
A Code Offloading Framework for Mobile Cloud Computing: ICEMobile 

 

Emre Çalışır 
Computer Engineering Department 

Galatasaray University 

Istanbul, Turkey 

e-mail: emrecalisir@gmail.com 

 

 

Gülfem Işıklar Alptekin 
Computer Engineering Department 

Galatasaray University 

Istanbul, Turkey 

e-mail: gisiklar@gsu.edu.tr 

 

 

B. Atay Özgövde 
Computer Engineering Department 

Galatasaray University 

Istanbul, Turkey 
e-mail: aozgovde@gsu.edu.tr 

 

Abstract— Smartphones have become a crucial part of our life 

with their high performance data processing features and 

ability to access information from anywhere at any time. 

However, they tend to become inadequate to meet computation 

intensive operations with their limited battery life and 

processing capabilities. Mobile cloud computing may be a 

solution, but Wide Area Network (WAN) latencies and 

unstable response times of cloud services negatively affect user 

experiences. In this paper, the cloudlet approach, which offers 

the cloud services with Local Area Network (LAN) bandwidth, 

is presented as a possible solution to this problem. A 

framework, called ICEMobile, is introduced that brings the 

computation offloading capability to mobile applications. The 

aim of the ICEMobile framework is to direct application 

developers in determining which methods need to be offloaded 

in order to save energy during the mobile execution. The 

applicability and efficiency of the framework and related 

optimization model are shown via real life scenarios. The test 

results reveal that it is possible to save energy up to 98% on the 

mobile device by using the proposed framework. 

Keywords—mobile cloud computing; cloudlet; code 

offloading; energy efficiency 

I.  INTRODUCTION  

The evolution of digital world is correlated with the 
fulfillment of people's expectations that can be summarized 
as accessing technology from anywhere and anytime, called 
as ubiquitous computing. It is the method of enhancing 
computer usage by making many computers available 
throughout the physical environment, but making them 
effectively invisible to the user [1]. With the increasing 
mobility of people and the rise of social media, people’s 
behaviors are changing towards using small and portable 
personal computers to benefit from vast resources through 
Internet. On the other hand, the need for intense computation 
is ever increasing. However, current smartphones are unable 
to respond these needs because of their limited battery life 
and CPU power. At this point, cloud computing comes into 
the scene since it enables retrieving on-demand services from 
a shared pool of configurable computing resources [2]. 
Combining ubiquitous computing, mobile computing and 
cloud computing, a new model, called Mobile Cloud 
Computing, is developed to bring cloud computing services 
into the edge to extend resource-rich services on the mobile 
devices [1]. 

A cloudlet is a small-scale cloud-like infrastructure, 
which is located in one hop distance to the mobile user and 
connected with a high network speed. Cloudlets are fully 
dedicated to the mobile devices with the aim of executing 

their resource intensive but latency-sensitive tasks [3]. A 
mobile device that is connected to a cloudlet benefits from 
much powerful computing capabilities and unlimited power. 
These benefits are also valid for distant cloud-based 
computation; however, in that case it may occur serious time 
losses due to ambiguous service response times of the cloud 
and WAN latencies. Therefore, offloading to a distant cloud 
is not always a solution. The computation or code offloading 
paradigm means transferring complex tasks to more 
powerful environments.  

In this paper, we develop a framework having code 
offloading capability and examine three use cases containing 
computation-intensive operations. The framework involves a 
decision making engine that analyzes efficiency of the given 
application. Doing so, we generate the call graph of the 
program and analyze in detail the time cost of each node and 
edge. We then test this mechanism with an Android 
application and a Java based web server, which are 
connected with the RESTful web services during the 
execution of three computation-intensive use cases. 

The remaining part of the paper is structured as follows: 
Section 2 presents related works in literature. Section 3 
introduces the proposed ICEMobile architecture with its 
optimization model. In Section 4, experiments and results are 
given. Finally, the last section presents concluding remarks 
driven from the test results. 

