
Constructing Autonomous Multi-Robot System

Nikola Šerbedžija
Fraunhofer FOKUS

Berlin, Germany

Nikola.Serbedzija@fokus.fraunhofer.de

Abstract—Developing control systems for swarm robotics

require advanced techniques that can ensure adaptive,

autonomous, self-aware and intelligent behavior. An

engineering response to such demands is an ensemble based

approach that structures a complex control system into

dynamic ensembles of relatively simple system elements, called

service components. The dynamism and autonomous behavior

of the system elements are modeled by the knowledge- and

predicate-based communication principle that allows for late

(at run-time) evaluation of communication and connection

rules among the system elements. The approach is illustrated

on a concrete multi-robot scenario.

Keywords--swarm robotic; autonomous systems; development life

cycle, ensemble-based system.

I. MOTIVATION

Constructing a multi-robot system requires multidisciplinary

approach that calls for advanced techniques from the

domains of software engineering, parallel and distributed

system, agent systems and artificial intelligence. Each of the

target disciplines poses grand challenges in its own field

[1][2]. To respond to changing demands over a long

operational time, adaptive and autonomous behavior at both

individual and collective level [3] as well as energy

awareness [4][5] need to be ensured.

The solution offered here responds to all these

challenges. The approach decomposes a complex system

into high number of service components – functionally

simple building blocks enriched with knowledge attributes

[6]. The knowledge of a component controls autonomic

behavior at a local level. To ensure meaningful grouping

and autonomy at higher levels (collective autonomy),

system components are grouped into ensembles according to

predicates over the components’ attributes (which represents

the major novelty of the approach). These predicates are

actually implicit rules for communication bindings and

represent global knowledge of the ensemble.

In order to guarantee correct and timely behavior in such

demanding circumstances, this approach relies on formal

methods. The system design and development phases are

strictly defined leading to step-wise process of modelling,

development, verification and validation.

The emphasis of this paper is on major engineering

phases of the ensemble development lifecycle. A strongly

pragmatic approach is illustrated by the concrete multi-robot

scenario.

The paper is structured into six sections describing

motivation (section one), engineering approach (section

two), problem description (section three), system modelling

using the SCEL language and JRESP framework (section

four) and the deployment (section five). The conclusion

(section 6) summarizes the achievements and indicates

further directions for the work to come.

II. ENGINEERING APPROACH

Autonomous systems introduce a number of requests which

are not present in other less dynamic systems. Constant

changes both in the controlled environment and in the

system per se require an appropriate methodology. The

development process needs to be continuous, allowing for

re-consideration and refinement both during the system

development and during the system execution time. The

approach described here proposes a persistent process for

ensemble construction that consists of two major

development circles, each having three phases:

 Design circle consists of:

1. Requirement analysis,

2. Modelling and programming, and

3. Validation and verification phases.

 Runtime circle contains of

1. Monitoring,

2. Awareness, and

3. Self-adaptation phases.

Two transitions, namely deployment and feedback ensure

the correlation among the two circles.

 Deployment is a step-wise transition that is the

result of modeling and programming phases. It

begins with the first release and later continues

whenever system modification occurs (re-

deployment).

 Feedback is a transition that represents re-

engineering, i.e., a system modification caused by

problems discovered within the monitoring,

awareness or self-adaptation run-time phases.

To ensure rigorous development of complex distributed

autonomous systems, a number of tools and methods have

been developed to support each of the phases and transitions

within the development life cycle [7]. This paper focuses on

tools and methods for modelling and the deployment,

namely the SCEL (Service Component Ensemble

Language) [8], and the jRESP (Java Runtime Environment

for SCEL Programs) [9] and ARGoS[10] frameworks.

III. PROBLEM SPECIFICATION

Swarm robotics deals with creation of multi-robot systems

that through interaction among participating robots and their

environment can accomplish a common goal, which would

be impossible to achieve by a single robot. To illustrate the

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

application from the swarm robotics domain a search and

rescue scenario is presented.

Figure 1. Scenario

A. Swarm Robotics Scenario

The basic idea behind the scenario is to organize and control

a rescue operation in an emergency situation. Figure 1

illustrates the scenario where “an explo-sion happens in a

nuclear plant causing the radiation, spill and collapse of a

part of the building where a number of victims is trapped.

To prevent further harm to human lives, a team of

robots is deployed in the endangered area. The robots must

explore the area, search for victims, and coordinate to save

the victims as fast as possible. Besides removing victims,

robots have to neutralize the radiation source by building

blocks around it”.

