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Abstract—Data warehouse has been traditionally implemented 

in Relational Database Management System (RDBMS) from 

operational data store up until the data marts and OLAP 

(online analytical processing) cubes for data analysis. However, 

the process of analyzing big data based on RDBMS is a time 

consuming process. In addition, with the advent of IoT, social 

media and other means of big data incorporation, the challenge 

pose to process the enormous streaming data with the need to 

obtain the data analysis at hand with near real time requires a 

need of new platform to address this. Big data incorporation 

for data analysis is important as it will enlarge the scope of 

analysis such as weather, devices information, real-time data 

for data correlation with existing historical data. Presently, 

RDBMS is not developed for handling large data set and also 

with ability to perform join queries between historical and 

streaming data for more data insight. In this paper, we 

introduce HPDW appliance which is a new big data platform 

encompassing from stream and batch data process and data 

query through JDBC, ODBC and integrated multi-data source 

BI dashboarding and data scientist tool. As it is an appliance, 

the nodes and all respective components required are pre-

configured, hence data scientist or BI analysis will focus on 

using the big data for analysis and not on the setup of the big 

data infrastructure which will be time consuming. HPDW 

appliance is developed based on Massive Parallel Process 

(MPP) to achieve the in-memory speed it requires which uses 

Hadoop Distributed File System (HDFS) as the storage layer 

and high network speed Infiniband for node connectivity. In 

this paper, we describe experimental results related with the 

performance of its query processing. We compare the 

performance results on a physical cluster between RDBMS 

against HPDW system by varying the size of the data 

warehouse for fact table queries ranging from 7GB to 23GB 

data size. Our experiment results show that HPDW system can 

process the same SQL query with respect to RDBMS much 

faster, up to 11-200 times faster. In addition, we also show the 

data analysis results and data mining that can be performed on 

HPDW. 

Keywords—big data; hadoop; hive; parallel process; infiniband; 
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I. INTRODUCTION 

Data warehouse has been used actively in various industries 

for data analysis and decision making by the management. 

Traditionally data warehouse has been developed using 

combination of ETL tool, BI analysis and presentation layer as 

well as RDBMS for the data storage and processing. Data 

warehouse requires a number of predefined stages [1][2] and 

for handling large data set or Big Data such as Petabyte data 

warehouse, it is not common to hear RDBMS being used for 

this task [7][8]. Big Data is perceived as a new enablement for 

competitive advantage [9]. Big Data has the characteristics of 

high Volume, high Variety and high Velocity with information 

to be delivered very quickly [10]. By analyzing the relationship 

between the data in the combination of Big Data, we are able to 

gain competitive advantage [11][12]. Hence, by bringing Big 

Data to the data warehouse we are enriching the data further 

such as combining existing data with new data set of Big Data 

such as weather and social media to provide an even better 

analysis.  

However, bringing a combination of Big Data to data 

warehouse is a challenge as existing RDBMS technology is not 

built for handling large data set [7][8] and in addition is the 

ability to perform joins queries between historical and 

streaming data. 

In this paper, we introduce HPDW which is a new Massive 

Parallel Process (MPP) where it uses Hadoop Distributed File 

System (HDFS) as the storage layer and its own parallel query 

execution engine in combination with high network speed 

Infiniband integration into the clusters. In this paper, we first, 

set up a star schema health data warehouse on the HPDW for 

performing online analysis with HPDW Data Analysis which is 

a BI tool. In addition, we also use commercial database client 

tool with HPDW JDBC to access the HPDW system for query 

performance analysis. We compare the performance results on 

a physical cluster between RDBMS against HPDW system by 

varying the size of the data warehouse for fact table queries 

ranging from 7GB to 23GB data size. Our experiment results 

show that the HPDW system can process the same SQL query 

with respect to RDBMS much faster, up to 11-200 times faster. 

We also introduce HPDW ability to perform data mining on 

streamed data stored in HPDW. In addition, we also show 

ability of HPDW to perform unify query between batch and 

stream data for further analysis required. 

This paper is organized as follows. Section II describes the 

background of this work. Section III describes the HPDW 

system overview. Section IV describes the approach of our data 

warehouse system and schema design. We also show our 

experimental evaluation result about HPDW vs RDBMS on 

SQL query performance in Section V. In this section, we also 

show the output using charts from HPDW Data Analysis and 

also using of python script for retrieving streaming data for 
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data mining. A brief conclusion and future works about this 

paper are made in Section VI. 

