
A Code Offloading Framework for Mobile Cloud Computing: ICEMobile

Emre Çalışır
Computer Engineering Department

Galatasaray University

Istanbul, Turkey

e-mail: emrecalisir@gmail.com

Gülfem Işıklar Alptekin
Computer Engineering Department

Galatasaray University

Istanbul, Turkey

e-mail: gisiklar@gsu.edu.tr

B. Atay Özgövde
Computer Engineering Department

Galatasaray University

Istanbul, Turkey
e-mail: aozgovde@gsu.edu.tr

Abstract— Smartphones have become a crucial part of our life

with their high performance data processing features and

ability to access information from anywhere at any time.

However, they tend to become inadequate to meet computation

intensive operations with their limited battery life and

processing capabilities. Mobile cloud computing may be a

solution, but Wide Area Network (WAN) latencies and

unstable response times of cloud services negatively affect user

experiences. In this paper, the cloudlet approach, which offers

the cloud services with Local Area Network (LAN) bandwidth,

is presented as a possible solution to this problem. A

framework, called ICEMobile, is introduced that brings the

computation offloading capability to mobile applications. The

aim of the ICEMobile framework is to direct application

developers in determining which methods need to be offloaded

in order to save energy during the mobile execution. The

applicability and efficiency of the framework and related

optimization model are shown via real life scenarios. The test

results reveal that it is possible to save energy up to 98% on the

mobile device by using the proposed framework.

Keywords—mobile cloud computing; cloudlet; code

offloading; energy efficiency

I. INTRODUCTION

The evolution of digital world is correlated with the
fulfillment of people's expectations that can be summarized
as accessing technology from anywhere and anytime, called
as ubiquitous computing. It is the method of enhancing
computer usage by making many computers available
throughout the physical environment, but making them
effectively invisible to the user [1]. With the increasing
mobility of people and the rise of social media, people’s
behaviors are changing towards using small and portable
personal computers to benefit from vast resources through
Internet. On the other hand, the need for intense computation
is ever increasing. However, current smartphones are unable
to respond these needs because of their limited battery life
and CPU power. At this point, cloud computing comes into
the scene since it enables retrieving on-demand services from
a shared pool of configurable computing resources [2].
Combining ubiquitous computing, mobile computing and
cloud computing, a new model, called Mobile Cloud
Computing, is developed to bring cloud computing services
into the edge to extend resource-rich services on the mobile
devices [1].

A cloudlet is a small-scale cloud-like infrastructure,
which is located in one hop distance to the mobile user and
connected with a high network speed. Cloudlets are fully
dedicated to the mobile devices with the aim of executing

their resource intensive but latency-sensitive tasks [3]. A
mobile device that is connected to a cloudlet benefits from
much powerful computing capabilities and unlimited power.
These benefits are also valid for distant cloud-based
computation; however, in that case it may occur serious time
losses due to ambiguous service response times of the cloud
and WAN latencies. Therefore, offloading to a distant cloud
is not always a solution. The computation or code offloading
paradigm means transferring complex tasks to more
powerful environments.

In this paper, we develop a framework having code
offloading capability and examine three use cases containing
computation-intensive operations. The framework involves a
decision making engine that analyzes efficiency of the given
application. Doing so, we generate the call graph of the
program and analyze in detail the time cost of each node and
edge. We then test this mechanism with an Android
application and a Java based web server, which are
connected with the RESTful web services during the
execution of three computation-intensive use cases.

The remaining part of the paper is structured as follows:
Section 2 presents related works in literature. Section 3
introduces the proposed ICEMobile architecture with its
optimization model. In Section 4, experiments and results are
given. Finally, the last section presents concluding remarks
driven from the test results.