In the above scenario, a swarm of robots is distributed in

a so called deployment area. The robots must reach the zone

according to the scenario goal (finding victims and radiation

source, carrying blocks, etc). Robots are not informed about

the position of the targets. To discover their location they

perform random walk combined with coordinated

exploration. As soon as a robot reaches a radiation zone or a

victim, it ‘publishes’ its location within the local knowledge

repository. In this way, robots with the same task can be

informed about the location of the corresponding target.

Informed robots can then move directly towards the target

thus saving time and energy.

Robots possess limited battery lifetime. To behave in an

energy-aware manner, the robots must monitor the battery

charge over the course of the experiment. If the battery

charge drops too low, self-healing actions are required, e.g.,

reaching a charging station or sending a distress signal.

There are two types of robots in a multi-robot system

needed to solve the “search and rescue” problem, as

specified in the given scenario (see Figure 1): a - foraging

robots that explore the environment and find objects and b -

robots with a gripper, which can carry objects.

a) Foraging robot b) Robot with a gripper

Figure 2, Swarm robots

B. Generic System Properties

To further explore the control system requirements, the

given scenario is closely examined and the major system

characteristics are extracted (formulated in a generic form in

order to keep them applicable in other application

scenarios):

1. Individual goals

2. Coordination and distribution

3. Sharing and collectiveness (global goals)

4. Awareness and knowledge

5. Energy awareness and optimization

Each robot from the swarm has an individual goal (ie.

simple task it can do). To solve a collective assignment,

robots dynamically gather in a swarm, which further

requires coordinated and distributed behavior. Knowledge

of own capabilities and conditions as well as of those from

the environment, bring awareness at both local and global

level. Throughout its operational time, each robot from a

swarm needs to observe its battery state and to adapt its

functioning appropriately.

In a summary, a typical swarm robotics control system is

highly collective, constructed of numerous independent

entities that share common goals. Its elements are both

autonomous and cooperative featuring a high level of self-

awareness, self-expressiveness.

C. Specific Scenario Properties

In order to accomplish the rescue mission from the given

scenario the robots need to perform the following

operations: (i) efficient operation as robot energy depletes,

and (ii) reaching consensus on the order in which the

victims must be saved.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

Figure 3. Robot behaviour graph

To solve the rescue scenario, a specific robot behavior

called distributed exploration, is further specified. Robots

are divided in two groups: workers and landmarks. Workers

are robots that perform the actual rescuing task, transporting

the victims to the deployment area. Landmark robots

explore and mark important locations in the environment.

Landmark robots are deployed first. They exit the

deployment area one by one, moving straightforward until

they encounter either a branching or an important location

(e.g., a victim), or they are about to lose connectivity with

the previous robots. Landmark robots form a network that is

used by next approaching landmark robots.

Figure 3 shows a behavior graph of the “landmark”

robot from a swarm. Based on the graph, the robot behavior

is further specified, modeled, simulated and finally deployed

on real robots.

IV. MODELING AND PROGRAMMING

Valid modeling and programming techniques ensure later

correct behavior. The ensemble development lifecycle

(EDLC) [7] uses a rigorous modeling/programming

approach that allows for both formal reasoning on system

properties and semi-automatic programming and validation.

A control system is decomposed into simpler

hierarchical elements [9] called service components (SC) -

representing simple functional entities with clearly defined

individual goals, and service component ensembles (SCE) -

representing a collection of service components with clearly

defined collective goals.

Both components and ensembles have local knowledge

used to express their goals. Knowledge is represented in

terms of system properties and the goals are attributes over

these properties.

A. Modeling Language SCEL

The basic entity of SCEL - Software Component Ensemble

Language is the notion of autonomic component

 that consists of the following elements:

 An interface given in a form of attributes –

visible to other components.

 Knowledge repository containing information

about component interface, requirements, major

state attributes etc. Managing such knowledge

allows for self-aware behavior and dynamic

interlinking with other system components.

 A set of policies that manage the internal and

external interaction.

 A set of processes defines component

functionality specific to both the application and

the internal management of knowledge, polices and

communication.

For specification of processes, SCEL features a process

algebra, which is extended by knowledge manipulation

actions: get – taking a knowledge field out of the knowledge

repository (blocks if not present), qry – getting a value of

knowledge field while keeping the field in the knowledge

repository (blocks if not present), put – inserting a

knowledge field into the knowledge repository. The

knowledge manipulation actions may use direct addressing

(including a special target self) as well as addressing using

a predicate, in which case, the action is performed on the

knowledge of all components that matches the predicate

(implicitly, creating an ensemble). A fully detailed

presentation of SCEL syntax and semantics can be found in

[7][8].

