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Abstract—Some social networks, such as LINKEDIN and RE-
SEARCHGATE, allow user endorsements for specific skills. From
the number and quality of the endorsements received, an author-
ity score can be assigned to each profile, with respect to a specific
skill. In this paper, we propose an authority score computation
method that takes into account the relations existing among
different skills. Our method is based on enriching the information
contained in the digraph of endorsements corresponding to a
specific skill, and then applying a ranking method admitting
weighted digraphs, such as PAGERANK. We describe the method,
and test it on a synthetic network of 1493 nodes, fitted with
endorsements.
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I. INTRODUCTION

LINKEDIN and RESEARCHGATE are two prominent ex-
amples of professional social networks implementing the en-
dorsement feature. A user can declare certain skills, and get
endorsed for these skills by other users. From the endorsements
shown in an applicant’s profile, a potential employer can assess
the applicant’s skills with a higher level of confidence than say,
by just looking at his/her CV.

The two endorsement systems are very similar: For each
particular skill, the endorsements make up the arcs of a
directed graph [4], whose vertices are the members’ profiles.
In principle, these endorsement digraphs could be used to
compute an authority ranking of the members with respect
to each particular skill. This authority ranking may provide a
better assessment of a person’s profile, and it could also be
the core element of an eventual tool for finding people who
are proficient in a certain skill, very much like a web search
engine [6]. Expertise retrieval is the area of Computer Science
that deals with those issues [1][5].

Now, people usually have more than one skill, with some
of those skills being related. For example, the skill ‘Java’ is
a particular case of the skill ‘Programming’, which in turn is
strongly related with the skill ‘Algorithms’. It may well happen
that a person is not endorsed for the skill ‘Programming’,
but he/she is endorsed for the skills ‘Java’ and ‘Algorithms’.
From those endorsements it can be deduced with a fair
degree of confidence that the person also possesses the skill
‘Programming’. In other words, a person’s ranking with respect

to the skills ‘Java’ and ‘Algorithms’ affects his/her ranking
with respect to the skill ‘Programming’.

If the members of a social network were consistent while
endorsing their peers, this ‘endorsement with deduction’ would
not add anything to simple (i.e., ordinary) endorsement. In this
ideal world, if Alice endorses Bob for the skill ‘Java’, she
would be careful to endorse him for the skill ‘Programming’
as well. In practice, however,

1) People are not consistent, for consistency would require
a great effort. In an analysis of a small LINKEDIN
community we have detected several inconsistencies. For
example, several users have been endorsed for ‘C++’ but
not for ‘Programming’.

2) People are not systematic. That is, people do not usually
go over all their contacts systematically to endorse, for
each contact and alleged skill, all those contacts which,
according to their opinion, deserve such endorsement.

3) Skills lack standardization. In most of these social net-
works, a set of standard, allowed skills has not been
defined. As a result, many related skills (in many cases,
almost synonyms) may come up in different profiles of
the social network.

Endorsement with deduction may help address those prob-
lems, and thus provide a better assessment of a person’s
skills. More precisely, we propose an algorithm that enriches
the digraph of endorsements associated to a particular skill
with new weighted arcs, taking into account the correlations
between that ‘target’ skill and the other ones.

A. Contributions of this paper
This paper focuses on professional social networks allow-

ing user endorsements for particular skills, such as LINKEDIN
and RESEARCHGATE. Our main contributions can be summa-
rized as follows:

1) We introduce endorsement deduction: an algorithm to
enrich/enhance the information contained in the digraph
of endorsements corresponding to a specific skill (‘target’
skill or ‘main’ skill) in a social network. This algorithm
adds new weighted arcs (corresponding to other skills) to
the digraph of endorsements, according to the correlation
of the other skills with the ‘main’ skill. We assume the

68Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies



existence of an ‘ontology’ that specifies the relationships
among different skills.

2) After this pre-processing we can apply a ranking al-
gorithm to the enriched endorsement digraph, so as to
compute an authority score for each network member with
respect to the main skill. In particular, we have used the
(weighted) PAGERANK algorithm for that purpose, but in
principle, any ranking method could be used, provided
that it admits weighted digraphs. This authority score
could be useful for a conceivable tool for searching people
having a certain skill. Thus, the results of a query might
be displayed in decreasing order of authority.