II. LITERATURE REVIEW 

The studies in literature that consider the idea of moving 
the cloud closer have started with the ‘cloudlet’ concept of 
Satyanarayanan et al. [3]. With the impact of this novel 
approach, it has recently become a hot topic in mobile cloud 
computing related research. In this cloudlet model, the 
cloudlets are at one hop distant to the mobile device, having 
high bandwidth wireless access. They may be located in 
coffees, airports like wireless hotspots to deliver instant 
services to the mobile clients. The proposed computation 
offloading techniques in [3] are virtual machine (VM) 
migration and dynamic VM synthesis. In VM migration, the 
entire snapshot of the mobile device is transferred to the 
cloudlet, while in the second technique, there is a dynamic 
VM synthesis to reduce the size of the VM snapshot by 
receiving the delta with the previous VM state. The dynamic 
VM synthesis technique provides offloading capability for 
each mobile device, since it transfers the VM of the mobile 
device rather than platform specific objects. On the other 
hand, it contains many problems especially related with user 
experience and lack of a decision engine.  
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Another research, entitled as MAUI, targets to offload 
only the computation intensive parts of the mobile 
application with method-level offloading based on the .NET 
framework [4]. In this research, a system is proposed, which 
is capable of making the decision of whether offloading will 
save energy for each offloadable part of the application. The 
proposed method-level offloading type is a more fine-
grained approach than the VM migration or dynamic VM 
synthesis. In addition to reducing size of the transferred 
objects, MAUI also provides an intelligent mechanism 
targeting to reduce the energy consumption on the mobile 
device by optimally deciding to offload subject to device and 
server capabilities and network conditions. However, some 
of the processes in MAUI framework prevent creating 
dynamic code offloading environments. The first issue is 
having the necessity of modification on the application since 
it seems as a disadvantage comparing to [3]. Secondly, there 
is not any mechanism for automatically identifying the 
computation intensive parts of the application.  

Another research entitled as CloneCloud, focuses on the 
application partitioning and thread-level offloading [5]. The 
VM migration mechanism is used in the background of this 
study by offloading execution blocks of applications from 
smartphones to their mirror image running on the server. 
This framework works as a middleware in Android OS, on 
the top of Dalvik VM. An advantage of the CloneCloud is 
that it does not require developers’ modification.  

In addition to the previous studies, a research, called 
Cuckoo, focuses creating a dynamic offloading decision 
making tool in runtime in Android OS installed smartphones 
[6]. It presents a system to offload mobile device 
applications onto a cloud using a Java stub/proxy model. 
Cuckoo can be offloaded onto any resource that runs the 
Java VM. In order to use Cuckoo, the applications need to be 
re-written such that the application supports remote 
execution as well as local execution. Moreover, it does not 
contain any optimization when deciding to offload; instead it 
always offloads when it connects to the cloud. In a recent 
related work [1], Zhou et al. propose a context-aware 
offloading decision algorithm that works on a mobile cloud 
computing offloading system with multiple cloud resources. 
Their algorithm takes into account the context changes to 
select the wireless medium to utilize.  
 The offloading granularity and optimization mechanism 

of ICEMobile framework are similar to MAUI’s model. 

However, our approach is typical client/server architecture 

rather than being a middleware of the device operating 

system. 

III. ICEMOBILE ARCHITECTURE 

The focus of our proposed framework ICEMobile is to 
minimize the energy consumption of the mobile device when 
computation-intensive functions need to be executed. Doing 
so, it transfers the resource-intensive code partitions of 
mobile application to the cloudlet for remote execution. The 
main purpose is to extend battery life of the mobile device. 
The energy consumption of the cloudlet is not the concern in 
this paper, since it is assumed to be continuously fed from 