B. Modeling the Robot Scenario in SCEL
Qualitatively, the behavior of a single robot could be modeled with

the following SCEL fragment, where each component

 () has the following description:

Furthermore, a foraging robot (TargetSeaker) is described

as:

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

The autonomic behavior of each robot is realized by means

of an autonomic manager (AM) controlling the execution of

a managed element (ME). The autonomic manager monitors

in a self-aware fashion the state of charge of a robot’s

battery and verifies whether the target area has been reached

or not. Self-adaptation can be naturally expressed in SCEL

by exploiting its higher-order features, namely the capability

to store/retrieve (the code of) processes in/from the

knowledge repositories and to dynamically trigger execution

of new processes. The autonomic manager can replace the

control step code from the knowledge repository, thus

implementing the adaptation logic and changing the

managed element’s behavior. For example, when a robot

becomes informed, it self-adapts (i.e., self-configures)

through its autonomic manager in order to move directly

towards the target area.

C. Simulation and Validation in jRESP

The jRESP [9] framework is a runtime environment that

provides Java programmers with ability to develop

autonomic and adaptive systems based on the SCEL

concepts. SCEL identifies the linguistic constructs for

modeling the control of computation, the interaction among

possibly heterogeneous components, and the architecture of

systems and ensembles. jRESP provides an API that permits

using the SCEL paradigm in Java programs.

The architecture of a generic jRESP node is shown in

Figure 4. Each node is executed over a virtual machine or a

physical device that provides the access to input/output

devices and to network connections. Each node aggregates a

knowledge repository, a set of running processes/threads,

and a set of policies. Structural and behavioral information

about a node can be collected into an interface via a set of

attribute collectors. Nodes interact through ports supporting

both point-to-point and group-oriented communications.

The robot scenario modeled in SCEL (as described in

the previous section) is programmed in jRESP in the

following way. The process ME (managed element) is

Figure 4. JRESP Architecture

rendered as an agent that continuously executes the control

steps retrieved from the local knowledge repository:

The autonomic manager is modeled by the following three

classes that provide a Java implementation for processes P-

batteryManager and P-dataSeeker and P-targetSeeker,

respectively:

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

A screen dump of a jRESP simulation of the robotic

scenario is shown on Figure 5a, illustrating the movements

of the foraging robots with a landmark searching algorithm.

Formal modelling of the multi-robot scenario also

contributes to the validation phase of the software

development lifecycle. As shown on figure 5b, the jRESP

simulation can be used to calculate the probability of finding

victim in the given scenario (for the given algorithm, the

probability of success is directly proportional to the number

of landmarks used in a search). The verification of the

search algorithm is shown on the figure 5c, insuring that the

algorithm will always converge. The simulation, validation

and verification tools all refer to the problem described in

the scenario shown on the Figure 1.

V. DEPLOYMENT

The deployment transition of the ensemble development life

cycle involves the implementation of the robot behaviors on

real robots. This step is the most critical in robotics because

it is usually the most expensive, time-consuming, and risky.

For this reason, deployment is usually performed in two

distinct phases. The first phase consists of testing the robot

behaviors in accurate physics-based simulations. These

simulations must include as many details as possible, so as

to minimize costly issues in the next phase. The next

deployment phase consists of testing the behaviors on the

real platform with robots.

For the deployment purposes the ARGoS (discrete-time

simulator for multi-robot systems) [11] platform is used as

it provides both an efficient simulation framework and a

straightforward deployment with real robots. The same

control system is firstly tested on a simulated environment

and then is transferred to the real platform, substituting

simulated robots with the real ones..

ARGoS is a physics-based multi-robot simulator. It aims

to simulate complex experiments involving large swarms of

robots of different types in the shortest possible time. It is

designed around two main and often contradictory

requirements: efficiency - achieving high performance with

large swarms, and flexibility - allowing the user to

customize the simulator for specific experiments.

To bridge the efficiency and flexibility gap, ARGoS

system deploys a number of novel design choices. First, in

ARGoS, it is possible to partition the simulated space into

multiple sub-spaces, managed by different physics engines

running in parallel. Second, ARGoS’ architecture is multi-

threaded, thus designed to optimize the usage of modern

multi-core CPUs. Finally, the architecture of ARGoS is

highly modular. It is designed to allow the user to easily add

a) Simulation with foraging and the

landmark robots

 b) System validation

c) System verification

Figure 5. Screen dumps from the simulation, validation and verification tools

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

custom features (enhancing flexibility) and to allocate

computational resources where needed (thus decreasing run-

time and enhancing efficiency).