II. LITERATURE REVIEW

The studies in literature that consider the idea of moving
the cloud closer have started with the ‘cloudlet’ concept of
Satyanarayanan et al. [3]. With the impact of this novel
approach, it has recently become a hot topic in mobile cloud
computing related research. In this cloudlet model, the
cloudlets are at one hop distant to the mobile device, having
high bandwidth wireless access. They may be located in
coffees, airports like wireless hotspots to deliver instant
services to the mobile clients. The proposed computation
offloading techniques in [3] are virtual machine (VM)
migration and dynamic VM synthesis. In VM migration, the
entire snapshot of the mobile device is transferred to the
cloudlet, while in the second technique, there is a dynamic
VM synthesis to reduce the size of the VM snapshot by
receiving the delta with the previous VM state. The dynamic
VM synthesis technique provides offloading capability for
each mobile device, since it transfers the VM of the mobile
device rather than platform specific objects. On the other
hand, it contains many problems especially related with user
experience and lack of a decision engine.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

Another research, entitled as MAUI, targets to offload
only the computation intensive parts of the mobile
application with method-level offloading based on the .NET
framework [4]. In this research, a system is proposed, which
is capable of making the decision of whether offloading will
save energy for each offloadable part of the application. The
proposed method-level offloading type is a more fine-
grained approach than the VM migration or dynamic VM
synthesis. In addition to reducing size of the transferred
objects, MAUI also provides an intelligent mechanism
targeting to reduce the energy consumption on the mobile
device by optimally deciding to offload subject to device and
server capabilities and network conditions. However, some
of the processes in MAUI framework prevent creating
dynamic code offloading environments. The first issue is
having the necessity of modification on the application since
it seems as a disadvantage comparing to [3]. Secondly, there
is not any mechanism for automatically identifying the
computation intensive parts of the application.

Another research entitled as CloneCloud, focuses on the
application partitioning and thread-level offloading [5]. The
VM migration mechanism is used in the background of this
study by offloading execution blocks of applications from
smartphones to their mirror image running on the server.
This framework works as a middleware in Android OS, on
the top of Dalvik VM. An advantage of the CloneCloud is
that it does not require developers’ modification.

In addition to the previous studies, a research, called
Cuckoo, focuses creating a dynamic offloading decision
making tool in runtime in Android OS installed smartphones
[6]. It presents a system to offload mobile device
applications onto a cloud using a Java stub/proxy model.
Cuckoo can be offloaded onto any resource that runs the
Java VM. In order to use Cuckoo, the applications need to be
re-written such that the application supports remote
execution as well as local execution. Moreover, it does not
contain any optimization when deciding to offload; instead it
always offloads when it connects to the cloud. In a recent
related work [1], Zhou et al. propose a context-aware
offloading decision algorithm that works on a mobile cloud
computing offloading system with multiple cloud resources.
Their algorithm takes into account the context changes to
select the wireless medium to utilize.
 The offloading granularity and optimization mechanism

of ICEMobile framework are similar to MAUI’s model.

However, our approach is typical client/server architecture

rather than being a middleware of the device operating

system.

III. ICEMOBILE ARCHITECTURE

The focus of our proposed framework ICEMobile is to
minimize the energy consumption of the mobile device when
computation-intensive functions need to be executed. Doing
so, it transfers the resource-intensive code partitions of
mobile application to the cloudlet for remote execution. The
main purpose is to extend battery life of the mobile device.
The energy consumption of the cloudlet is not the concern in
this paper, since it is assumed to be continuously fed from

the energy sources. The ICEMobile framework architecture
is depicted in Fig. 1. It involves Remote Method Invocation
(RMI) framework both in the mobile platform and in the
cloudlet. In case of cloud-based offloading, it is possible to
integrate this framework into the cloud configuration. The
advantage of using the nearby cloud in LAN is that it
provides higher bandwidth compared to the one in WAN.
Besides, it does not require having Internet connection since
the cloudlet is ready to satisfy all client needs. In case of
need to extra resources, the distant cloud services may be
used, but in that case the user experience may be decreased,
especially when real-time computation-intensive operations
are executed. The essential part of the ICEMobile offloading
framework is in the server side, where there is not any
limitation on the operating system with the help of JVM
technology. The environmental profiling and program
analyzing efforts together with the optimization component
in the server side enable optimal decision making for
offloading. In this architecture, the Profiler and the Analyzer
are not executable programs. The developer manually
operates them and their outputs are transmitted to
Optimization Solver as input. This process is realized
automatically in [5]. In addition to these components, the
same offloadable methods of the mobile application are also
present on the cloudlet to be executed when necessary.

