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Abstract—Developing control systems for swarm robotics 

require advanced techniques that can ensure adaptive, 

autonomous, self-aware and intelligent behavior.  An 

engineering response to such demands is an ensemble based 

approach that structures a complex control system into 

dynamic ensembles of relatively simple system elements, called 

service components. The dynamism and autonomous behavior 

of the system elements are modeled by the knowledge- and 

predicate-based communication principle that allows for late 

(at run-time) evaluation of communication and connection 

rules among the system elements. The approach is illustrated 

on a concrete multi-robot scenario.  

Keywords--swarm robotic; autonomous systems; development life 

cycle, ensemble-based system. 

I. MOTIVATION 

Constructing a multi-robot system requires multidisciplinary 

approach that calls for advanced techniques from the 

domains of software engineering, parallel and distributed 

system, agent systems and artificial intelligence. Each of the 

target disciplines poses grand challenges in its own field 

[1][2]. To respond to changing demands over a long 

operational time, adaptive and autonomous behavior at both 

individual and collective level [3] as well as energy 

awareness [4][5] need to be ensured.  

The solution offered here responds to all these 

challenges. The approach decomposes a complex system 

into high number of service components – functionally 

simple building blocks enriched with knowledge attributes 

[6]. The knowledge of a component controls autonomic 

behavior at a local level. To ensure meaningful grouping 

and autonomy at higher levels (collective autonomy), 

system components are grouped into ensembles according to 

predicates over the components’ attributes (which represents 

the major novelty of the approach). These predicates are 

actually implicit rules for communication bindings and 

represent global knowledge of the ensemble. 

In order to guarantee correct and timely behavior in such 

demanding circumstances, this approach relies on formal 

methods. The system design and development phases are 

strictly defined leading to step-wise process of modelling, 

development, verification and validation. 

The emphasis of this paper is on major engineering 

phases of the ensemble development lifecycle. A strongly 

pragmatic approach is illustrated by the concrete multi-robot 

scenario.  

The paper is structured into six sections describing 

motivation (section one), engineering approach (section 

two), problem description (section three), system modelling 

using the SCEL language and JRESP framework (section 

four) and the deployment (section five). The conclusion 

(section 6) summarizes the achievements and indicates 

further directions for the work to come. 

II. ENGINEERING APPROACH 

Autonomous systems introduce a number of requests which 

are not present in other less dynamic systems. Constant 

changes both in the controlled environment and in the 

system per se require an appropriate methodology.  The 

development process needs to be continuous,  allowing for 

re-consideration and refinement both during the system 

development and during the system execution time. The 

approach described here proposes a persistent process for 

ensemble construction that consists of two major 

development circles, each having three phases: 

 Design circle consists of:  

1. Requirement analysis,  

2. Modelling and programming, and  

3. Validation and verification phases.  

 Runtime circle contains of 

1.  Monitoring,  

2. Awareness, and  

3. Self-adaptation phases. 

Two transitions, namely deployment and feedback ensure 

the correlation among the two circles.  

 Deployment is a step-wise transition that is the 

result of modeling and programming phases. It 

begins with the first release and later continues 

whenever system modification occurs (re-

deployment).  

 Feedback is a transition that represents re-

engineering, i.e., a system modification caused by 

problems discovered within the monitoring, 

awareness or self-adaptation run-time phases.  

To ensure rigorous development of complex distributed 

autonomous systems, a number of tools and methods have 

been developed to support each of the phases and transitions 

within the development life cycle [7]. This paper focuses on 

tools and methods for modelling and the deployment, 

namely the SCEL (Service Component Ensemble 

Language) [8], and the jRESP (Java Runtime Environment 

for SCEL Programs) [9] and ARGoS[10] frameworks.  

III. PROBLEM SPECIFICATION 

Swarm robotics deals with creation of multi-robot systems 

that through interaction among participating robots and their 

environment can accomplish a common goal, which would 

be impossible to achieve by a single robot. To illustrate the 
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application from the swarm robotics domain a search and 

rescue scenario is presented.   

