4]. The mystacial vibrissae are arranged in an array of
columns and rows around the snout, see Fig. 1 and [31]. Each
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Figure 1. Schematic drawing of the mystacial pad, [31], arranged by D.
Voges (TU Ilmenau).

vibrissa is embedded in and supported by its own follicle-sinus
complex (FSC). The FSC is characterized by its exceptional
arrangement of blood vessels, neural connections and muscles.
It is presumed that the rodents can control the viscoelastic
properties of the vibrissa’s support by regulating the blood
supply to the sinus (like a blood sac) [5]. The functionality
of these vibrissae vary from animal to animal and is best
developed in rodents, especially in mice and rats [16]. The
detection of contact forces is made possible by the pressure-
sensitive mechanoreceptors in the support of the vibrissa (i.e.,
FSC), see Fig. 2. These mechanoreceptors are stimulated
due to the vibrissa displacements in the FSC. The nerves
transmit the information through several processing units to
the Central Nervous System (CNS). The receptor cells offer
the fundamental principle ‘adaptation’. The muscle-system, see
Fig. 3 (adapted from [5] [6] [33] [12]) enables the rodents to
use their vibrissae in two different ways (modes of operation):
In the passive mode, the vibrissae are being deflected by
external forces (e.g., wind). They return to their rest position
passively — thus without any muscle activation, just via the
fibrous band. In the active mode, the vibrissae are swung
back- and forward by alternate contractions of the intrinsic and
extrinsic muscles (with different frequencies and amplitudes).
By adjusting the frequency and amplitude of the oscillations,
the rodents are able to investigate object surfaces and shapes
amazingly fast and with high precision [13]. But, how the
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Figure 2. FSC of a vibrissa with various types of receptors (blue) [2]. Adapted
from [7] [23], arranged by D. Voges (TU Ilmenau).
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Figure 3. Schematic drawing of neighboring mystacial follicles [2]. Arranged
by D. Voges (TU Ilmenau).

animals convert these multiple contacts with single objects into
coherent information about their surroundings is still unclear.
And it is not of main interest from our point of view: the
tenor of our investigations is from bionics. The main focus is
not on “copying” the solution from biology/animality, rather
on detecting the main features, functionality and algorithms of
the considered biological systems to implement them in (here:
mechanical) models and to develop ideas for prototypes.
Therefore, this biological sensor system is highly interesting
for applications in the field of autonomous robotics, since tac-
tile sensors can offer reliable information, where conventional
sensors fail (in dark, smoky or noisy environments).

B. State of art in modeling vibrissa-like sensors

Since the author in [24] tried to determine the position
of a robot arm with vibrissa-like sensors (made of guitar
strings), the demand for technical vibrissae grew steadily. In
the meantime, these tactile sensors often complement or even

replace optical sensors (as mentioned above) in their two main
fields of application: flow measurements in micro technol-
ogy and autonomous robotics. Especially in the latter field,
technical vibrissae are currently just used to avoid collisions
(merely used as contact sensors with a binary output [22]).
In the last decade, the number of scientific works in which
the capabilities of the tactile sensors were improved, grew
significantly. As in 1996 the development of robots equipped
with artificial vibrissae and driving along walls [15], was seen
as a considerable achievement, the recently developed robots
with a similar configuration managed to distinguish objects on
the basis of their surface texture [8] [27] [34] [9] [19], or to
determine form and position of nearby objects [26].
In the majority of papers found in literature, the develop-
ment of innovative technical whiskers was poorly based on
mechanical models of the vibrissa. In order to analyze the
mechanical and especially the dynamical behavior of the
vibrissa, the physical principles of the paradigm have to be
identified. Therefore, abstract technical models, which describe
the biological example in detail and are suitable to be analyzed
using engineering and scientific methods, are sought.
Usually two types of models are used to analyze the mechan-
ical behavior of the vibrissa:

• Rigid body models form the vibrissa as a stiff, inelastic
body. Such models have the advantage of a simple
mathematical description and solution. Furthermore,
these models can easily be used to analyze the influ-
ence of varying viscoelastic supports. However, ne-
glecting the inherent elasticity of the vibrissa implies
a questionable oversimplification of the biological
example.