Figure 1. ICEMobile System Architecture

In the client side, any mobile device can benefit from the
ICEMobile task offloading mechanism. For mobile devices
with higher computational capabilities, the need for

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

offloading tends to decrease. In order to promote offloading,
the application code needs to be modified with the
ICEMobile client framework codes. In the server side, a port
is specifically reserved for each client. In order to initiate the
server, the following two steps are proceeded:

i. A CallHandler is identified. The interface file that
keeps the method signatures and the class file that contains
the client methods are globally registered to CallHandler.

ii. CallHandler is bounded by the available port to
start listening the environment and respond to the incoming
requests.

A. Making the Optimal Offloading Decision

The optimization solver in the ICEMobile framework
aims at determining which portions of the application code
are better to be offloaded to the remote server in order
to use resources more effectively. The decision making
procedure is based on the model proposed in [4]. The
advantage of offloading in method-level granularity is the
ability to transfer only the computation-intensive parts of the
application, rather than transferring the full VM snapshot, as
in [3]. In the first step of the ICEMobile optimization
process, the application is analyzed via its call graph. In
order to extract the call graph, static or dynamic analyzers
can be used. Next, each node and edge in the call graph is
attached with a time and energy cost. The measurements are
generated for each of the following three cases:

 Perform all methods on the mobile device and
measure the time and energy cost,

 Perform all offloadable methods on the cloudlet and
measure the time cost,

 Offload all offloadable methods and measure the
time and energy cost.

The energy cost is measured using the Android
application called PowerTutor. At the end of the
optimization process, the nodes that are better to be
offloaded is determined. The offloading variable in the
objective function is a binary one that has two values: 0 for
not offloading, and 1 for offloading. The given maximization
problem is solved by lpsolve solver of the R language.

For a given graph G=(N, E), N represents node and E

represents edge. Each node represents a method and
edge e=(m, n) represents an invocation of method n from m.
We annotated each node with the energy it takes to
execute the method locally En

l. The energy consumption of
the cloudlet is not considered. The time that a node takes to
execute the method locally is shown by Tn

l, and the time that
a node takes to execute the method remotely is specified by
Tn

r. Each edge is annotated as e=(m, n). The time it takes to
transfer the necessary program state is given by Bm,n when m
calls n and the energy cost of transferring that state is
annotated as Cm,n. The binary parameter rn indicates whether
the node n is offloadable or not.

The 0-1 integer programming function of ICEMobile is
shown in the equations (1), (2) and (3) [4]. The objective is
to maximize the energy savings in the mobile device (1).

The optimization solver determines the offloading variables
(In) that is the indicator variable of offloading decision for
each node. As a result of the optimization, if In is equal to 0,
it means that the method will not be offloaded and if In is
equal to 1, the method will be offloaded and it will result in
saving energy.

 ,

(,)

max . .l

n n m n m n

n N m n E

I E I I C

 (1)

 ,

(,)

. . (1) (I .)l r

n n n n m n m n

n N m n E

s t I T T I I B L

 (2)

 ,n nI r n N (3)

The ICEMobile client framework contains the RMI
interfaces presenting the signatures of the offloadable
methods and the necessary codes building a connection with
the cloudlet. It requires adding the necessary code at the
beginning of each offloadable method. The
ICEMobileDecisionMap object contains the offloading
decision of each offloadable method. It is obtained from the
optimization result text file, kept into the mobile device
memory, and in the form of a Java Hash Map object having
<key, value> pairs.