the energy sources. The ICEMobile framework architecture 
is depicted in Fig. 1. It involves Remote Method Invocation 
(RMI) framework both in the mobile platform and in the 
cloudlet. In case of cloud-based offloading, it is possible to 
integrate this framework into the cloud configuration. The 
advantage of using the nearby cloud in LAN is that it 
provides higher bandwidth compared to the one in WAN. 
Besides, it does not require having Internet connection since 
the cloudlet is ready to satisfy all client needs. In case of 
need to extra resources, the distant cloud services may be 
used, but in that case the user experience may be decreased, 
especially when real-time computation-intensive operations 
are executed. The essential part of the ICEMobile offloading 
framework is in the server side, where there is not any 
limitation on the operating system with the help of JVM 
technology. The environmental profiling and program 
analyzing efforts together with the optimization component 
in the server side enable optimal decision making for 
offloading. In this architecture, the Profiler and the Analyzer 
are not executable programs. The developer manually 
operates them and their outputs are transmitted to 
Optimization Solver as input. This process is realized 
automatically in [5]. In addition to these components, the 
same offloadable methods of the mobile application are also 
present on the cloudlet to be executed when necessary.  
 

 

Figure 1. ICEMobile System Architecture 

In the client side, any mobile device can benefit from the 
ICEMobile task offloading mechanism. For mobile devices 
with higher computational capabilities, the need for 

41Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies



offloading tends to decrease. In order to promote offloading, 
the application code needs to be modified with the 
ICEMobile client framework codes. In the server side, a port 
is specifically reserved for each client. In order to initiate the 
server, the following two steps are proceeded:  

i. A CallHandler is identified. The interface file that 
keeps the method signatures and the class file that contains 
the client methods are globally registered to CallHandler.  

ii. CallHandler is bounded by the available port to 
start listening the environment and respond to the incoming 
requests.  

A. Making the Optimal Offloading Decision 

The optimization solver in the ICEMobile framework 
aims at determining which portions of the  application  code  
are  better  to  be  offloaded  to  the  remote  server in  order  
to  use resources  more  effectively. The decision making 
procedure is based on the model proposed in [4]. The 
advantage of offloading in method-level granularity is the 
ability to transfer only the computation-intensive parts of the 
application, rather than transferring the full VM snapshot, as 
in [3]. In the first step of the ICEMobile optimization 
process, the application is analyzed via its call graph. In 
order to extract the call graph, static or dynamic analyzers 
can be used. Next, each node and edge in the call graph is 
attached with a time and energy cost. The measurements are 
generated for each of the following three cases: 

 Perform all methods on the mobile device and 
measure the time and energy cost, 

 Perform all offloadable methods on the cloudlet and 
measure the time cost, 

 Offload all offloadable methods and measure the 
time and energy cost. 

The energy cost is measured using the Android 
application called PowerTutor. At the end of the 
optimization process, the nodes that are better to be 
offloaded is determined. The offloading variable in the 
objective function is a binary one that has two values: 0 for 
not offloading, and 1 for offloading. The given maximization 
problem is solved by lpsolve solver of the R language. 

For a given graph G=(N, E), N represents node and E 

represents edge. Each node  represents a method and 
edge  e=(m, n) represents an invocation of method n from m. 
We annotated each node  with the energy it takes to 
execute the method locally En

l. The energy consumption of 
the cloudlet is not considered. The time that a node takes to 
execute the method locally is shown by Tn

l, and the time that 
a node takes to execute the method remotely is specified by 
Tn

r. Each edge is annotated as e=(m, n). The time it takes to 
transfer the necessary program state is given by Bm,n when m 
calls n and the energy cost of transferring that state is 
annotated as Cm,n. The binary parameter rn indicates whether 
the node n is offloadable or not.  

The 0-1 integer programming function of ICEMobile is 
shown in the equations (1), (2) and (3) [4]. The objective is 
to maximize the energy savings in the mobile device (1). 