3) We propose a methodology to validate our algorithm,
which does not rely as heavily on the human factor as
previous validation methods, or on the availability of pri-
vate information of the members’ profiles. Following this
methodology, we test our solution on a synthetic network
of 1493 nodes and 2489 edges, similar to LINKEDIN, and
fitted with endorsements [13].

To the best of our knowledge, this is the first proposal that
ranks users of a social network according to their proficiency
in some skill, based on endorsements. Moreover, we are
not aware of any other work that suggests to enhance the
endorsement digraph corresponding to some particular skill,
with information obtained from related skills.

The rest of the paper is organized as follows: Section II
provides the essential concepts, terminology and notation that
will be used throughout the rest of the paper. It also describes
the PAGERANK algorithm, including the variant for weighted
digraphs. After that, our proposal is explained in Section III
together with a simple example. In Section IV we compare the
results obtained by ranking with deduction with those obtained
by simple ranking, according to three criteria proposed by
ourselves.

II. PRELIMINARIES

A. Terminology and notation
A directed graph, or digraph D = (V,A) is a finite

nonempty set V of objects called vertices and a set A of
ordered pairs of vertices called arcs. The order of D is the
cardinality of its set of vertices V . If (u, v) is an arc, it is said
that v is adjacent from u. The set of vertices that are adjacent
from a given vertex u is denoted by N+(u) and its cardinality
is the out-degree of u, d+(u).

Given a digraph D = (V,A) of order n, the adjacency
matrix of D is an n×n matrix M = (mij)n×n with mij = 1 if
(vi, vj) ∈ A, and mij = 0 otherwise. The sum of all elements
in the i-th row of M will be denoted Σmi∗, and it corresponds
to d+(vi).

A weighted digraph is a digraph with (numeric) labels
or weights attached to its arcs. Given (u, v) ∈ A, ω(u, v)
denotes the weight attached to that arc. In this paper, we only
consider directed graphs with non-negative weights. The reader
is referred to Chartrand and Lesniak [4] for additional concepts
on digraphs.

B. PAGERANK vector of a digraph
PAGERANK [2][12] is a link analysis algorithm that assigns

a numerical weighting to the vertices of a directed graph.

The weighting assigned to each vertex can be interpreted as a
relevance score of that vertex inside the digraph.

The idea behind PAGERANK is that the relevance of a
vertex increases when it is linked from relevant vertices. Given
a directed graph D = (V,A) of order n, assuming each
vertex has at least one outlink, we define the n × n matrix
P = (pij)n×n as,

pij =

{
1

d+(vi)
if (vi, vj) ∈ A,

0 otherwise.
(1)

Those vertices without oulinks are considered as if they had
an outlink pointing to each vertex in D (including a loop link
pointing to themselves). That is, if d+(vi) = 0 then pij = 1/n
for each j. Note that P is a stochastic matrix whose coefficient
pij can be viewed as the probability that a surfer located at
vertex vi jumps to vertex vj , under the assumption that the
next movement is taken uniformly at random among the arcs
emanating from vi. When the surfer falls into a vertex vi such
that d+(vi) = 0, then he/she is able to restart the navigation
from any vertex of D uniformly chosen at random. So as to
permit this random restart behaviour when the surfer is at any
vertex (with a small probability 1 − α), a new matrix Pα is
created as,

Pα = αP + (1− α)
1

n
J(n), (2)

where J(n) denotes the order-n all-ones square matrix.
By construction, Pα is a positive matrix [11], hence,

Pα has a unique positive eigenvalue (whose value is 1) on
the spectral circle. The PAGERANK vector is defined to be
the (positive) left-hand eigenvector P = (p1, . . . , pn) with∑
i pi = 1 (the left-hand Perron vector of Pα) associated

to this eigenvalue. The probability α, known as the damping
factor, is usually chosen to be α = 0.85.

The relevance score assigned by PAGERANK to vertex vi
is pi. This value represents the long-run fraction of time the
surfer would spend at vertex vi.

C. PAGERANK vector of a weighted digraph
When the input digraph is weighted, the PAGERANK

algorithm is easily adapted so that the probability that the
random surfer follows a certain link is proportional to its
(positive) weight [15]. This is achieved by slightly modifying
the definition, previously given in (1), of matrix P so that,

pij =

{
ω(vi,vj)∑

v∈N+(vi)
ω(vi,v) if (vi, vj) ∈ A,

0 otherwise.
(3)

Nodes with no outlinks are treated in the same way as
before.

