
The Concept of Attack Surface Reasoning

Michael Atighetchi, Nathaniel Soule, Ron Watro, Joseph Loyall

Raytheon BBN Technologies

Cambridge, MA

{matighet, nsoule, rwatro, jloyall}@bbn.com

Abstract—Today’s cyber defenses and cyber defenders face de-

termined and diverse adversaries, who can study all aspects of

deployed systems including networks, hosts, and the applications

running on them, in order to find exploitable vulnerabilities and

to devise attack vectors that exploit the detected vulnerabilities.

The conflict between cyber attackers and cyber defenders is

stacked against the defender. The defender must protect against

all the ways that an adversary can cause potential loss of security,

collectively called the attack surface, while the attacker needs to

find only a single vulnerability and attack vector to be successful.

This work-in-progress paper describes an AI-inspired approach

for modeling and analyzing the attack surface of a distributed

system. Once modeled, an attack surface can be quantified in

terms of size and level of dynamism through four types of algo-

rithms: path analysis, metric computation, path comparison, and

path enumeration. Our approach supports relative comparison

across multiple attack models for each combination of a system

and a set of defenses, in order to select an appropriate set of de-

fenses given a certain cost/benefit tradeoff.

Keywords: security, semantic web, analytical models

I. INTRODUCTION

Today’s cyber defenders face determined, diverse, and
well-resourced adversaries who have a significant advantage
over the defense. The adversaries need find only a single vul-
nerability and attack vector to be successful, while the defender
must protect all vulnerabilities and defend against all attack
vectors. Among the various choices of available defenses, a
powerful class is the set of Moving Target Defenses (MTDs)
that attempt to even the playing field for defenders by shifting
the attack surface, i.e., the set of potential attack vectors an
adversary can use to compromise security of a target system.
MTDs attempt to change access paths before they can be ex-
ploited, thereby (1) making them more difficult to detect, (2)
rendering attacks that are based on stale information ineffec-
tive, and (3) increasing detection by monitoring for the use of
stale information.

However, as the number and complexity of defenses (in-
cluding MTDs), system configurations, and potential attacks
continually increase, cyber defenders face the problem of man-
ually selecting and configuring defenses for a distributed mis-
sion-critical system without a clear understanding of the
seams/integration points, residual risks, and costs (in terms of
impact on performance and functionality). Integration of de-
fenses performed in a non-structured way bears the risks of
adding defenses with no value, inadvertently increasing the
attack surface, or overly impacting critical functionality.

This paper describes work in progress for constructing a
model-based environment for Attack Surface Reasoning (ASR),

i.e., integrating and evaluating systems and defenses and ana-
lyzing compositions of systems and dynamic defenses.

The models, metrics, and algorithms used in measuring at-
tack surfaces need to support the following key requirements:

The attack surface model needs to represent concepts and
defenses situated at multiple layers. Attacks may target re-
sources at the network layer (both network traffic observed on
intermediary network components between the client and the
server as well as the Transmission Control Protocol
(TCP)/Internet Protocol (IP) stacks of servers and clients), the
operating system and host layers (e.g., by running attacks
against a Java Virtual Machine (JVM) compute platform), and
the application layer (e.g., by corrupting Structured Query
Language (SQL) tables). We refer to this requirement as verti-
cal layering, as visualized by the attack vector in Fig. 1 as it
moves from Vulnerability 2 to Vulnerability 3.

The attack surface model needs to capture ordering de-
pendencies between control and data flows and defenses to be
employed against attack vectors. Attacks consist of an orches-
trated execution of individual attack steps, where the effective-
ness of each attack step is contingent on the starting point (and
level of privilege) in relation to the specific target. For instance,
network attacks launched from a legitimate client have a signif-
icantly different starting point compared to the same attacks
launched from an adversary-controlled device attached to the
network. This knowledge should be part of the attack surface
model. An example of ordering at a given vertical layer in-
cludes a firewall placed in front of a protected host, requiring
all traffic to pass through the firewall first before reaching the
host’s TCP/IP stack. We refer to this requirement as horizontal
layering, as visualized by moving from Vulnerability 1 to Vul-
nerability 2 in Fig. 1.

Fig. 1. Attack surface models include the starting points and the targets of

attacks, which can exist at multiple horizontal and vertical layers, respectively.