The optimization solver determines the offloading variables 
(In) that is the indicator variable of offloading decision for 
each node. As a result of the optimization, if In is equal to 0, 
it means that the method will not be offloaded and if In is 
equal to 1, the method will be offloaded and it will result in 
saving energy.   
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The ICEMobile client framework contains the RMI 
interfaces presenting the signatures of the offloadable 
methods and the necessary codes building a connection with 
the cloudlet. It requires adding the necessary code at the 
beginning of each offloadable method. The 
ICEMobileDecisionMap object contains the offloading 
decision of each offloadable method. It is obtained from the 
optimization result text file, kept into the mobile device 
memory, and in the form of a Java Hash Map object having 
<key, value> pairs.  

IV. EXPERIMENTS AND RESULTS 

A. Hardware and Software Specifications of the 

Implementation Environment 

The backend server is a computer with 4 cores of Intel i7 
4th generation x64 microprocessor and a RAM with 8GB 
DDR3 capacity. Apache Tomcat provides the web server 
functionality by listening incoming requests. As the mobile 
client device, we used an LG G3 smartphone having Android 
Kitkat 4.4.2 OS, a Qualcomm Snapdragon 801 
microprocessor with quad core processors hardware and a 
3GB RAM. In order to create client/server communication, 
we included the Lipe-RMI for RMI-based offloading. In all 
of our three implementations, the mobile device and the 
server are connected to the same LAN. The bandwidth 
measurement tests reveal that LAN bandwidth is 
approximately 64% higher than the WAN bandwidth. 

B. Scenarios with Mathematical Calculations  

As the first demonstrative numerical example, in the 
client side, we implemented several matrix operations, 
including matrix creation with random values, addition, 
multiplication, division and inverse operations at matrices of 
different sizes. These mathematical operations use JScience 
mathematical library. In the server side, we developed 
backend server software in Java, which contains the same 
methods of the Android application with the same JScience 
library. 
 Fig. 2 depicts the call graph of these implementations. 
The first node initiates the application flow after getting an 
input from the user. The vertical flows are differentiated 
based on the matrix size. Among all the operations, matrix 
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creation and matrix addition were found as the easiest 
operations to be completed by the device. On the other hand, 
there is a significant challenge when mobile devices perform 
multiplication, division and inverse operations.  

      

 
Figure 2. Call Graph of Matrices Calculations 

 
TABLE I. MEASURED TIME AND ENERGY COSTS OF THE 

COMPARISON OF OBTAINED ENERGY EFFICIENCY 

node id  Tn
l
 Tn

r  Bm,n En
l
 Cm,n 

1 - - - - - 

2 50 52 695 35,8 720 

3 4 1 2020 2,8 680 

4 328 25 2100 114,6 700 

5 72699 700 2515 44556 700 

6 73206 614 1832 42350 800 

7 35 21 520 20 700 

8 4 10 1010 7,9 700 

9 162 15 1210 58,1 700 

10 30260 284 1400 19200 700 

11 29539 270 1170 15950 700 

12 15 12 320 5 700 

13 1 2 585 3,2 700 

14 80 6 450 6,9 700 

15 8643 89 575 4600 780 

16 8889 89 685 4700 700 

17 2 2 242 5,4 700 

18 1 2 124 0,6 760 

19 14 2 107 29,8 700 

20 1107 14 128 801 700 

21 1076 9 97 450 700 

 
For each scenario with different matrix size, we 

measured time and energy costs of each component of the 
call graph (Table 1). Tn

l represents the time that a node takes 
to execute the method locally, while Tn

r identifies the time 
that a node takes to execute the method remotely. Bm,n 
describes the time that is required to transfer the necessary 
program state when m calls n. En

l shows the energy required 
to execute the method locally for each node n,  . Cm,n 

represents the energy that is required to transfer the 
necessary program state when m calls n. We generated two 
different scenarios. In the first one, all of the nodes are 
marked as offloadable except the root node; while in the 
second one several nodes are marked as non-offloadable.  