IV. EXPERIMENTS AND RESULTS

A. Hardware and Software Specifications of the

Implementation Environment

The backend server is a computer with 4 cores of Intel i7
4th generation x64 microprocessor and a RAM with 8GB
DDR3 capacity. Apache Tomcat provides the web server
functionality by listening incoming requests. As the mobile
client device, we used an LG G3 smartphone having Android
Kitkat 4.4.2 OS, a Qualcomm Snapdragon 801
microprocessor with quad core processors hardware and a
3GB RAM. In order to create client/server communication,
we included the Lipe-RMI for RMI-based offloading. In all
of our three implementations, the mobile device and the
server are connected to the same LAN. The bandwidth
measurement tests reveal that LAN bandwidth is
approximately 64% higher than the WAN bandwidth.

B. Scenarios with Mathematical Calculations

As the first demonstrative numerical example, in the
client side, we implemented several matrix operations,
including matrix creation with random values, addition,
multiplication, division and inverse operations at matrices of
different sizes. These mathematical operations use JScience
mathematical library. In the server side, we developed
backend server software in Java, which contains the same
methods of the Android application with the same JScience
library.
 Fig. 2 depicts the call graph of these implementations.
The first node initiates the application flow after getting an
input from the user. The vertical flows are differentiated
based on the matrix size. Among all the operations, matrix

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

creation and matrix addition were found as the easiest
operations to be completed by the device. On the other hand,
there is a significant challenge when mobile devices perform
multiplication, division and inverse operations.

Figure 2. Call Graph of Matrices Calculations

TABLE I. MEASURED TIME AND ENERGY COSTS OF THE

COMPARISON OF OBTAINED ENERGY EFFICIENCY

node id Tn
l
 Tn

r Bm,n En
l
 Cm,n

1 - - - - -

2 50 52 695 35,8 720

3 4 1 2020 2,8 680

4 328 25 2100 114,6 700

5 72699 700 2515 44556 700

6 73206 614 1832 42350 800

7 35 21 520 20 700

8 4 10 1010 7,9 700

9 162 15 1210 58,1 700

10 30260 284 1400 19200 700

11 29539 270 1170 15950 700

12 15 12 320 5 700

13 1 2 585 3,2 700

14 80 6 450 6,9 700

15 8643 89 575 4600 780

16 8889 89 685 4700 700

17 2 2 242 5,4 700

18 1 2 124 0,6 760

19 14 2 107 29,8 700

20 1107 14 128 801 700

21 1076 9 97 450 700

For each scenario with different matrix size, we

measured time and energy costs of each component of the
call graph (Table 1). Tn

l represents the time that a node takes
to execute the method locally, while Tn

r identifies the time
that a node takes to execute the method remotely. Bm,n
describes the time that is required to transfer the necessary
program state when m calls n. En

l shows the energy required
to execute the method locally for each node n, . Cm,n

represents the energy that is required to transfer the
necessary program state when m calls n. We generated two
different scenarios. In the first one, all of the nodes are
marked as offloadable except the root node; while in the
second one several nodes are marked as non-offloadable.

Scenario 1: Unconstrained Offloading

For this case, we mark all the nodes as offloadable except
the first one. If a node requires taking user input or accessing
to a native device component, that node cannot be offloaded.
For this scenario, the optimization solver resulted that it is
better to offload 16 of 21 nodes to have maximum energy
saving on mobile device. In that case, the nodes 3, 8, 13 and
18 will be offloaded to the cloudlet, together with their
consecutive invocations. Since the objective is to maximize
the energy saving in mobile device; even though the time
performances of mobile device and cloudlet are equal to each
other for any node, the optimization solver prefers
offloading.

TABLE II. COMPARISON OF OBTAINED ENERGY EFFICIENCY

 Total Energy
Cost (mJ)

The Energy
Gain (mJ)

Percentage
of Gain

Without
Offloading

132.906 0 0%

Unconstrained
Offloading

2.874 130.032 98%

Constrained
Offloading

72.826 60.080 45%

The optimization function starts to offload with the

lightweight nodes instead of the nodes having high energy
cost while transferring. After transferring the node with
lowest cost, the consecutive ones will not consume any
energy, since they are already on the cloudlet, so they will be
operated on the cloudlet. This example shows that the
optimization function examines all of the nodes in high level,
rather than considering it node by node. Since the set of
mathematical operations are the same in each vertical flow
with different size of matrices, the pattern is occurred in the
same way. We can conclude that the position of the nodes
and their invocations have significant effects on the
offloading decision.