 

Figure 1. Scenario 

A. Swarm Robotics Scenario 

The basic idea behind the scenario is to organize and control 

a rescue operation in an emergency situation.  Figure 1 

illustrates the scenario where “an explo-sion happens in a 

nuclear plant causing the radiation, spill and collapse of a 

part of the building where a number of victims is trapped. 

To prevent further harm to human lives, a team    of     

robots is deployed in the endangered area. The robots must 

explore the area, search for victims, and coordinate to save 

the victims as fast as possible. Besides removing victims, 

robots have to neutralize the radiation source by building 

blocks around it”. 

In the above scenario, a swarm of robots is distributed in 

a so called deployment area. The robots must reach the zone 

according to the scenario goal (finding victims and radiation 

source, carrying blocks, etc). Robots are not informed about 

the position of the targets. To discover their location they 

perform random walk combined with coordinated 

exploration. As soon as a robot reaches a radiation zone or a 

victim, it ‘publishes’ its location within the local knowledge 

repository. In this way, robots with the same task can be 

informed about the location of the corresponding target. 

Informed robots can then move directly towards the target 

thus saving time and energy.  

Robots possess limited battery lifetime. To behave in an 

energy-aware manner, the robots must monitor the battery 

charge over the course of the experiment. If the battery 

charge drops too low, self-healing actions are required, e.g., 

reaching a charging station or sending a distress signal.   

There are two types of robots in a multi-robot system 

needed to solve the “search and rescue” problem, as 

specified in the given scenario (see Figure 1): a - foraging 

robots that explore the environment and find objects and b - 

robots with a gripper, which can carry objects. 

 
 
a) Foraging robot                           b) Robot with a gripper   

     

Figure 2, Swarm robots 

B. Generic System Properties 

To further explore the control system requirements, the 

given scenario is closely examined and the major system 

characteristics are extracted (formulated in a generic form in 

order to keep them applicable in other application 

scenarios): 

1. Individual goals 

2. Coordination and  distribution  

3. Sharing and collectiveness (global goals)  

4. Awareness and knowledge 

5. Energy awareness and optimization 

Each robot from the swarm has an individual goal (ie. 

simple task it can do).  To solve a collective assignment, 

robots dynamically gather in a swarm, which further 

requires coordinated and distributed behavior. Knowledge 

of own capabilities and conditions as well as of those from 

the environment, bring awareness at both local and global 

level. Throughout its operational time, each robot from a 

swarm needs to observe its battery state and to adapt its 

functioning appropriately.  

In a summary, a typical swarm robotics control system is 

highly collective, constructed of numerous independent 

entities that share common goals. Its elements are both 

autonomous and cooperative featuring a high level of self-

awareness,  self-expressiveness. 

C. Specific Scenario Properties 

In order to accomplish the rescue mission from the given 

scenario the robots need to perform the following 

operations: (i) efficient operation as robot energy depletes, 

and (ii) reaching consensus on the order in which the 

victims must be saved. 
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Figure 3. Robot behaviour graph 

To solve the rescue scenario, a specific robot behavior 

called distributed exploration, is further specified. Robots 

are divided in two groups: workers and landmarks. Workers 

are robots that perform the actual rescuing task, transporting 

the victims to the deployment area. Landmark robots 

explore and mark important locations in the environment. 

Landmark robots are deployed first. They exit the 

deployment area one by one, moving straightforward until 

they encounter either a branching or an important location 

(e.g., a victim), or they are about to lose connectivity with 

the previous robots. Landmark robots form a network that is 

used by next approaching landmark robots.  

Figure 3 shows a behavior graph of the “landmark” 

robot from a swarm. Based on the graph, the robot behavior 

is further specified, modeled, simulated and finally deployed 

on real robots. 

IV. MODELING AND PROGRAMMING 

Valid modeling and programming techniques ensure later 

correct behavior. The ensemble development lifecycle 

(EDLC) [7] uses a rigorous modeling/programming 

approach that allows for both formal reasoning on system 

properties and semi-automatic programming and validation.  

A control system is decomposed into simpler 

hierarchical elements [9] called service components (SC) - 

representing simple functional entities with clearly defined 

individual goals, and service component ensembles (SCE) - 

representing a collection of service components with clearly 

defined collective goals. 