Scenario 1: Unconstrained Offloading 

For this case, we mark all the nodes as offloadable except 
the first one. If a node requires taking user input or accessing 
to a native device component, that node cannot be offloaded. 
For this scenario, the optimization solver resulted that it is 
better to offload 16 of 21 nodes to have maximum energy 
saving on mobile device. In that case, the nodes 3, 8, 13 and 
18 will be offloaded to the cloudlet, together with their 
consecutive invocations. Since the objective is to maximize 
the energy saving in mobile device; even though the time 
performances of mobile device and cloudlet are equal to each 
other for any node, the optimization solver prefers 
offloading.  
 

TABLE II. COMPARISON OF OBTAINED ENERGY EFFICIENCY 

 Total Energy 
Cost (mJ) 

The Energy 
Gain (mJ) 

Percentage 
of Gain 

Without 
Offloading 

132.906 0 0% 

Unconstrained 
Offloading 

2.874 130.032 98% 

Constrained 
Offloading 

72.826 60.080 45% 

 
The optimization function starts to offload with the 

lightweight nodes instead of the nodes having high energy 
cost while transferring. After transferring the node with 
lowest cost, the consecutive ones will not consume any 
energy, since they are already on the cloudlet, so they will be 
operated on the cloudlet. This example shows that the 
optimization function examines all of the nodes in high level, 
rather than considering it node by node. Since the set of 
mathematical operations are the same in each vertical flow 
with different size of matrices, the pattern is occurred in the 
same way. We can conclude that the position of the nodes 
and their invocations have significant effects on the 
offloading decision.  

 
Scenario 2: Constrained Offloading 

In order to discover the effect of node offloadability, we 
modified the first scenario by marking the nodes of 5, 10, 15  
and 20 as not-offloadable in addition to the node 1. In this 
case, since the former methods of non-offloadable nodes are 
not resource-intensive, the optimization function decides 
offloading their consecutive nodes (6, 11, 16 and 21), which 
are relatively heavy tasks for the mobile device. 

For these two scenarios, the total costs and obtained 
energy gains are summarized in Table 2. The total cost 
represents the sum of energy weights, when there is a mobile 
processing. The energy gain describes obtained energy 
saving via offloading. As a result, we observe that it is 
possible to achieve an energy saving up to 98% in 
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unconstrained offloading and 45% in constrained offloading 
by integrating ICEMobile framework on the mobile device. 

C. Scenarios with Face Detection 

 This is one of the most commonly applied scenarios for 
the mobile cloud computing, that identifies human faces in a 
given photo. Even though it seems as a quite simple image 
processing operation, it may become a highly computation-
intensive operation proportional to the image resolution. As 
image processing library, we use the native Android FFTE 
face detection API. Our reason for choosing FFTE rather 
than OpenCV Android SDK is that the APIs of OpenCV do 
not detect faces of a static image. Instead, they make the face 
detection when there is an actual streaming on the camera 
[7].  Fig. 3 shows the screenshot of our developed Android 
application. The user selects a photo from the hard drive and 
then selects face detection function. The operation is 
performed on mobile device or on synchronized cloudlet. 
Then, the faces are identified with green rectangles based on 
their coordinate values. In the right side of the screen, the 
time cost is shown together with the detailed information 
about the call graph.  
 

 

Figure 3. Screenshot of Face Detection Application  

 

As the example, an image containing four human faces is 
chosen and it is resized to obtain multiple images of different 
size of pixels. The main reason of duplicating an image in 
different sizes is to eliminate other parameters, such as RGB 
values of the pixels, which could affect the test performance. 
Table 3 summarizes general properties of the images. In the 
table, the total number of pixels describes the multiplication 
of the width and height values.  