II. RELATED WORKS 

Traditionally data warehouse has been implemented 
using RDBMS. In order to implement high performance in 
RDBMS, parallel query processing has been implemented by 
RDBMS to speed up query process. Several RDBMSs 
[19][28][29] support parallel queries, where data can be 
partitioned across several nodes and accessed 
simultaneously. 

However, handling of large data set or Big Data such as 
Petabyte data warehouse, it is not common to hear RDBMS 
being used for having the ability to store in large data set and 
perform data analysis efficiently [22][23]. In order to 
facilitate data analysis on these large dataset, there are two 
possibilities of addressing these, e.g. using massive parallel 
processing (MPP) system such as Teradata [18][28], Vertica 
[29] and Greenplum [19] or massive scale data processing 
platform such as MapReduce [20], Hadoop [21], and Dryad 
[22]. Each system is equipped with a high-level language 
(e.g., SQL [23], Hive [16][17], Pig Latin [25], or Sawzall 
[26]). Programs written in these languages are compiled into 
a graph of operators called a plan. The plan is then executed 
as a parallel program distributed across a cluster. 

In the massive scale data processing, MapReduce, 
Hadoop, Hive and Pig are commonly being used. 
MapReduce [20] is a programming model for processing 
massive-scale data sets in large shared-nothing clusters. 
Users specify a map function that generates a set of key-
value pairs, and a reduce function that merges or aggregates 
all values associated with the same key. A combination of 
map function and reduce function is called a job. In 
SQL(Structured Query Language), a MapReduce job can be 
expressed as an aggregation query. Hadoop [21] is an open-
source implementation of MapReduce written in Java. 
Hadoop consist of HDFS which provides high scalability to 
store big data and MapReduce which presents an efficient 
programming model in processing HDFS. However, for data 
analyst, usual form of analyzing big data is through SQL 
query rather than having to develop MapReduce program 
code which is a heavy task. As a result, Facebook developed 
and published Hive [16][17][27] in order to resolve this 
problem. Hive processes the query of big data distributed and 
stored in Hadoop by providing an interface significantly 
similar to SQL called HiveQL(Hive Query Language). 
However, since Hive underlying framework runs the 
MapReduce of Hadoop, it does not have a performance 
advantage as a relational database. Fig. 1 and Fig. 2 show the 
overall flow and architecture of MapReduce and 
Hive/Hadoop respectively. 

 

 

 
Figure 1. Processing Flow of MapReduce 

 

 
 
Figure 2. Hive Architecture Overview 

  
In the Massive Parallel data processing in a shared-

nothing architecture there have been many research 
conducted [32][33][34][35][36][37][38]. In addition, there 
are some high-end commercial MPP products are on the 
market today [19][28][29][30][31] that is a shared-nothing 
MPP. One of the well-known commercial MPP is 
Greenplum database which is a shared-nothing MPP 
architecture. It is a MPP database [20] infrastructure coupled 
with computational capabilities to provide faster querying. 
Some of these MPP commercial databases presently are 
supporting Hadoop. Nevertheless, they still require the 
migration from Hadoop into MPP database. Our system 
differs from this where we uses HDFS as the data store 
without having to migrate. 

We also perform background study on whether the 
implementation should be performed on virtual or physical 
cluster [14]. As our implementation stress on performance, 
we found that for the same number of nodes, physical server 
perform at least twice the speed of virtual server on the big 
data set. Hence, our implementation work is performed on 
physical cluster. 

III. HPDW SYSTEM OVERVIEW 

HPDW Big Data Analytical Platform consists of 4 major 
sections: Data Streaming, Data Platform, Data Exploration 
and Analytics. In Fig. 3, an overview of HPDW Big Data 
Analytical Platform is shown: 

33Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies



 

 
Figure 3. HPDW Data Platform Architecture Overview 

 
HPDW Data Streaming provides a RESTful JSON 

service to accept continuous data streaming in any JSON 
format. The service uses Apache Kafka as the data streaming 
queue to accept high-load of data stream. Streaming Data are 
stored in HPDW Data Platform section for historical data 
query.   