Scenario 2: Constrained Offloading

In order to discover the effect of node offloadability, we
modified the first scenario by marking the nodes of 5, 10, 15
and 20 as not-offloadable in addition to the node 1. In this
case, since the former methods of non-offloadable nodes are
not resource-intensive, the optimization function decides
offloading their consecutive nodes (6, 11, 16 and 21), which
are relatively heavy tasks for the mobile device.

For these two scenarios, the total costs and obtained
energy gains are summarized in Table 2. The total cost
represents the sum of energy weights, when there is a mobile
processing. The energy gain describes obtained energy
saving via offloading. As a result, we observe that it is
possible to achieve an energy saving up to 98% in

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

unconstrained offloading and 45% in constrained offloading
by integrating ICEMobile framework on the mobile device.

C. Scenarios with Face Detection

 This is one of the most commonly applied scenarios for
the mobile cloud computing, that identifies human faces in a
given photo. Even though it seems as a quite simple image
processing operation, it may become a highly computation-
intensive operation proportional to the image resolution. As
image processing library, we use the native Android FFTE
face detection API. Our reason for choosing FFTE rather
than OpenCV Android SDK is that the APIs of OpenCV do
not detect faces of a static image. Instead, they make the face
detection when there is an actual streaming on the camera
[7]. Fig. 3 shows the screenshot of our developed Android
application. The user selects a photo from the hard drive and
then selects face detection function. The operation is
performed on mobile device or on synchronized cloudlet.
Then, the faces are identified with green rectangles based on
their coordinate values. In the right side of the screen, the
time cost is shown together with the detailed information
about the call graph.

Figure 3. Screenshot of Face Detection Application

As the example, an image containing four human faces is
chosen and it is resized to obtain multiple images of different
size of pixels. The main reason of duplicating an image in
different sizes is to eliminate other parameters, such as RGB
values of the pixels, which could affect the test performance.
Table 3 summarizes general properties of the images. In the
table, the total number of pixels describes the multiplication
of the width and height values.

The proposed offloading capability is integrated into the
face detection application (Fig. 4). The figure represents the
flow of on-device and cloudlet-based processing. The first
and last nodes of two processing types are the same.
However, in the second node of cloudlet-based processing
(B1), there is a conversion to raw data with Base64 encoding
before transmitting the image data. Then in node C1, the
necessary initializations for socket, REST or RMI are
completed. The node C2 is the only node that is executed on
the cloudlet and performs decoding and face detection
operation. At the end of its execution, node C2 sends
obtained results back to the mobile device.

TABLE III. IMAGES WITH DIFFERENT DIMENSIONS FOR FACE

DETECTION

 Width Height Total # of Pixels Size on Disk

Image1 720 480 0.3 M 102 KB

Image2 1440 960 1.3 M 321 KB

Image3 2880 1920 5.5 M 980 KB

Image4 5760 3840 22.1 M 3410 MB

Figure 4. Call Graph Transformation of Face Detection

The tests of on-device processing reveal that the
execution of native Android FFTE method takes more than
80% of total energy consumption. Since it is a native
function, we are unable to partition this function to obtain a
balanced distribution. As a result, we concluded that this use
case is not ideal for optimization-based offloading. Fig. 5
shows that offloading will save energy for the images that
are larger than 0.3 megapixels. We made use of this
scenario to analyze different client/server communication
techniques including Java sockets, RESTful Web Services
and LipeRMI to explore the most efficient offloading
model.

REST, socket and RMI-based communications are
amongst the well-known offloading techniques. In order to
compare the time and energy consumption of these
communication types, we isolated the data transmission
process of the use case, which starts by sending the data
packet from client to server and finishes by receiving it back
from server. (i.e., the edges B1

C1 and C2
D in Fig. 4).