The proposed offloading capability is integrated into the 
face detection application (Fig. 4). The figure represents the 
flow of on-device and cloudlet-based processing. The first 
and last nodes of two processing types are the same. 
However, in the second node of cloudlet-based processing 
(B1), there is a conversion to raw data with Base64 encoding 
before transmitting the image data. Then in node C1, the 
necessary initializations for socket, REST or RMI are 
completed. The node C2 is the only node that is executed on 
the cloudlet and performs decoding and face detection 
operation. At the end of its execution, node C2 sends 
obtained results back to the mobile device.   

TABLE III. IMAGES WITH DIFFERENT DIMENSIONS FOR FACE 

DETECTION 

  Width Height Total # of Pixels Size on Disk 

Image1 720 480 0.3 M 102 KB 

Image2 1440 960 1.3 M 321 KB 

Image3 2880 1920 5.5 M 980 KB 

Image4 5760 3840 22.1 M 3410 MB 

 

 
Figure 4. Call Graph Transformation of Face Detection  

The tests of on-device processing reveal that the 
execution of native Android FFTE method takes more than 
80% of total energy consumption. Since it is a native 
function, we are unable to partition this function to obtain a 
balanced distribution. As a result, we concluded that this use 
case is not ideal for optimization-based offloading. Fig. 5 
shows that offloading will save energy for the images that 
are larger than 0.3 megapixels. We made use of this 
scenario to analyze different client/server communication 
techniques including Java sockets, RESTful Web Services 
and LipeRMI to explore the most efficient offloading 
model. 

REST, socket and RMI-based communications are 
amongst the well-known offloading techniques. In order to 
compare the time and energy consumption of these 
communication types, we isolated the data transmission 
process of the use case, which starts by sending the data 
packet from client to server and finishes by receiving it back 
from server. (i.e., the edges B1

C1 and C2
D in Fig. 4).  

We executed the operations for 10 times, and calculated 
the average of measured values. The energy consumption is 
measured in mW, and the time is measured in ms. As a 
result, as shown in Fig. 6 and Fig. 7, we observe that REST 
and socket-based offloading consume nearly the same 
amount of time and energy. Lipe-RMI is found more costly 
than REST and socket-based communications, besides its 
advantages of offloading.  
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Figure 5. Comparison of Energy Consumption of Face Detection Operation  

 

 
Figure 6. Comparison Based on Time Consumption  

 
Figure 7. Comparison Based on Energy Consumption  

 
D. Scenarios with OCR 

As another use case, the ICEMobile framework is 
integrated into the Optical Character Recognition (OCR) 
application. The face detection and OCR are similar 
scenarios due to the fact that there is an image processing in 
each use case by using native functions. Hence, their call 
graph transformation is generated similarly (Fig. 4). The tests 
of on-device processing reveal that the execution of the 
nativeGetUTF8Text operation takes nearly 90% of total time 
and energy cost. It is much higher than the face detection 
operation, because there is not any painting operation on the 
image in OCR. Since Tesseract is not a Java-based library, 
we are unable to get into the structure of its API 
(nativeGetUTF8Text), and it becomes impossible to obtain a 
balanced distribution. We concluded that, the optimization 
model is not needed for this use case. Fig. 8 shows that 
offloading will save energy for images having more than 600 
characters. 

V. CONCLUSION 

In this research, we first presented the challenges in 

mobile cloud computing and then focused on the usage of 

cloudlets as a solution for increasing energy efficiency of 

mobile devices. Cloudlets enable time and energy efficiency 

compared to distant clouds during the execution of 

computation-intensive tasks. In this paper, we implemented 

a lightweight RMI-based computation offloading in Java-

based client and server. In order to examine the applicability 

of the proposed framework, we created three groups of 
synthetic test scenarios. Related call graphs are generated 

for each scenario. Detailed energy consumption analysis is 

done using a mobile application, PowerTutor. These values 

are utilized as the input of the optimization function. The 

results show that ICEMobile allows saving up to 98% of 

energy on mobile devices in specific cases, together with 

keeping the level of mobile user experience. 

 

 
Figure 8. Comparison of on Energy Consumption of OCR Operation  
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