• Continuum models are closer to the biological
paradigm, as the tactile hair is implemented as an
elastic beam. They are thus able to take the inherent
dynamical behavior and the bending stiffness of the
biological vibrissa into account.

An intensive literature overview of technical vibrissa mod-
els (rigid body and continuum) has been given in [2]. In the
following we summarize the relevant models thereof without
any valuation:

Birdwell et al. [3] - Model analyzing the bending behavior
of natural vibrissae

⊕ suitable to analyze the bending behavior
⊖ Linearized model: only valid for small deflections
⊕ Consideration of the conical shape of the vibrissa
⊖ Neglecting the support’s compliance
⊕ Finding: Shape of the beam influences the ben-

ding behavior
↪→ not negligible

⊕ Finding: Young’s modulus of natural vibrissae varies

Birdwell et al. [3] - Model to determine clamping torques
⊖ Linearized model only valid for small deflections
⊕ Consideration of the conical vibrissa shape
⊖ Neglecting the support’s compliance
⊕ Finding: influence of the natural pre-curvature of the

vibrissa is negligible

Scholz and Rahn [25] - Model for profile sensing with an
actuated vibrissa
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⊕ Implementation of the active mode
⊖ Neglecting the support’s compliance

Neimark et al. [18], Andermann et al. [1] - Model for
the determination of the support’s influence on the resonance
properties of natural vibrissae

⊕ Experimental measurements of vibrissae’s resonance
frequencies

⊖ dubious results during numerical evaluations
↪→ due to constant Young’s modulus taken for all

vibrissae
⊕ Finding: massive influence of the support on the

resonance frequencies
⊖ Determination only of the first frequencies of the

vibrissae
⊕ Finding: geometrically distributed sensitivity in the

vibrissa array
⊕ Finding: transduction and processing of the frequency

provoking stimuli to the CNS
↪→ Resonance frequencies contain relevant information

There are a lot of more works concerning bending problems
of vibrissa-like beams, but in context of quasi-statically object
scanning and not in context of dynamical treatment, e.g., in
[20].

C. Criticism and Goal of Investigations

Most of the models in literature, in particular the rigid body
models, are just results of anatomic investigations. They do not
directly aim at bionic applications. Further on, some models
are very exact, but too complex to gain deeper insight the
system to identify the essential mechanical elements.
On the other hand, in particular, concerning continuum beam
models, the level of mathematical investigations is rather low:

• linear bending theory with very simple (obvious)
conclusions,

• mixing of linear and nonlinear theories, and

• using boundary-value problems (BVP) which do not
match the real objects sufficiently.

Based on the mentioned criticisms the global goal is to
present models more transparent and to use more stringent
mechanics and mathematical analysis to exploit them. The goal
is not to recreate an exact copy of the biological system, but
to implement in a mechanical model the specific characteristics
of the vibrissa needed for the detection of useful information
in challenging surroundings (principle goal of theoretical
bionics).
A lot of works offer models consisting of beams or rigid rods
for the vibrissa and mapping the arrangement of the muscles
needed for the different modes of operation by viscoelastic
supports. Some of those models consider a complete row of
vibrissae. These models are too complex to handle and are
not investigated further in those papers. Our aim is to set up
simple models for the investigations first, and then to increase
the complexity by adding more viscoelastic supports and to
increase the degree of freedom. The viscoelastic support is
very important since we have to model the compliance of the
FSC and the skin, which was omitted in [18]. The boundary
conditions there did not match reality, and the authors con-
sidered only the first natural frequency. We will focus on the

determination of a part of the natural frequency spectrum of the
vibrissa models to obtain a characteristic change depending on
the change of the viscoelastic support. For these investigations
we derive the equations of motion analytically to treat them
with numerical tools: we try to detect useful information from
the surroundings, where we focus on changes of environmental
signals. This is quite easier to organize since the animals, more
precisely, the CNS has problems in determination absolute
values [3].
We point out, that we focus on a single vibrissa and not on a
tuft of various vibrissae.

II. CONTINUUM BEAM MODELS

We will present various approaches to implement and to
determine the basic features of animal vibrissae as mentioned
in Subsection I-A.
Here, we will focus on the mechanical properties and the
dynamic behavior of the vibrissa beam models. The processing
of the stimulus and the corresponding analysis of different
control strategies are not discussed here. Furthermore,
the investigations are addressed to a single vibrissa – the
interaction between the different vibrissae in the mystacial
pad is not taken into account.