Vulnerability1

Attack Vector

Adversary

Entry Point
Attack

Step

Vulnerability2

Entry Point

Attack

Step

Target

Entry Point

Vulnerability3

Attack

Step

Changes in Attack Starting Point

A
tt

a
c
k
 T

a
rg

e
t
(N

e
tw

o
rk

,
H

o
s
t/

O
S

,
A

p
p
lic

a
ti
o
n
)

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

The attack surface models need to capture complexities as-
sociated with dynamic defenses. Many of the attack effects
described so far are difficult to detect automatically and cause
observable events only when critical mission functionality
starts failing, leaving little time for recovery and increasing the
impact of the attack. While proactive shaping strategies, such
as IP Hopping, Operating System (OS) masquerading, unpre-
dictable replication, and Address Space Layout Randomization
(ASLR) are clearly beneficial, the existence of multiple dynam-
ic adaptations at different system layers makes management of
the overall policy and configuration sets deployed on the target
devices challenging.

Fig. 2 shows an example attack surface, consisting of a sin-
gle Server composed with three MTDs: (1) IP Hopping that
randomizes IP addresses between the client and server at the
network layer, (2) OS masquerading that changes parameters in
the OS stack to make one OS look like another, and (3) Process
variants that generate different functionally equivalent versions
of binaries and replicas. The overall goal of ASR is to quantify
the attack surface along two main attributes – minimization and
randomization – with the objective of minimizing access where
possible and randomizing information about remaining access
where affordable.

The algorithms to compute minimization rely on the system
and mission models and metrics to determine how much of the
attack surface really needs to be exposed to effectively function
or, conversely, the parts of the attack surface that can be re-
duced or removed without adversely affecting critical function-
ality. For example, some applications with external facing in-
terfaces (thereby providing entry into the system if penetrated)
might not be needed during some phases of operation – or
might not be as critical – and can be shut down, removing those
entry points into the system and their associated vulnerabilities
and attack vectors.

The algorithms to compute randomization execute over the
models and metrics for a system deployment and a set of de-
fenses, including MTDs, and compute how the defenses or
combination of defenses change the attack surface.

The paper is structured as follows. Section 2 describes re-
lated work. Section 3 describes a high-level view of attack sur-
face models. Section 4 describes algorithms for quantifying
attack surface models. Section 5 concludes the paper.

II. RELATED WORK

Our work relates to several efforts in the areas of cyber vul-
nerability modeling, light-weight formal methods, and mathe-
matical attack surface definitions.

The Mitre Common Vulnerabilities and Exposures (CVE)
[1] database maintains a comprehensive list of specific vulner-
abilities that can be used to establish the attack model. Our
definition of an attack surface extends the mathematical models
presented in [2] by including vertical and horizontal layering as
a central property of an attack surface. Decision support analy-
sis systems for cyber defense such as [3] employ probabilistic
techniques by annotating attack trees with defense information.
This work focuses less on determining attack success probabil-
ity over a given system, instead focusing on supporting com-
parative and recommendation based analytics. Performing
quantitative reachability analysis has been studied extensively
in the academic literature, using domain-specific languages
such as Alloy [4], Lobster [5], or Cross Domain Entitlement
Language (CDEL) [6]. The algorithms described in this paper
operate on standards-based semantic web models rather than
models described in proprietary languages. Our semantic web
approach, using Web Ontology Language (OWL) [7], allows
disparate sources of information to be automatically integrated
[8] into a graph of interconnected information that is easy to
understand and extend because it is based on real world con-
cepts.

III. ATTACK SURFACE MODEL

Modeling an attack surface involves linking several differ-
ent models, each representing aspects of the defended system.
An attack model, describing goals of an attack, together with
starting points, can be used to evaluate the attack surface for
randomization attributes. The mission model, describing the set
of required interactions in support of mission critical function-
ality, can be used to minimize access by pruning unnecessary
access paths and highlighting those elements most important to
mission success. Fig. 3 shows how a defense model and system
model (shown in the top) together build the main ingredients of
an attack surface model.