HPDW Data Platform is based on shared-nothing MPP 
architecture where each node will use the local disks, 
memory, etc. HPDW however is based on shared-nothing 
MPP architecture where each node will use the local disks, 
memory, etc. Basically HPDW allows for commodity based 
servers to be connected on a dedicated high speed network 
with its own parallel query execution engine and memory 
where these nodes will be known as worker nodes which can 
perform the reduce steps and then pass on the result back to 
the master nodes which will aggregate all the nodes results to 
the requester. All the aggregation processes are done in 
memory for speed optimization. The parallel query execution 
engine is responsible for converting SQL into a physical 
execution plan by performing a query profiling and choosing 
the query plan based on cost-based optimization. The query 
execution will then be divided to all the nodes so that it can 
be executed in parallel. The connection amongst the nodes 
are provided through HPDW interconnect which uses 
Infiniband. In the HPDW storage layer, it consists of HDFS 
which is based on Hadoop cluster with MapReduce engine. 
HDFS basically stores the data and the metadata of tables 
loaded from HDFS. Fig. 4, shows the overview of the 
processing steps of HPDW. 

 

 
 
Figure 4. HPDW Data Platform Architecture Overview 

 
HPDW Data Exploration is based on python to provide 

data scientist the ability to perform data mining on both 
stream and batch data using R, Spark and Python. The scripts 
can connect to HPDW Data Platform for data mining of the 
data stored there such as historical data stream. 

HPDW Data Analytics is a web-based multi-data source 
BI tool to provide analysis with dashboard, charts, GIS to 
further understand the data. Presently the type of data 
sources supported includes Twitter, Facebook, HPDW Data 
Platform, PostgreSQL, Oracle, MySQL, CSV, SOLR, 
IMPALA, Hive2, MongoDB, RESTful JSON. The charts 
enable dynamic drill down, dynamic filtering, and dynamic 
chart changing to enable easier visual analysis of data. 

IV. DATA WAREHOUSE IMPLEMENTATION 

As we have previously implemented a healthcare data 
warehouse in PostgreSQL which encompasses from data 
source ingestion until data marts for dashboards, we have 
come across issues of performance with PostgreSQL. Hence, 
performance comparison of data warehouse migrated from 
RDBMS to HPDW big data is required to validate whether 
the migration of the data warehouse is worthy to overcome 
the performance issues we faced during the ETL process in 
RBMS which is slow. We analyse the query performance 
between HPDW and RDBMS (PostgreSQL) where we have 
implemented the health data warehouse onto both HPDW 
and RDBMS with the same set of data and data model. A 
star schema is used to model the data warehouse in which 
facts and dimensions are relate through their respective entity 
keys to form a join table. 

Fig. 5, 6 and 7, shows the star schema model in 
conceptual, logical and physical data model representation. 
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Figure 5. Conceptual Data Model of Data Warehouse implemented 

with HPDW 
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 Figure 6. Logical Data Model of Data Warehouse implemented with 
HPDW 

 

 
 
Figure 7. Physical Data Model of Data Warehouse implemented with 

HPDW 

V. EXPERIMENT AND RESULT 

In this section we present the performance results on a 

physical cluster between RDBMS against HPDW system by 

varying the size of the data warehouse for fact table queries 

ranging from 7GB to 23GB data size. We compare the 

results of the two systems to demonstrate the benefit of 

using HPDW for processing very large data set. 

 

A. Experiment 

In the experiment, we pre-generated a number of random 

data for the fact tables ranging from 100M to 300M rows. 

We have implemented the HDFS using Hadoop 2.4 and 

distribute the data to 4 physical nodes where one is serving 

the Master Node and Hadoop Name Node and the others as 

the Worker Node and Hadoop Data Nodes. Each node has a 

128 GB memory in which the details are given in Table I. 

 
TABLE I. HARDWARE SPECIFICATION FOR HPDW AND POSTGRESQL 

 HPDW PostgreSQL 

Nodes 4 x Physical Nodes N/A 

CPU Intel Xeon Ten-Core E5-
2660v3 2.60Ghz 
processors – 20 Cores 

Intel Xeon Ten-Core 
E5-2660v3 2.60Ghz 
processors – 20 Cores 

RAM 128 GB 96 GB 

Storage HDD 4 TB (RAID 10)  HDD 4 TB (RAID 5)  

OS Ubuntu  (64 bits) Ubuntu  (64 bits) 

 

We compare the performance of a set of SQL queries 

given in Tab. II, IV and VI which runs on PostgreSQL and 

our prototype system HPDW (MPP with HDFS). To capture 

the SQL queries performance, we use Aqua Data Studio 

[15] as the database client tool for both HPDW and 

PostgreSQL query analysis. In order for the database tool to 

access the HPDW system, a HPDW JDBC is provided. 

B. Results 

Fig. 8 shows the summary of the execution time of SQL 

queries compared between HPDW and PostgreSQL on 

various data set sizes. The experiment results show that 

HPDW is more than 11-200 times faster than PostgreSQL. 