III. ENDORSEMENT DEDUCTION
AND RANKING

Let us consider a professional network in which users can
indicate a set of topics they are skilled in, and be endorsed
for those skills by other users. For each skill, we get an
endorsement digraph. Our objective is to compute an authority
ranking for a particular skill, which is not only based on the
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endorsement digraph of that particular skill, but also takes into
account the endorsement digraphs of other related skills. From
now on, the skill for which we want to compute the ranking
will be called the main skill.

Let S = {s0, s1, . . . s`} be the set of all possible skills,
with s0 being the main skill. Let Dk = (V,Ak) denote the
endorsement digraph corresponding to skill sk, and let Mk be
its adjacency matrix.

We now define the skill deduction matrix Π = (πkt) as
follows: Given a pair of skills sk and st, πkt represents the
probability that a person skilled in sk also possesses the skill
st. In other words, from sk we can infer st with a degree
of confidence πkt. By definition, πkk = 1 for all k. In this
way, if some user endorses another user for skill sk but no
endorsement is provided for skill st, we can deduce that an
endorsement (for st) should really be there with probability
πkt. In general, Π will be non-symmetric and sparse, thus it
is better represented as a directed graph with weighted arcs.

Our proposal takes as input the skill deduction matrix Π,
together with those endorsement digraphs Dk, with 0 < k ≤ `,
such that πk0 > 0. Without loss of generality, we will assume
that the set of skills related to s0 is S0 = {sk | k 6= 0, πk0 >
0} = {s1, . . . , s`}.

The proposed endorsement deduction method constructs a
weighted endorsement digraph Dwe

0 = (V,Awe0 ) on skill s0,
with weights ranging from 0 to 1, considering the endorse-
ments deduced from related skills {s1, . . . , s`}.

1) First of all, if user vi directly endorsed vj for skill s0,
that is (vi, vj) ∈ A0, then Dwe

0 has arc (vi, vj) ∈ Awe0
with ω(vi, vj) = 1 (that endorsement receives a maximum
confidence level).

2) If (vi, vj) /∈ A0 but (vi, vj) ∈ Ak, for just one k, 1 ≤
k ≤ `, then arc (vi, vj) is added to Dwe

0 with weight
ω(vi, vj) = πk0, that is, the arc is assigned a weight that
corresponds to the probability that vi also considers vj
proficient in skill s0, given an existing endorsement for
skill sk.

3) Finally, if (vi, vj) /∈ A0 but (vi, vj) ∈ Ak1 , . . . , Ak` , then
the arc (vi, vj) is assigned a weight corresponding to the
probability that vi would endorse vj for s0 given his/her
endorsements for sk1 , . . . , skl . That is, let “(ski → s0)”
denote the event “endorse for skill s0 given an endorse-
ment for ski (its probability is p(ski → s0) = πki,0)
then (vi, vj) is assigned a weight that corresponds to the
probability of the union event
“∪ki∈{k1,...,k`}(ski → s0)”, assuming those events are
independent.

Next, we show how to construct the weighted adjacency
matrix of Dwe

0 by iteratively adding deduced information from
related skills. Computations are shown in (4). After the k-th
iteration, matrix Qk corresponds to the weighted digraph of
skill s0 after having added deduced information from skills
s1, . . . , sk. The matrix computed after the last iteration Q`

corresponds to the weighted adjacency matrix of digraph Dwe
0 .

Computations can be carried out as follows,

Q0 = M0 (4a)

Qk = Qk−1 + πk0((J(n) −Qk−1) ◦Mk), for k = 1, . . . , `,
(4b)

where the symbol ‘◦’ represents the Hadamard or elemen-
twise product of matrices.

Note that (4b) acts on the entries of Qk−1 that are smaller
than 1, and the entries equal to 1 are left untouched. If some
entry Qk−1(i, j) is zero, and the corresponding entry Mk(i, j)
is non-zero, then Qk−1(i, j) takes the value of Mk(i, j),
modified by the weight πk0. This corresponds to the second
case above.

If Qk−1(i, j) and Mk(i, j) are both non-zero, then we are
in the third case above. To see how it works, let us suppose
that some entry M0(i, j) is zero, but the corresponding entries
M1(i, j),M2(i, j),M3(i, j), . . ., are all equal to 1. In other
words, person i does not endorse person j for the main skill
(skill 0), but does endorse person j for skills 1, 2, 3, . . .. In
order to simplify the notation, we will drop the subscripts i, j,
and we will refer to qk as the (i, j)-entry of Qk. Applying (4),
we get:

q0 = m0 = 0

q1 = q0 + π1,0(1− q0) = π1,0

q2 = q1 + π2,0(1− q1) = π1,0 + π2,0(1− π1,0)

= π1,0 + π2,0 − π1,0π2,0

...

which corresponds to the probabilities of the events (s1 →
s0), (s1 → s0) ∪ (s2 → s0), and so on.