Fig. 4 displays a high-level ontological view of the defense
model. It shows how a defense is described by a setup over a
set of resources. For IP hopping, the setup contains the set of
machines that have access to the hopping scheme’s secret key
and can therefore compute what the next IP address is going to

Fig. 2. Multi-layered attack surface randomization and minimization

Fig. 3. Construction of the Attack Surface Model

OS Masquerading:

M4=OS TTL

M5=# of OS variants

Network

A1

Randomize

Host

App

Client Server

Minimize Access
Attack

Surface

IP Hopping:

M1=Endpoint time to live (TTL)

M2=Size of randomization space

Ordering:

TCP Stack->App

Process Variants:

M6=Process TTL

M7=# of binaries

M8=# of replicas

Policy:

M9=Rule granularity

Ordering:

Authn->Authz->Svc

Policy:

M3=# Listening

Ports

A3

A4

A2

Attack

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

be. Attacks that start from the hosts that are part of the setup
are not impeded in any way by the defense, since they all have
access to the secret key of the hopping scheme and therefore
perceive no randomization. Fig. 4 also shows that a defense
provides protection for a set of resources, as expressed by the
Defense → provides → Protection link. We model the type of
protection provided in terms of overall security benefit, includ-
ing confidentiality, integrity, availability, and discoverability.
Furthermore, we express the mechanism of protection that the
defense imposes. The Protection → through → Filtering link
captures any security check that explicitly drops data, e.g., as it
is being flagged by anomaly detection at various layers. The
Protection → through → Randomization link captures aspects
of dynamism associated with proactive shaping strategies. As
shown in Fig. 4, the protections directly link to the scope of the
defense, in terms of entry points, exit points, and data, which
are key aspects of our definition of the attack surface. Finally,
each defense has a cost associated with it (as shown to the right
of Fig. 4). We include the fact that defenses can increase the
attack surface via Defense → adds → Data and Defense →
adds → Point links.

IV. QUANTIFICATION OF ATTACK SURFACES

The randomization, minimization, and other characteriza-
tion metrics and analyses provided by ASR share an underlying
common base of feasible-path analysis, but can be classified
into distinct groups based on the operations that occur post-
path-determination.

Metric Computation allows for calculation of metrics de-
scribing the randomization, minimization, or other characteris-
tics of a point, path, or system, including the metrics in Tab. 1.

Path Comparison calculations execute path differencing
and comparison algorithms to determine the set of elements in
a system that are not required to support a given mission, and
the disabling of which will help reduce the attack surface with-
out degrading operation.

Path Enumeration analyses are undertaken to discover
points, paths, and system configurations that exhibit certain
properties, such as all paths that contain defenses with dynamic
frequencies less than 5 minutes.

Fig. 5 depicts an example system model and defense model
which, when integrated, form an attack surface model, along
with an accompanying simplified attack model. The system
model, shown in blue in the center, describes a single host with
two network interface cards (NICs), through which a single
service may be accessed. The service is also exposed internally
on the host via an Application Programming Interface (API). A
single defense has been modeled in the purple nodes at the top,
in this case an IP hopping MTD named DYNAT [9]. The MTD
has been configured to protect the IP address of NIC 1 on Host
1. An attack class, shown in red at the bottom, has been mod-
eled (in an abbreviated form) describing an attack category that
is relevant to network endpoints. Given a model such as this,
ASR’s processing engine allows for the performance of many
interesting analyses and metric computations. For example, in
order to determine how many paths are protected by defenses
that change more slowly than some known attack class’s ex-
pected duration (and are thus not dynamic enough to provide
robust protection), one may compute the metric number of de-
fenses with dynamic modulation frequencies greater than any

applicable attack phase duration. Calculation of this metric is
accomplished by first performing a path analysis identifying all
possible paths through the system – for this example binding
the starting points to network entry points (thus ignoring insid-
er threats) based on the given attack model domain, and bind-
ing the goal states to all “services.” Given these starting points
and goals, six possible attack paths exist. Fig. 5 shows three of
these paths (paths 1, 2, 3), with the other three being symmetric
mirrors, starting from Network EP 2. The ASR path analysis
engine will identify the paths starting from the two network
entry points (Network EP 1, and Network EP 2) and branching
from there to go directly to Service 1 (via path 1 and its sym-
metric equivalent), indirectly to Service 1 through the API(via
path 2 and its symmetric equivalent), or indirectly through the
opposing NIC (via path 3 and its symmetric equivalent). At this
point the identified paths are stored such that they may be re-
used for multiple queries in the second phase of analysis.