With the speed it achieved, it will enable data analysis at a 

much faster rate rather than the norm of data warehouse 

where it needs to go through a number of stages and days to 

aggregate the data. 

35Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies



 
Figure 8. Performance comparison between HPDW and PostgreSQL for 

Q1, Q2, Q3 for data size between 7-23GB on 100M, 200M and 300M rows 
respectively. 

Following are the list of queries test we have 

conducted on both HPDW and PostgreSQL for the same set 

of queries and data size. 

 
TABLE II. QUERY FOR TOTAL NUMBER OF PATIENTS 

Number of 

records 

Query 1 Test Case: Total number of 

patients 

100 million select count (*) from fact_100m 

200 million select count (*) from fact_200m 

300 million select count (*) from fact_300m 
 

TABLE III. EXECUTION TIME FOR TOTAL NUMBER OF PATIENTS 

 
 

 

 
Figure 9. Execution time comparison for total number of patients 

For Q1 test case: Total numbers of patients, 

PostgreSQL takes about 313.7 seconds to execute 300 M 

rows of records. HPDW just takes 3.2 seconds. It is 100 

times faster than PostgreSQL. 

 
TABLE IV: QUERY FOR TOTAL ENCOUNTERS BY MONTH & YEAR, 

SERVICETYPE, NATIONALITY, AGEGRP, GENDER 

No. 
record 

Query 2 Test Case: Total Encounters by month & year, 

servicetype, nationality, agegrp, gender. 

100 
million 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS mth_yr 
,st.svctype,n.nationaltype,ag.agegrp,g.gender,SUM(f.enc_cnt) 
AS enc_cnt FROM fact_100m f JOIN dim_lk_servicetype st on 
st.sk_dim_servicetype=f.sk_dim_servicetype JOIN 
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp  
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_lk_nationality n ON 
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d 
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP 
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) 
,st.svctype,n.nationaltype,ag.agegrp,g.gender 

200 
million 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS 
mth_yr,st.svctype,n.nationaltype,ag.agegrp, 
g.gender,SUM(f.enc_cnt) AS enc_cnt  FROM  fact_200m f JOIN 
dim_lk_servicetype st on 
st.sk_dim_servicetype=f.sk_dim_servicetype JOIN 
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp  
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_lk_nationality n ON 
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d 
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP 
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR), 
st.svctype,n.nationaltype, ag.agegrp,g.gender 

300 
million 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS 
mth_yr,st.svctype,n.nationaltype,ag.agegrp,g.gender,SUM(f.en
c_cnt) AS enc_cnt  FROM fact_300m f JOIN dim_lk_servicetype 
st on st.sk_dim_servicetype=f.sk_dim_servicetype JOIN 
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp  
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_lk_nationality n ON 
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d 
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP 
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR), st.svctype, 
n.nationaltype,ag.agegrp,g.gender 

 
TABLE V. EXECUTION TIME FOR TOTAL ENCOUNTERS BY MONTH & YEAR, 

SERVICETYPE, NATIONALITY, AGEGROUP, GENDER 

 

Numbers of 

records (in 

millions) 

Execution Time (in s ) 

HPDW PostgreSQL  

1 2 3 4 5 Average 1 2 3 4 5 Average 

100 26 25 25 26 25 25.4 5757     5757 

200 47 46 51 49 47 48 12682     12682 

300 92 103 89 89 89 92.4 21057     21057 
 

For Q2 test case: Total Encounters by month & 

year, servicetype, nationality, agegrp, gender , PostgreSQL 
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takes about 21057 seconds to execute 300 M rows of 

records. HPDW just takes 92.4 seconds. It is 228 times 

faster than PostgreSQL. 

 
Figure 10. Execution time comparison for Total Encounters by month & 

year, servicetype, nationality, agegrp, gender 

TABLE VI. QUERY FOR TOTAL ENCOUNTERS BY MONTH & YEAR, 
REFERENCE HOSPITAL, AGEGRP, GENDER 

No. 
recor
d 

Query 3 Test Case: Total Encounters by month & 

year, reference hospital, agegrp, gender 

100 
millio
n 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS 
mth_yr,r.reference, 
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt FROM 
fact_100m f JOIN dim_lk_ref r on 
r.sk_dim_ref=f.sk_dim_ref JOIN dim_lk_agegrp ag ON 
ag.sk_dim_agegrp=f.sk_dim_agegrp JOIN 
dim_lk_gender g ON 
g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date 
where d.yr_pt=2013 GROUP BY d.mth_pt||'-
'||CAST(d.yr_pt AS VARCHAR), r.reference, 
ag.agegrp,g.gender 