Once we have the matrix Q` = (qij)n×n, we can apply
any ranking method that admits weighted digraphs, such as
the weighted PAGERANK algorithm [15]. For that purpose,
we have to construct the normalized weighted link matrix P,
as in (3):

pij =


qij

Σqi∗
if Σqi∗ > 0,

1
n if Σqi∗ = 0.

(5)

Then we compute Pα from P, as in (2), and we finally
apply the weighted PAGERANK algorithm on Pα.

A. An example
As a simple illustration, let us consider a set of three skills:

‘Programming’, ‘C++’ and ‘Java’. The probabilities relating
them, depicted in Figure 1, have been chosen arbitrarily, but
in practice, they could have been obtained as a result of some
statistical analysis.

Programming

C++ Java

0.2
0.8

0.2
0.8

0.4

0.4

Figure 1. Directed graph representing a skill deduction matrix
Π.

Let us further assume that we have a community of
six individuals, labeled from ‘1’ to ‘6’. Figure 2 shows the

70Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies



1

2

34

5

6 1

2

34

5

6

Programming C++

Figure 2. Endorsements for ‘Programming’(left) and
‘C++’(right).

endorsement digraphs among the community members for the
skills ‘Programming’ and ‘C++’.

Let us suppose that the skill ‘Programming’ is our main
skill (skill 0). Thus, Q0 = M0 is the adjacency matrix of
the digraph shown in Figure 2 (left). If we compute the
PAGERANK for the skill ‘Programming’, without considering
its relationships with other skills, we get the following scores
(P(v) denotes the PAGERANK score assigned to vertex v):
P(1) = P(3) = P(4) = 0.0988, P(2) = P(5) = 0.1828, and
P(6) = 0.3380.

In other words, on the basis of the endorsements for
‘Programming’ alone, the individuals ‘2’ and ‘5’ are tied up,
and hence equally ranked.

Now we will include the endorsements for ‘C++’ in this
analysis (skill 1). We apply (4) to compute Q1, as follows:

Q1 = Q0 + π1,0((J(6) −Q0) ◦M1),

where π1,0 = 0.8, and M1 is the adjacency matrix of the
digraph shown in Figure 2 (right). This yields the endorsement
digraph depicted in Figure 3.

The PAGERANK scores assigned to nodes in that digraph
are: P(1) = P(3) = P(4) = 0.0958, P(2) = 0.1410, P(5) =
0.2133, and P(6) = 0.3585. The individuals ‘2’ and ‘5’ are
now untied, and we have better grounds to trust Programmer
‘5’ over Programer ‘2’.

1

2

34

5

6
1

1

1 1
0.8

Figure 3. Endorsements for ‘Programming’, with information
deduced from ‘C++’.

Let us now suppose that the endorsement digraph for
‘Java’ is the one given in Figure 4 (left). We can include the
endorsements for ‘Java’in the same manner:

Q2 = Q1 + π2,0((J(6) −Q1) ◦M2),

where again π2,0 = 0.8. The result is given in Figure 4
(right).

1

2

34

5

6

Java

1

2

34

5

6

Final

1

1

1

1

0.8

0.8

0.96

Figure 4. Endorsements for ‘Java’ (left), and endorsements
for ‘Programming’, with information deduced from
‘C++’ and ‘Java’ (right).

If we apply PAGERANK to this final digraph we get:
P(1) = 0.1178, P(2) = 0.1681, P(3) = P(4) = 0.0945,
P(5) = 0.2027, and P(6) = 0.3224.

With the aid of the new endorsements, Programmer ‘1’
differentiates itself from Programmers ‘3’ and ‘4’.

IV. SIMPLE RANKING VS. RANKING WITH DEDUCTION

A. Evaluation criteria
Several criteria and measures have been developed for

evaluating information retrieval and ranking systems, such as
precision, recall, F -measure, average precision, P@n, etc. (see
[3], Sec. 1.2). All these measures rely on a set of assumptions,
which include, among others, the existence of:

1) a benchmark collection E of personal profiles (potential
experts),

2) a benchmark collection S of skills,
3) a (total binary) judgement function r : E × S → {0, 1},

stating whether a person e ∈ E is an expert with respect
to a skill s ∈ S.