We executed the operations for 10 times, and calculated
the average of measured values. The energy consumption is
measured in mW, and the time is measured in ms. As a
result, as shown in Fig. 6 and Fig. 7, we observe that REST
and socket-based offloading consume nearly the same
amount of time and energy. Lipe-RMI is found more costly
than REST and socket-based communications, besides its
advantages of offloading.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

Figure 5. Comparison of Energy Consumption of Face Detection Operation

Figure 6. Comparison Based on Time Consumption

Figure 7. Comparison Based on Energy Consumption

D. Scenarios with OCR

As another use case, the ICEMobile framework is
integrated into the Optical Character Recognition (OCR)
application. The face detection and OCR are similar
scenarios due to the fact that there is an image processing in
each use case by using native functions. Hence, their call
graph transformation is generated similarly (Fig. 4). The tests
of on-device processing reveal that the execution of the
nativeGetUTF8Text operation takes nearly 90% of total time
and energy cost. It is much higher than the face detection
operation, because there is not any painting operation on the
image in OCR. Since Tesseract is not a Java-based library,
we are unable to get into the structure of its API
(nativeGetUTF8Text), and it becomes impossible to obtain a
balanced distribution. We concluded that, the optimization
model is not needed for this use case. Fig. 8 shows that
offloading will save energy for images having more than 600
characters.

V. CONCLUSION

In this research, we first presented the challenges in

mobile cloud computing and then focused on the usage of

cloudlets as a solution for increasing energy efficiency of

mobile devices. Cloudlets enable time and energy efficiency

compared to distant clouds during the execution of

computation-intensive tasks. In this paper, we implemented

a lightweight RMI-based computation offloading in Java-

based client and server. In order to examine the applicability

of the proposed framework, we created three groups of
synthetic test scenarios. Related call graphs are generated

for each scenario. Detailed energy consumption analysis is

done using a mobile application, PowerTutor. These values

are utilized as the input of the optimization function. The

results show that ICEMobile allows saving up to 98% of

energy on mobile devices in specific cases, together with

keeping the level of mobile user experience.

Figure 8. Comparison of on Energy Consumption of OCR Operation

ACKNOWLEDGMENTS

 This work is supported by Galatasaray University

Research Fund, under the grant number 15.401.005.

REFERENCES

[1] B. Zhou, A.V. Dastjerdi, R.N. Calheiros, S.N. Srirama and R Buyya,
“A Context Sensitive Offloading Schme for Mobile Cloud Computing

Service”, The Eighth International Conference on Cloud Computing
(CLOUD), New York, USA, pp. 869-876, 2015, ISSN: 2159-6182.

[2] P. Mell and T. Grance, “The NIST definition of cloud computing”,

US National Institute of Science and Technology, 2011, URL:
http://dx.doi.org/10.6028/NIST.SP.800-145 (accessed on 21st

December)

[3] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing”, IEEE Pervasive

Computing, vol.8(4):3, pp.14-23, Dec. 2009, doi:
10.1109/MPRV.2009.82.

[4] E. Cuervo, et al., “MAUI: Making Smartphones Last Longer with

Code Offload”, The Eighth ACM MobiSys, pp.49-62, 2010, ISBN:
978-1-60558-985-5.

[5] B. Chun and P. Maniatis, “Augmented Smartphone Applications

Through Clone Cloud Execution”, The Eighth Workshop on Hot
Topics in Operating Systems (HotOS), pp.8-8, 2009. URL:

https://www.usenix.org/legacy/event/hotos09/tech/full_papers/chun/c
hun.pdf (accessed on 15th November)

[6] R. Kemp, N. Palmer, T. Kielmann and H. Bal, “Cuckoo: a

computation offloading framework for smartphones”, The Second
International Conference on Mobile Computing, Applications, and

Services, MobiCASE., pp.59-79, 2010, ISSN: 1867-8211, ISBN: 978-
1-4673-7286-2.

[7] OpenCV4Android SDK, http://opencv.org/platforms/android.html
(accessed on 27th December 2015).

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.1109/MPRV.2009.82
http://opencv.org/platforms/android.html