200 
millio
n 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS 
mth_yr,r.reference, 
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt FROM 
fact_200m f JOIN dim_lk_ref r on 
r.sk_dim_ref=f.sk_dim_ref JOIN dim_lk_agegrp ag ON 
ag.sk_dim_agegrp=f.sk_dim_agegrp JOIN 
dim_lk_gender g ON 
g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date 
where d.yr_pt=2013 GROUP BY d.mth_pt||'-
'||CAST(d.yr_pt AS VARCHAR), r.reference, 
ag.agegrp,g.gender 

300 
millio
n 

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS 
mth_yr,r.reference, 
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt  
FROM fact_300m f 
JOIN dim_lk_ref r on r.sk_dim_ref=f.sk_dim_ref 
JOIN dim_lk_agegrp ag ON 
ag.sk_dim_agegrp=f.sk_dim_agegrp 
JOIN dim_lk_gender g ON 
g.sk_dim_gender=f.sk_dim_gender 
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date 
where d.yr_pt=2013 GROUP BY d.mth_pt||'-

'||CAST(d.yr_pt AS VARCHAR), r.reference, 
ag.agegrp,g.gender 

 

 
TABLE VII. EXECUTION TIME FOR TOTAL ENCOUNTERS BY MONTH & YEAR, 

REFERENCE HOSPITAL, AGEGRP, GENDER 

 

Numbers of 

records (in 

millions) 

Execution Time (in s ) 

HPDW PostgreSQL  

1 2 3 4 5 Average 1 2 3 4 5 Average 

100 17 17 17 18 20 17.8 125.1 87.7 87.8 87.9 87.9 95.28 

200 35 34 32 30 25 31.2 277 285 279 277.7 276.6 279.06 

300 49 44 46 47 48 46.8 509.6 507.8 507.9 508.8 508.6 508.5 

 
For Query 3: Total Encounters by month & year, 

reference hospital, agegrp, gender, PostgreSQL takes about 

508.6 seconds to execute 300 M rows of records. HPDW 

just takes 46.8 seconds. It is 11 times faster than 

PostgreSQL.  

 

 
Figure 11. Execution time comparison for Total Encounters by month & 

year, reference hospital, agegrp, gender 

Overall, we can see HPDW outperforms 

PostgreSQL greatly. In addition, we also perform queries 

utilizing HPDW Data Analysis which is a multi-data source 

data analysis tool we have developed. We developed 

analytical charts against both HPDW and PostgreSQL using 

Q2 100M records as shown in Fig. 12. With the HPDW 

Data Analysis tool, we are able to perform data exploration 

onto HPDW but not with PostgreSQL data source as the 

query execution in PostgreSQL requires at least 95 minutes 

for execution. The database connectivity will time out after 

a period of 5 minutes. 
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Figure 12. HPDW Data Analysis for multi data source exploration with 

drill down. Shown here is data analysis on HPDW data source. 

 
 

Figure 13. HPDW Data Exploration for data mining of data 

VI. CONCLUSION 

In this paper, we introduce HPDW Big Data Analytical 

Platform which is a new big data analytical platform that 

can provide end-to-end solution for both storing and 

analyzing of historical and streaming data. It can be used to 

analyse multi data source of data and unify the data for 

further data exploration. In order to achieve the speed it 

requires, HPDW uses InMemory for data process and 

Infiniband as the high network speed to interconnect all the 

data nodes. HPDW also incorporates RESTful JSON for 

easy stream data insertion. Historical data stream can then 

be analyzed through HPDW data analysis web system or 

scripts as shown in Fig. 13. We also provide JDBC and 

ODBC connection for further 3
rd

 party tool integration such 

as Tableau.   

In this paper, we evaluated the performance of a 

commercial RDBMS (PostgreSQL) and HPDW on health 

data warehouse for fact table queries ranging from 7GB to 

23GB data size. Our tests indicate that overall HPDW 

outperforms RDBMS (PostgreSQL) for large data sets in the 

range of 11-200 times. In future, we will further improve 

HPDW by having more SQL query commands to be 

supported. This will enable more support for data analysis 

of the data stored in HPDW. In addition, more types of data 

sources for the HPDW Data Analysis will be supported such 

as OData, Excel, Spark and others. Hence, this big data 

analytical platform is able to provide data scientist and BI 

analysis a piece of mind as it reduces the effort requires to 

setup, developed and configure the big data storage, speed 

and streaming required. 
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