Both components and ensembles have local knowledge 

used to express their goals. Knowledge is represented in 

terms of system properties and the goals are attributes over 

these properties. 

A. Modeling Language SCEL 

The basic entity of SCEL - Software Component Ensemble 

Language is the notion of autonomic component 

         that consists of the following elements: 

 An interface   given in a form of attributes – 

visible to other components. 

 Knowledge repository   containing information 

about component interface, requirements, major 

state attributes etc. Managing such knowledge 

allows for self-aware behavior and dynamic 

interlinking with other system components. 

 A set of policies   that manage the internal and 

external interaction. 

 A set of processes   defines component 

functionality specific to both the application and 

the internal management of knowledge, polices and 

communication. 

For specification of processes, SCEL features a process 

algebra, which is extended by knowledge manipulation 

actions: get – taking a knowledge field out of the knowledge 

repository (blocks if not present), qry – getting a value of 

knowledge field while keeping the field in the knowledge 

repository (blocks if not present), put – inserting a 

knowledge field into the knowledge repository. The 

knowledge manipulation actions may use direct addressing 

(including  a special target self) as well as addressing using 

a predicate, in which case, the action is performed on the 

knowledge of all components that matches the predicate 

(implicitly, creating an ensemble). A fully detailed 

presentation of SCEL syntax and semantics can be found in 

[7][8].  

B. Modeling the Robot Scenario in SCEL  
Qualitatively, the behavior of a single robot could be modeled with 

the following SCEL fragment, where each component 

      (      )    has the following description: 

 

Furthermore, a foraging robot (TargetSeaker) is described 

as: 
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The autonomic behavior of each robot is realized by means 

of an autonomic manager (AM) controlling the execution of 

a managed element (ME). The autonomic manager monitors 

in a self-aware fashion the state of charge of a robot’s 

battery and verifies whether the target area has been reached 

or not. Self-adaptation can be naturally expressed in SCEL 

by exploiting its higher-order features, namely the capability 

to store/retrieve (the code of) processes in/from the 

knowledge repositories and to dynamically trigger execution 

of new processes. The autonomic manager can replace the 

control step code from the knowledge repository, thus 

implementing the adaptation logic and changing the 

managed element’s behavior. For example, when a robot 

becomes informed, it self-adapts (i.e., self-configures) 

through its autonomic manager in order to move directly 

towards the target area. 

C. Simulation and Validation in jRESP 

The jRESP [9] framework is a runtime environment that 

provides Java programmers with ability to develop 

autonomic and adaptive systems based on the SCEL 

concepts. SCEL identifies the linguistic constructs for 

modeling the control of computation, the interaction among 

possibly heterogeneous components, and the architecture of 

systems and ensembles. jRESP provides an API that permits 

using the SCEL paradigm in Java programs. 

The architecture of a generic jRESP node is shown in 

Figure 4. Each node is executed over a virtual machine or a 

physical device that provides the access to input/output 

devices and to network connections. Each node aggregates a 

knowledge repository, a set of running processes/threads, 

and a set of policies. Structural and behavioral information 

about a node can be collected into an interface via a set of 

attribute collectors. Nodes interact through ports supporting 

both point-to-point and group-oriented communications. 

The robot scenario modeled in SCEL (as described in 

the previous section) is programmed in jRESP in the 

following way. The process ME (managed element) is  

 

 
 

Figure 4. JRESP Architecture 

 

rendered as an agent that continuously executes the control 

steps retrieved from the local knowledge repository: 

 

 
The autonomic manager is modeled by the following three 

classes that provide a Java implementation for processes P-

batteryManager and  P-dataSeeker and P-targetSeeker, 

respectively: 
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A screen dump of a jRESP simulation of the robotic 

scenario is shown on Figure 5a, illustrating the movements 

of the foraging robots with a landmark searching algorithm.  

Formal modelling of the multi-robot scenario also 

contributes to the validation phase of the software 

development lifecycle. As shown on figure 5b, the jRESP 

simulation can be used to calculate the probability of finding 

victim in the given scenario (for the given algorithm, the 

probability of success is directly proportional to the number 

of landmarks used in a search). The verification of the 

search algorithm is shown on the figure 5c, insuring that the 

algorithm will always converge. The simulation, validation 

and verification tools all refer to the problem described in 

the scenario shown on the Figure 1. 