The classical differential equation for small bending
vibrations of beams (linear Euler-Bernoulli theory) is the
basis of the investigations. We will set up and analyze various
vibrissa beam models with different supports using discrete
and continuously distributed spring and damping elements
to mimic tissues of FSC and skin. Following [18], we focus
on the determination of the natural frequency spectrum of
such beams analytically and numerically, while varying the
viscoelastic properties of the support. We will not focus on
static bending problems in the following.

Starting point and motivation of the following investiga-
tions are multiple hypotheses concerning the functionality of
the vibrissa:

• The elasticity and the conical shape of the hair are
relevant for the functionality of the vibrissa [3].

• The viscoelastic properties of the support (see the
FSC) are controlled by the blood pressure in the blood
sinus [5] [4].

• The vibrissae are excited with or close to their reso-
nance frequencies during the active mode [18] [1].

Following these hypotheses, the primary tasks now are:

• to investigate the influence of elasticity and conical
shape on the vibration characteristics of the vibrissa
by analyzing its natural frequency spectrum;

• to analytically examine innovative models of a flexible
vibrissa with a viscoelastic support which fit the real
object and its support better than models in literature.

A. Introduction to Transversal Bending Beam Vibrations

Let us start with the following example: a one-sided
clamped beam with elastic support (spring stiffness c) at the
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Figure 4. One-sided clamped beam with elastic end support.

end, see Fig. 4. The beam has length L, Young’s modulus E,
density ϱ, constant cross section area A and second moment
of area Iz . We are seeking for the first five natural frequencies.

Remark II.1. We focus on the first five natural frequencies of
the spectrum because of

1. mathematical reasons: the first five natural frequencies
will form a good approximation basis of the Fourier
series of the solution made by the method of separa-
tion of variables; and

2. physical meanings – higher natural frequencies are
too large, whereas only lower ones are perceptible by
means of tactile sense.

The well-known equation of motion for free vibrations of
a beam with small deformations, as in Fig. 4, is:

v̈(x, t) + k4 v
′′′′
(x, t) = 0 , with k4 :=

E Iz
ϱA

, (1)

where the function v(x, t) describes the vertical displacement
at point x and at time t.
The partial differential equation (PDE) (1) and the following
boundary conditionsj1 : v(0, t) = 0 ∀ t ≥ 0j2 : v′(0, t) = 0 ∀ t ≥ 0j3 : v′′(L, t) = 0 ∀ t ≥ 0j4 : v′′′(L, t)E Iz − c v(L, t) = 0 ∀ t ≥ 0
form a BVP.

Now, we apply the method of separation of variables, i.e.,
we are seeking for special solutions of structure

v(x, t) = X(x) · T (t) ∀ (x, t) . (2)

Substitution into (1) yields two ordinary differential equations
(ODEs)

T̈ (t)

T (t)
= −µ2 , (3)

−k4
X ′′′′(x)

X(x)
= −µ2 . (4)

The general solution of 3 is

T (t) = B1 e
i µ t +B2 e

−i µ t , B1, B2 ∈ C . (5)

The solution of 4 is:

X(x) = C1 cos (λx) + C2 sin (λx)

+ C3 cosh (λx) + C4 sinh (λx) . (6)

with C1, C2, C3, C4 ∈ C and

λ4 := µ2

k4 , k4 := E Iz
ϱA . (7)

This shape solution (6) together with the formulated four
boundary conditions form an eigenvalue problem (EVP) in
the following. We get ∀ t ≥ 0

j1 T (t) (C1 + C3) = 0j2 T (t)λ (C2 + C4) = 0j3 T (t)λ2
(
− C1 cos(λL)− C2 sin(λL)

+C3 cosh(λL) + C4 sinh(λL)
)
= 0j4 E Iz T (t)λ

3
(
C1 sin(λL)− C2 cos(λL)

+C3 sinh(λL) + C4 cosh(λL)
)

−c T (t)
(
C1 cos(λL) + C2 sin(λL)

+C3 cosh(λL) + C4 sinh(λL)
)
= 0

T (t) drops, and a system of homogenous linear equations
results with a coefficient matrix (8).