Unfortunately, none of these assumptions applies in our
case. To the best of our knowledge, there does not exist any
reliable open-access ground-truth dataset of experts and skills,
connected by endorsement relations. To begin with, the en-
dorsement feature is relatively new, and still confined to a few
social networks, so that not enough data has accumulated so
far. On the other hand, LINKEDIN does not disclose sensitive
information of its members (including their contacts or their
endorsements), due to privacy concerns.

The third assumption is also problematic: Even if we had
a dataset with endorsements, we would still need a ‘higher
authority’, or an ‘oracle’, to judge about the expertise of a
person. Moreover, since our goal is to rank experts, a binary
oracle would not suffice.

Traditionally, ranking methods have been validated by
carrying out surveys among a group of users [6], which in
our opinion, is very subjective and error-prone. We propose a
more objective validation methodology, which is based on the
following criteria:

1) Our ranking with deduction is close to the ranking pro-
vided by PAGERANK. This criterion is based on the as-
sumption that GOOGLE’s PAGERANK is widely accepted
as a good method, as it has been validated by millions
of users for more than fifteen years now. If we use
endorsement deduction in connection with PAGERANK,
results should not differ too much from PAGERANK.

71Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies



2) Ranking with deduction results in less ties than PAGER-
ANK. Ties are an expression of ambiguity, hence a smaller
number of ties is desirable. In the example of Section
III, we have seen that ranking with deduction resolves
a tie produced by PAGERANK. However, this has to be
confirmed by meaningful experiments.

3) Ranking with deduction is more robust than PAGERANK
to collusion spamming. Collusion spamming is a form of
link spamming, i.e., an attack to the reputation system,
whereby a group of users collude to create artificial links
among themselves, and thus manipulate the results of
the ranking algorithm, with the purpose of getting higher
reputation scores than they deserve [7][8].

B. Experimental setup and results
Our experimental benchmark consists of a randomly gen-

erated social network that replicates some of the features
of LINKEDIN at a small scale [13]. LINKEDIN consists of
an undirected base network (L), or network of contacts,
and for each skill, the corresponding endorsements form a
directed subgraph of (L). In [10], Leskovec formulates a model
that describes the evolution of several social networks quite
accurately, including LINKEDIN, although this model is limited
to the network of contacts (L), and does not account for the
endorsements, since that feature was introduced in LINKEDIN
later. We have implemented Leskovec’s model and used it to
generate an undirected network of contacts with 1493 nodes
and 2489 edges.

Additionally, we have considered five skills: 1. Program-
ming, 2. C++, 3. Java, 4. Mathematical Modelling, 5. Statistics.
We have chosen these skills for two main reasons:

1) These five skills abound in a small LINKEDIN community
consisting of 278 members, taken from our LINKEDIN
contacts, which we have used as a sample to collect some
statistics.

2) These five skills can be clearly separated into two groups
or clusters, namely programming-related skills, and math-
ematical skills, with a large intra-cluster correlation, and
a smaller inter-cluster correlation. This is a small-scale
representation of the real network, where skills can be
grouped into clusters of related skills, which may give
rise to different patterns of interaction among skills.

We have computed the co-occurrences of the five skills in
our small community, resulting in the co-occurrence matrix
Π1 of (6). The entry Π1(i, j) is the ratio between the number
of nodes that have been endorsed for both skills, i and j, and
the number of nodes that have been endorsed for skill i alone.

Π1 =


1 0.42 0.42 0.5 0.33

0.62 1 0.62 0.25 0.12
0.62 0.62 1 0.12 0.12
0.75 0.25 0.12 1 0.5
0.5 0.12 0.12 0.5 1

 (6)

Now, for each skill we have constructed a random endorse-
ment digraph (a random sub-digraph of the base network),
in such a way that the above co-occurrences are respected.
We have also taken care to respect the relative endorsement
frequency for each individual skill. The problem of construct-
ing random endorsement digraphs according to a given co-
occurrence matrix is not trivial, and may bear some interest

in itself [13]. The base network and the endorsement digraphs
can be found at [14].