The second and third phases for the metric in question in-

TABLE I. HIGH-LEVEL METRICS

Randomization

Number of defenses with dynamic modulation frequencies greater than any applicable
attack phase duration

Defense modulation frequency

Number of dynamic surfaces

Number of dynamic surfaces per protection type (confidentiality, integrity, availability,
discoverability)

Minimization

Number of deployed defenses

Attack surface area change due to defenses

Number of defense boundaries crossed per path

Number of paths with less than N defenses

Rule granularity of defenses

Number of processes

Number of open ports

Number of users

Other Characterizations

Sum of path lengths from entry point to each defense

Is there at least 1 defense per known attack class

Number of paths with conflicting defense types

Number of entry points without a defense within 1 hop

Fig. 4. Ontology representation of a generic dynamic defense

DefenseSetup
requires

Protection

provides

Resource

for

inSupportOf

Security
Property

atCost
Cost

LatencyimpactOn

Throughput

Load

Filtering

through

Randomization

through

Confidentiality

Availability

Integrity

Discoverability

Resource

include

Point

at
Data

of

isA

isA

Entry
Point

Exit
Point

of

of

Resource

on

adds

Data Point

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

volves executing SPARQL Protocol and RDF Query Language
(SPARQL) queries (to identify all defenses meeting the pre-
scribed criteria) and aggregation operations (here, a simple
sum) over the set of paths. Three of the feasible paths (paths 1,
2, and 3) encounter an MTD whose randomization frequency is
on the order of seconds. Since the attack in the simplified at-
tack class model has an expected duration on the order of
minutes, the MTD is determined to provide adequate protection
(for the paths it covers) and thus this metric will have a value
of 0, i.e., there are no defenses with dynamic modulation fre-
quencies greater than the attack phase duration. However, de-
termining the overall protection of this system should evaluate
this metric in the context of other important metrics. For exam-
ple, calculating the metric number of paths with fewer than N
defenses would highlight that entry through NIC 2 is unprotect-
ed. Further, had the metric been defined to include a larger set
of starting points the resulting value would have been even
larger, as insider attacks that start from a privileged base on
Host 1 will not pass through any defense.

In addition to the base path exploration, many other anal-
yses may be performed. For example, the user may wish to
elaborate on the numeric value calculated as part of the number
of paths with fewer than N defenses metric by drawing from the
enumeration category of analyses to ask ASR to identify all
paths that include less than one defense. Again, a SPARQL
query is defined to operate over the initial set of feasible paths,
and select only those that include no defenses.

V. CONCLUSION AND NEXT STEPS

This paper describes work we are conducting on modeling
and reasoning about attack surfaces of distributed systems, with
the goal of selecting a properly configured set of defenses that
together minimize access where possible and randomize ob-
servables where feasible. Our approach enables quantification
of the attack surfaces for the purpose of performing relative
comparisons between multiple surfaces, each one representing
a set of defenses, system components, and attack classes.

In future work, we plan to develop and evaluate example
scenarios, involving tradeoffs between multiple defenses at
different layers, some providing great value in minimizing and
randomizing the attack surface while others actually increase
the attack surface or negatively impact availability by introduc-
ing excessive dynamism or cost.

REFERENCES

[1] Mitre, “Common Vulnerabilities and Exposures Home Page,”

2014. [Online]. Available: http://cve.mitre.org/. [retrieved:

2014.03.11]

[2] P. K. Manadhata and J. M. Wing, “A Formal Model for a Sys-

tem’s Attack Surface,” in Moving Target Defense, Springer,

2011, pp. 1–28.

[3] T. Sommestad, M. Ekstedt, and P. Johnson, “Cyber Security

Risks Assessment with Bayesian Defense Graphs and Architec-

tural Models,” presented at the Hawaii International Conference

on System Sciences (HICSS ’09), Hawaii, 2009, pp. 1–10.

[4] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song,

“Towards a formal foundation of web security,” in 23rd IEEE

Computer Security Foundations Symposium (CSF), 2010, pp.

290–304.

[5] J. Hurd, M. Carlsson, B. Letner, and P. White, “Lobster: A do-

main specific language for SELinux policies,” Galois Inc. inter-

nal report, 2008.

[6] J. Beal, J. Webb, and M. Atighetchi, “Adjustable autonomy for

cross-domain entitlement decisions,” in Proceedings of the 3rd

ACM workshop on Artificial Intelligence and Security, 2010,

pp. 65–71.

[7] D. L. McGuinness, et al., “OWL web ontology language over-

view,” W3C Recomm., vol. 10, no. 2004–03, p. 10, 2004.

[8] M. Fisher and M. Dean, “Semantic Query: Solving the Needs of

a Net-Centric Data Sharing.” Semantic Technology Conference,

23-May-2007.

[9] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic ap-

proaches to thwart adversary intelligence gathering,” DARPA

Information Survivability Conference & Exposition (DISCEX),

2001, vol. 1, pp. 176–185.

Fig. 5. Example attack surface model used for analysis

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