Since we are seeking for non-trivial solutions, we claim the
singularity of the coefficient matrix: det(M) = 0. Introducing
a ratio of elasticity

γc :=
c

cS
=

c
E Iz
L3

=
cL3

E Iz

we obtain the characteristic eigenvalue equation

λ3 L3 (1 + cosh(λL) cos(λL))

+ γc (cosh(λL) sin(λL)− cos(λL) sinh(λL)) = 0 (9)

Remark II.2. Before solving (9) we check it in setting

• c = 0: we get 1 + cosh(λL) cos(λL) = 0,
which forms the eigenvalue equation of an one-sided
clamped / free end beam;

• c → +∞: we get cosh(λL) sin(λL) −
cos(λL) sinh(λL) = 0, which arises for a clamped
beam with bearing.

Now, we present some numerical calculations. We are
varying γc = 0, 0.1, 1, +∞ and derive the natural frequencies
of a steel beam and of a B2 vibrissa, see Fig. 1, using the
following parameters:

• steel beam: E = 210GPa, ϱ = 7850 kg
m3 ;

• B2 vibrissa: E = 2.3GPa, ϱ = 238.732 kg
m3 ;

• geometric parameters: d = 0.2mm, Iz = π
64 d

4, A =
π
4 d2, L = 40mm.

The following tables present the first five eigenvalues λj ,
natural frequencies ωj in rad/s and frequencies fj in Hz for a
steel beam and a B2 vibrissa.
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M(λ) :=



1
... 0

... 1
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... λ

... 0
... λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cos(λL)λ2
... sin(λL)λ2

... cosh(λL)λ2
... sinh(λL)λ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E Iz sin(λL)λ3
... −E Iz cos(λL)λ3

... E Iz sinh(λL)λ3
... E Iz cosh(λL)λ3

−c cos(λL)
... −c sin(λL)

... −c cosh(λL)
... −c sinh(λL)


(8)

TABLE I. CALCULATION FOR γc = 0.

steel beam B2 vibrissa
j λj ωj fj ωj fj
1 1.875 1

L 568.297 90.447 733.807 54.279
2 4.694 1

L 3561.458 566.824 4598.693 340.159
3 7.855 1

L 9972.187 1587.123 12876.473 952.454
4 10.996 1

L 19541.506 3110.127 25232.748 1866.429
5 14.137 1

L 32303.509 5141.263 41711.541 3085.341

TABLE II. CALCULATION FOR γc = 1.

steel beam B2 vibrissa
j λj ωj fj ωj fj
1 2.010 1

L 653.008 103.929 843.189 62.369
2 4.704 1

L 3576.197 569.169 4617.724 341.566
3 7.857 1

L 9977.433 1587.958 12883.248 952.955
4 10.996 1

L 19544.181 3110.553 25236.203 1866.685
5 14.138 1

L 32305.127 5141.521 41713.630 3085.496

TABLE III. CALCULATION FOR γc = +∞.

steel beam B2 vibrissa
j λj ωj fj ωj fj
1 3.927 1

L 2492.061 396.624 3217.846 238.019
2 7.069 1

L 8075.874 1285.315 10427.881 771.335
3 10.210 1

L 16849.666 2681.708 21756.941 1609.329
4 13.352 1

L 28813.927 4585.879 37205.657 2752.048
5 16.493 1

L 43968.656 6997.829 56774.030 4199.492

Increasing γc leads to increasing ωj , see Table I to III.
Let us further point out, that these first investigations of a
simple beam model are rather obvious. In the following we
will increase the level of complexity.

B. Bending Beam Vibrations with vibrissa-like Support

Here, we focus on various supports (no clamps) of the vib-
rissa beam model. In order to do the following investigations
analytically, we neglect the conical shape of the vibrissa with
respect to the complex structure of the arising PDE. We focus
on cylindrical beams.
First vibrissa beam models are presented in Figs. 5 and 6.
These models present a cylindrical pivoted beam with various
elastic couplings. The analytical investigations are carried out
in formulating the boundary value problems (BVPs) for each
section of the beam. The arising eigenvalue problems could be
treated analytically in parts.
But, all models offer the same drawback: the ‘pivot’ is the
base of the vibrissa, this does not match the reality. Therefore,
we modify these models: first we shifted the pivot, and second
we added some viscous properties to the support. This results
in the following models, shown in Figs. 7 and 8 The BVPs
of the oscillating problems are formulated in the following:

Figure 5. Pivoted vibrissa beam model with modeled skin support (one level
of elasticity), [2].