The final deployment phase in a real robot setting is still

being developed. In preparation for the final deployment,

simultaneously with ARGoS simulation, the two types of

robots have been further refined (Figure 2).

VI. CONCLUSION

This paper presents an integrated approach to model,

validate and deploy ensemble-based multi-robot systems.

The non-centralized character of the approach allows for

autonomic and self-aware behavior, which is achieved by

introduction of knowledge elements and enrichment of

compositional and communication primitives with

awareness of both system requirements and individual state

of the computing entities.

The essence of the ensemble-based approach is to de-

compose a complex system into a number of generic

components, and then compose the system into ensembles

of service components. The inherent complexity of such

ensembles is a huge challenge for developers. Thus, the

whole system is decomposed into well-understood building

blocks, reducing the innumerable interactions between low-

level components to a manageable number of interactions

between these building blocks. The result is a so-called

hierarchical ensemble, built from service components,

simpler ensembles and knowledge units connected via a

highly dynamic infrastructure. Ensembles exhibit four main

characteristics: adaptation, self-awareness, knowledge and

emergence, providing a sound methodology for engineering

autonomous systems. A number of analyses, modeling,

programming and validation tools are under development

and evaluation in different application settings [7].

The pragmatic significance of the approach has been

illustrated by the multi-robot scenario showing the major

design and development phases on the concrete practical

example. The SCEL language [8] and jRESP [9] are used

for modeling, programming and validating the scenario.

Finally, ARGOS system [10] is used to fine-tune and deploy

the control system in a real robot setting.

Further work is oriented towards monitoring and testing

of the real system as well as towards analyses of the run-

time behavior. These activities belong to the second cycle of

the EDLC [7] and will be the subject of future work. Tools

to monitor ensemble based systems should be developed

that allow for run-time analyses and verification of

awareness and self-adaptive behavior of both system

elements and the system as a whole.

ACKNOWLEDGMENTS

Most of the work presented here has been done under the

ASCENS project (project number FP7- 257414) [7] funded

by the European Commission within the 7th Framework

Programme. Special thanks go to Roco de Nicola (CNR),

for the work on SCEL [8], Michele Loreti (University of

Florence) for the work on jRESP [9], and Carlo. Pinciroli

(Brussels University) for the work on ARGoS[10].

REFERENCES

[1] I. Sommerville et al. Large-scale complex it systems.

Commun. ACM. 2012, Vol.55, No.7, pp.71-77

[2] M. Hoelzl, A. Rauschmayer, and M. Wirsing.

Engineering of software-intensive systems. In

Software-Intensive Systems and New Computing

Paradigms, LNCS, 2008, Vol.5380, pp.45-63.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm

Intelligence: From Natural to Artificial Systems, New

York, NY: Oxford University Press, Santa Fe Institute

Studies in the Sciences of Complexity, 1999, ISBN 0-

19-513159-2.

[4] B. Degener, B. Kempkes, and F. Meyer. Energy-

Awareness in Self-organising Robotic Exploration

Teams .Organic Computing, Springer, 2011, pp346-

365.

[5] C. Seo. Energy-Awareness in Distributed Java-Based

Software Systems. In Proc. of the 21st IEEE

International Conference on Automated Software

Engineering (ASE'06). IEEE, 2006, pp.343-348.

[6] M. Hoelzl et al. Engineering Ensembles: A White Paper

of the ASCENS Project. ASCENS Deliverable JD1.1.

http://www.ascens-ist.eu/whitepapers [retrieved: May

2014].

[7] Project ASCENS (Autonomic Service-Component

Ensembles). http://www.ascens-ist.eu ASCENS

[retrieved: May 2014].

[8] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi.

SCEL: a language for autonomic computing. Technical

Report. Universita a degli Studi di Firenze. Available

at: http://rap.dsi.unifi.it/scel/ [retrieved: May 2014].

[9] M. Loreti, jRESP: a run-time environment for scel

programs. Technical Report. Universita a degli Studi di

Firenze. Available at: http://rap.dsi.unifi.it/scel/,

[retrieved: May 2014].

[10] C. Pinciroli et al. ARGoS: a Modular, Parallel, Multi-

Engine Simulator for Multi-Robot Systems. Swarm

Intelligence, Springer, Berlin, Germany, 2012, vol. 6,

no. 4, pp 271-295.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