 

V. DEPLOYMENT 

The deployment transition of the ensemble development life 

cycle involves the implementation of the robot behaviors on 

real robots. This step is the most critical in robotics because 

it is usually the most expensive, time-consuming, and risky. 

For this reason, deployment is usually performed in two 

distinct phases. The first phase consists of testing the robot 

behaviors in accurate physics-based simulations. These 

simulations must include as many details as possible, so as 

to minimize costly issues in the next phase. The next 

deployment phase consists of testing the behaviors on the 

real platform with robots.   

For the deployment purposes the ARGoS  (discrete-time 

simulator for multi-robot systems ) [11] platform is used as 

it provides both an efficient simulation framework and a 

straightforward deployment with real robots. The same 

control system is firstly tested on a simulated environment 

and then is transferred to the real platform, substituting 

simulated robots with the real ones.. 

ARGoS is a physics-based multi-robot simulator. It aims 

to simulate complex experiments involving large swarms of 

robots of different types in the shortest possible time. It is 

designed around two main and often contradictory 

requirements: efficiency - achieving high performance with 

large swarms, and flexibility - allowing the user to 

customize the simulator for specific experiments.  

To bridge the efficiency and flexibility gap, ARGoS 

system deploys a number of novel design choices. First, in 

ARGoS, it is possible to partition the simulated space into 

multiple sub-spaces, managed by different physics engines 

running in parallel. Second, ARGoS’ architecture is multi-

threaded, thus designed to optimize the usage of modern 

multi-core CPUs. Finally, the architecture of ARGoS is 

highly modular. It is designed to allow the user to easily add  

 

a) Simulation with foraging and the 

landmark robots 

 

 

 

 b) System validation 

 

 
c) System verification 

 
Figure 5. Screen dumps from the simulation, validation and verification tools 
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custom features (enhancing flexibility) and to allocate 

computational resources where needed (thus decreasing run-

time and enhancing efficiency). 

The final deployment phase in a real robot setting is still 

being developed. In preparation for the final deployment, 

simultaneously with ARGoS simulation, the two types of 

robots have been further refined (Figure 2). 

 

VI. CONCLUSION 

This paper presents an integrated approach to model, 

validate and deploy ensemble-based multi-robot systems. 

The non-centralized character of the approach allows for 

autonomic and self-aware behavior, which is achieved by 

introduction of knowledge elements and enrichment of 

compositional and communication primitives with 

awareness of both system requirements and individual state 

of the computing entities.  

The essence of the ensemble-based approach is to de-

compose a complex system into a number of generic 

components, and then compose the system into ensembles 

of service components. The inherent complexity of such 

ensembles is a huge challenge for developers. Thus, the 

whole system is decomposed into well-understood building 

blocks, reducing the innumerable interactions between low-

level components to a manageable number of interactions 

between these building blocks. The result is a so-called 

hierarchical ensemble, built from service components, 

simpler ensembles and knowledge units connected via a 

highly dynamic infrastructure. Ensembles exhibit four main 

characteristics: adaptation, self-awareness, knowledge and 

emergence, providing a sound methodology for engineering 

autonomous systems. A number of analyses, modeling, 

programming and validation tools are under development 

and evaluation in different application settings [7]. 

The pragmatic significance of the approach has been 

illustrated by the multi-robot scenario showing the major 

design and development phases on the concrete practical 

example. The SCEL language [8] and jRESP [9] are used 

for modeling, programming and validating the scenario. 

Finally, ARGOS system [10] is used to fine-tune and deploy 

the control system in a real robot setting.  

Further work is oriented towards monitoring and testing 

of the real system as well as towards analyses of the run-

time behavior. These activities belong to the second cycle of 

the EDLC [7] and will be the subject of future work. Tools 

to monitor ensemble based systems should be developed 

that allow for run-time analyses and verification of 

awareness and self-adaptive behavior of both system 

elements and the system as a whole.   
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