Figure 6. Pivoted vibrissa beam model with two levels of elasticity (FSC
and skin), [2].

Figure 7. Undamped vibrissa beam model with modeled skin and FSC
support, [2].

• undamped model in Fig. 7:
PDEs: v̈i(x, t) + k4 v

′′′′

i (x, t) = 0, with
k4 := E Iz

ϱA , i = 1, 2, 3,
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Figure 8. Damped vibrissa beam model with modeled skin and FSC support,
[2].

boundary conditions:

v′′1 (0, t) = 0 ,
−E Iz v

′′′
1 (0, t)− c1 v1(0, t) = 0 ,

v1(a1, t) = v2(a1, t) ,
v1(a1, t) = 0 ,
v′1(a1, t) = v′2(a1, t) ,
v′′1 (a1, t) = v′′2 (a1, t) ,
v2(a2, t) = v3(a2, t) ,
v′2(a2, t) = v′3(a2, t) ,
v′′2 (a2, t) = v′′3 (a2, t) ,
E Iz

(
v′′′2 (a2, t)− v′′′3 (a2, t)

)
− c2 v2(a2, t) = 0 ,

v′′3 (L, t) = 0 ,
v′′′3 (L, t) = 0

• damped model in Fig. 8:
PDEs: v̈i(x, t) + k4 v

′′′′

i (x, t) = 0, with
k4 := E Iz

ϱA , i = 1, 2, 3,
boundary conditions:

v′′1 (0, t) = 0 ,
−E Iz v

′′′
1 (0, t)− c1 v1(0, t)− k1 v̇1(0, t) = 0 ,

v1(a1, t) = v2(a1, t) ,
v1(a1, t) = 0 ,
v′1(a1, t) = v′2(a1, t) ,
v′′1 (a1, t) = v′′2 (a1, t) ,
v2(a2, t) = v3(a2, t) ,
v′2(a2, t) = v′3(a2, t) ,
v′′2 (a2, t) = v′′3 (a2, t) ,
E Iz

(
v′′′2 (a2, t)− v′′′3 (a2, t)

)
− c2 v2(a2, t)
−k2 v̇2(a2, t) = 0 ,

v′′3 (L, t) = 0 ,
v′′′3 (L, t) = 0 ,

To investigate the dependence of the natural frequencies on
the system parameters, the eigenvalue problems (EVPs) are
derived analytically (linear equations with zero determinant)
and solved numerically for various cases. The following two
examples illustrate some results.

Example II.3. Let us remind the comparison of a steel beam
and a B2 vibrissa. Due to some techniques we are able to
handle discrete damping terms to analytically derive the EVP,
which then can be solved numerically. There are no problems
in case of small damping coefficients, due to the biological

paradigm.
We set

• the geometric parameters a1 = 3mm, a2 = 4mm,
r = 0.1mm, and L = 40mm;

• the support parameters for the FSC c1 = cFSC = 80 N
m

and k1 = dFSC = 0.5 Ns
m ;

• and for the skin c2 = cskin = 5.7 N
m and k2 = dskin =

0.2 Ns
m .

We get the results in Tables IV and V, where we present the
first five eigenvalues λj , the first five natural frequencies ωj

in rad/s, and the decay rate δj in 1/s for both undamped and
damped

• steel beam: parameters E = 210GPa and ϱ =
7850 kg

m3 , and

• B2 vibrissa: parameters: E = 2.3GPa and ϱ =
238.732 kg

m3 .