Next, we have computed two rankings for each skill, one
using the simple PAGERANK algorithm, and another one using
PAGERANK with deduction. For PAGERANK with deduction
we have used the skill deduction matrix Π2 given in (7). This
matrix has been constructed by surveying a group of seven
experts in the different areas involved. For real cases involving
a large set of skills, Π2 must be generated automatically via
data mining techniques.

Π2 =


1 0.7 0.7 0.4 0.3
1 1 0.6 0.4 0.3
1 0.7 1 0.4 0.3

0.3 0.2 0.2 1 0.8
0.3 0.2 0.2 1 1

 (7)

For each skill, we have computed the correlation between
both rankings, and the number of ties in each case, according
to the first two criteria described above. Additionally, in order
to test the robustness of the method to collusion spamming, we
have added to each endorsement digraph, a small community
of new members (the cheaters), who try to subvert the system
by promoting one of them (their leader) as an expert in
the corresponding skill. We have chosen the most effective
configuration for such a spamming community, as described in
[7], and depicted in Figure 5. Thereupon, we have compared
the position of the leader of cheaters in simple PAGERANK
with its position in PAGERANK with deduction.

LEADER

Assistant

num. 1

Assistant

num. 2

Figure 5. Link spam alliance: Three people collude to promote
one of them.

Table I summarizes the results of the aforementioned
experiments. We can see that there is a very high correlation
between PAGERANK with deduction and PAGERANK without
deduction for all skills, according to the values of Kendall’s
τ and Spearman’s ρ correlation coefficients. With respect to
the second criterion, the experiments also yield unquestionable
results: For all skills, the number of ties is significantly
reduced. As for the third criterion, in all cases there is a
detectable drop in the position of the leader of cheaters, which
may lead us to conclude that PAGERANK with deduction is
more robust to collusion spam than simple PAGERANK. The
last column of the table contains the difference between the
position of the leader with deduction and without deduction,
expressed as a percentage.

However, this may not lead us to the conclusion that
PAGERANK with deduction is an effective mechanism against
collusion spam. Actually, the spam alliance that we have
introduced in our experiments is rather weak. If we strengthen
the spam alliance, then PAGERANK with deduction may also
be eventually deceived.

Several effective mechanisms have been proposed to fight
collusion spam, an example being the so-called asymmetric
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TABLE I. RESULTS OF THE EXPERIMENT WITH LOW-DENSITY ENDORSEMENT DIGRAPHS

Number Correlation Number of ties Position of leader
of endor-

Skill sements ρ τ without with % without with %
(arcs) deduction deduction reduction deduction deduction fall

Programming 220 0.89 0.76 1460 1316 10% 1 48 3%
C++ 140 0.85 0.63 1478 1304 12% 4 48 3%
Java 137 0.85 0.63 1486 1292 13% 1 48 3%

Math Modeling 134 0.85 0.63 1483 1318 11% 1 45 3%
Statistics 128 0.85 0.63 1486 1304 12% 1 45 3%

AVG 11.6% 3%

TABLE II. RESULTS OF THE EXPERIMENT WITH HIGHER-DENSITY ENDORSEMENT DIGRAPHS

Number Correlation Number of ties Position of leader
of endor-

Skill sements ρ τ without with % without with %
(arcs) deduction deduction reduction deduction deduction fall

Programming 427 0.76 0.63 1428 625 56% 1 175 12%
C++ 1793 0.97 0.93 1005 575 43% 66 178 7%
Java 1856 0.97 0.93 1005 566 44% 63 180 8%

Math Modeling 1406 0.95 0.89 1130 652 42% 56 168 7%
Statistics 1447 0.96 0.90 1113 580 48% 58 169 7%

AVG 47% 8%

reputation systems. A complete survey of such systems is given
in [9]. Presumably, these mechanisms will give better results
when combined with deduction.

On the other hand, our endorsement digraphs are rather
sparse. It is reasonable to predict that if we should consider
more skills, and if the total number of endorsements should
increase, then the effects of PAGERANK with deduction will
be stronger.

In order to verify this prediction, we have carried out a
second experiment on the same base network and the same
set of skills, increasing the number of endorsements. Thus, we
have generated a second set of endorsement digraphs, with
a larger number of arcs. This time we cannot enforce the
co-occurrences observed in our small LINKEDIN community.
Subsequently we have performed the same computations on
this second set of endorsement digraphs, obtaining the results
recorded in Table II. These results fully confirm our prediction:
There is an increase in the correlation coefficients (except in
one case), as well as a larger reduction in the number of ties,
and a more significant fall in the position of the leader of
cheaters.
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