TABLE IV. CALCULATION FOR THE STEEL BEAM.

undamped damped
j λj ωj λj ωj δj
1 3.946 2517.314 2.017 − 0.271 I 645.851 176.755
2 7.448 8965.159 4.941 − 0.085 I 3944.771 135.721
3 10.800 18852.940 8.297 − 0.005 I 11126.480 129.665
4 14.004 31698.644 11.650 + 0.068 I 21936.355 257.106
5 16.934 46348.499 15.023 + 0.150 I 36477.396 727.763

TABLE V. CALCULATION FOR THE B2 VIBRISSA.

undamped damped
j λj ωj λj ωj δj
1 1.990 384.836 1.993 + 0.033 I 385.694 12.594
2 4.988 2416.865 5.151 + 0.067 I 2577.281 66.675
3 8.354 6779.153 8.651 + 0.047 I 7270.715 78.835
4 11.703 13306.010 12.119 + 0.037 I 14267.203 87.093
5 15.058 22027.360 15.586 + 0.031 I 23599.899 95.129

Considering the steel beam, the (natural) frequencies
shrink if we focus on a damped system, as expected. But, we
observe (see Table V) an unlike behavior simulating the B2
vibrissa as the (natural) frequencies increase in the damped
system. This contradicts the classical assertions. The reason
for this is a little bit unclear, we shall have a closer look to
the modes of the beams.
Further, we hint to some problems in using discrete damping
elements in the next Subsection II-C.

Short summary:
⊖ Neglecting the conical shape of the vibrissa
⊕ Consideration of the support’s compliance

· at skin level
· at the level of the FSC

⊕ Finding: massive influence of the support on the
natural frequencies

⊕ Finding: influence of damping elements in the support
↪→ massive for the 1st natural frequency
↪→ but: unlike behavior of the natural frequencies

C. Beam with discrete damping elements

To clarify the unlike effects of the foregoing subsection,
we deal with a ‘simple’ problem to investigate the influence
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of discrete damping elements. We consider a cylindrical, one-
sided clamped beam which is viscoelastically supported at
the end, see Fig. 9. The well-known PDE from the linear

x
y

z
E, I , , A, LZ r d c

Figure 9. Clamped beam with viscoelastic end support.

Euler-Bernoulli theory is (1), which forms with the boundary
conditions

v(0, t) ≡ 0

v′(0, t) ≡ 0

v′′(L, t) ≡ 0

E Iz v
′′′(L, t)− d v̇(L, t)− c v(L, t) ≡ 0 ,

a BVP.
The handling of the last boundary condition results in

E Iz X
′′′(L)− cX(L) = ± i d λ2 k2 X(L) .

All conditions lead to the coefficient matrix (10) of the
homogenous systems whose singularity yields the eigenvalue
equation:

det (A(λ)) = −E Iz λ
3

− E Iz cos (λL) cosh (λL) λ3

± i d k2 sin (λL) cosh (λL) λ2

− c sin (λL) cosh (λL)

∓ i d k2 cos (λL) sinh (λL) λ2

+ c cos (λL) sinh (λL) = 0 . (11)

Remark II.4. At this stage, we could check this equation
in concluding well-known eigenvalue equations: setting {d =
0, c = 0}, or {d = 0, c > 0}, or {d = 0, c → +∞} results in
the equations presented in [10] or [32].

Introducing the dimensionless parameters

αc :=
c

EIz
L3

αd :=
Ld√

ϱAE Iz
,

we determine the first three natural frequencies in varying αc

and αd. We get the following Figs. 10 to 12.

For fixed αc and varying αd, there are parameter ranges of
αc where we get an expected and unexpected behavior of the
first natural frequency, see Fig. 10:

• αc ∈ [0, 17]: the natural frequency breaks down to
zero for increasing αd;

• αc ∈ [18, 23]: first, the natural frequency increases and
then breaks down to zero;

• αc > 23: the natural frequency just increases.

ad

15.418

3.516

4

aC=0

aC

0

0

8

w
1

w1

aC=23

aC=+

aC=24

w1,d

Figure 10. First natural frequency of the beam model ω1,d in
√

E Iz
ϱAL4 in

dependence on αc and αd.

On the other hand, for fixed αd and varying αc, we observe
the following:

• αd ∈ [0, 3.5]: increasing αc leads to an increase of the
natural frequency;

• αd > 3.5: an increase of αc results first in a decrease
and then in an increase of the natural frequency.

This may explain the behaviors of the natural frequencies in
Example II.3.
Similar effects can be observed in Figs. 11 and 12.

0

15.418

49.988

4 8

w1

w2

ad

aC=+

aC=153

aC=154

aC=23

aC=24

aC

w2

w2,d

Figure 11. Second natural frequency of the beam model ω2,d in
√

E Iz
ϱAL4

in dependence on αc and αd.

It seems that some bifurcation is happening there. This has
to be checked in future.
Former investigations on similar beam models are done in
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A(λ) :=



1
... 0

... 1
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... λ

... 0
... λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EIz sin (λL)λ
2

... −EIz cos (λL)λ
2

... EIz sinh (λL)λ
2

... EIz cosh (λL)λ
2

±i dλ2k2 cos (λL)
... ±i dλ2k2 sin (λL)

... ±i dλ2k2 cosh (λL)
... ±i dλ2k2 sinh (λL)

−c cos (λL)
... −c sin (λL)

... −c cosh (λL)
... −c sinh (λL)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− cos (λL)λ2
... − sin (λL)λ2

... cosh (λL)λ2
... sinh (λL)λ2



(10)

0

130.222

49.988

6 12ad

w3,d

aC=+

aC

w2

w2

w3

aC=153

aC=154

aC=473

aC=474

Figure 12. Third natural frequency of the beam model ω3,d in
√

E Iz
ϱAL4 in

dependence on αc and αd.

[11], with focus on eigenvalues, and with focus on vibration
amplitudes. But, no one derived the above curves of the
behavior of natural frequencies.

III. CONCLUSION

The goal of this contribution was to present the theoretical
context needed to examine the mechanical and in particular
the dynamical characteristics of the biological vibrissa.
Moreover, these theoretical aspects were to be interpreted
with respect to the biological vibrissa, as well as for a
technical implementation of it. Inspired by this biological
sensory system, several types of mechanical models were
developed based on findings in the literature.

The second focus was on the modeling of the vibrissa
as a continuous system: bending vibrations of beams. There,
the main focus of the studies lay on the examination of the
influence of the tactile hair compliance and the viscoelastic
support on the oscillation characteristics of the vibrissa. The
conical form was neglected until now.
The influence of the viscoelastic support of the vibrissa has
been examined using various abstract models in which the
vibrissa was modeled as a thin, cylindrical, flexible beam.
The viscoelastic properties of the FSC and the skin were
implemented by using spring and damping elements.

The damping element significantly increased the complexity of
the differential equations and led to a surprising phenomenon:
there exist some natural frequencies which break down to zero
for a certain range of parameters. This fact is well-known in
1-DoF systems (i.e., strong damping, creeping behavior). The
study demonstrated that the oscillation behavior of an elastic
beam differs remarkably from the behavior of such a classical
system:

• The natural frequencies may increase with growing
boundary damping.

• For specific damping parameter values, the natural
frequencies grow for decreasing boundary stiffness.

Some similar effects on and the behavior of the natural
frequencies can be observed in analyzing the model presented
in Fig. 13. For a fixed parameter set of the system, except the

dc

L
a

E,A,I ,z r

x

y

Figure 13. One-sided clamped beam with viscoelastic support.

distance a of the viscoelastic support to the clamping, we get
the following results of the first three natural frequency of the
beam, see Fig. 14 to 16, which offer already the same unlike
behavior as the example above.

But, theories gained from the simplified linear Euler-
Bernoulli theory are only valid for small deflections and de-
formations. If one considers a vibrissa beam in passive mode,
then it may be questionable if this theory is really qualified for
the investigations, see large bending deformations. Inspecting
these vibrissa configurations, one could clearly observe that the
vibrissa in passive mode suffers large deformations. Hence, the
linear Euler-Bernoulli theory is not qualified to determine the
natural frequencies since it describes the bending behavior for
small deformations. We have to turn to a nonlinear theory:
Timoshenko theory or nonlinear Euler-Bernoulli theory. We
will arrive at more realistic models and description of these
models, which then are closer to the biological paradigm. An
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Figure 14. The first natural frequency vs. damping rate for fixed spring rate.
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Figure 15. The second natural frequency vs. damping rate for fixed spring
rate.
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Figure 16. The third natural frequency vs. damping rate for fixed spring rate.

approach is done in [28].
However, we are focussing on long, slender beams, whereby
shear forces may have less influence. So, we shall focus on the
nonlinear Euler-Bernoulli theory in future work. Additionally,
we shall include the conical shape and a precurvature of the
beam, neglected until now.
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