
Using High Performance Parallel Data Warehouse (HPDW) Big Data Analytical

Platform for Big Data Analysis

Boon Keong Seah

MIMOS

Technology Park Malaysia

KL, Malaysia

seahbk2006@yahoo.com

Abstract—Data warehouse has been traditionally implemented

in Relational Database Management System (RDBMS) from

operational data store up until the data marts and OLAP

(online analytical processing) cubes for data analysis. However,

the process of analyzing big data based on RDBMS is a time

consuming process. In addition, with the advent of IoT, social

media and other means of big data incorporation, the challenge

pose to process the enormous streaming data with the need to

obtain the data analysis at hand with near real time requires a

need of new platform to address this. Big data incorporation

for data analysis is important as it will enlarge the scope of

analysis such as weather, devices information, real-time data

for data correlation with existing historical data. Presently,

RDBMS is not developed for handling large data set and also

with ability to perform join queries between historical and

streaming data for more data insight. In this paper, we

introduce HPDW appliance which is a new big data platform

encompassing from stream and batch data process and data

query through JDBC, ODBC and integrated multi-data source

BI dashboarding and data scientist tool. As it is an appliance,

the nodes and all respective components required are pre-

configured, hence data scientist or BI analysis will focus on

using the big data for analysis and not on the setup of the big

data infrastructure which will be time consuming. HPDW

appliance is developed based on Massive Parallel Process

(MPP) to achieve the in-memory speed it requires which uses

Hadoop Distributed File System (HDFS) as the storage layer

and high network speed Infiniband for node connectivity. In

this paper, we describe experimental results related with the

performance of its query processing. We compare the

performance results on a physical cluster between RDBMS

against HPDW system by varying the size of the data

warehouse for fact table queries ranging from 7GB to 23GB

data size. Our experiment results show that HPDW system can

process the same SQL query with respect to RDBMS much

faster, up to 11-200 times faster. In addition, we also show the

data analysis results and data mining that can be performed on

HPDW.

Keywords—big data; hadoop; hive; parallel process; infiniband;

RDBMS; MPP; streaming data; data warehouse; cube; Extract

Transform Load (ETL); OLAP; business intelligence; data marts

I. INTRODUCTION

Data warehouse has been used actively in various industries

for data analysis and decision making by the management.

Traditionally data warehouse has been developed using

combination of ETL tool, BI analysis and presentation layer as

well as RDBMS for the data storage and processing. Data

warehouse requires a number of predefined stages [1][2] and

for handling large data set or Big Data such as Petabyte data

warehouse, it is not common to hear RDBMS being used for

this task [7][8]. Big Data is perceived as a new enablement for

competitive advantage [9]. Big Data has the characteristics of

high Volume, high Variety and high Velocity with information

to be delivered very quickly [10]. By analyzing the relationship

between the data in the combination of Big Data, we are able to

gain competitive advantage [11][12]. Hence, by bringing Big

Data to the data warehouse we are enriching the data further

such as combining existing data with new data set of Big Data

such as weather and social media to provide an even better

analysis.

However, bringing a combination of Big Data to data

warehouse is a challenge as existing RDBMS technology is not

built for handling large data set [7][8] and in addition is the

ability to perform joins queries between historical and

streaming data.

In this paper, we introduce HPDW which is a new Massive

Parallel Process (MPP) where it uses Hadoop Distributed File

System (HDFS) as the storage layer and its own parallel query

execution engine in combination with high network speed

Infiniband integration into the clusters. In this paper, we first,

set up a star schema health data warehouse on the HPDW for

performing online analysis with HPDW Data Analysis which is

a BI tool. In addition, we also use commercial database client

tool with HPDW JDBC to access the HPDW system for query

performance analysis. We compare the performance results on

a physical cluster between RDBMS against HPDW system by

varying the size of the data warehouse for fact table queries

ranging from 7GB to 23GB data size. Our experiment results

show that the HPDW system can process the same SQL query

with respect to RDBMS much faster, up to 11-200 times faster.

We also introduce HPDW ability to perform data mining on

streamed data stored in HPDW. In addition, we also show

ability of HPDW to perform unify query between batch and

stream data for further analysis required.

This paper is organized as follows. Section II describes the

background of this work. Section III describes the HPDW

system overview. Section IV describes the approach of our data

warehouse system and schema design. We also show our

experimental evaluation result about HPDW vs RDBMS on

SQL query performance in Section V. In this section, we also

show the output using charts from HPDW Data Analysis and

also using of python script for retrieving streaming data for

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

data mining. A brief conclusion and future works about this

paper are made in Section VI.

II. RELATED WORKS

Traditionally data warehouse has been implemented
using RDBMS. In order to implement high performance in
RDBMS, parallel query processing has been implemented by
RDBMS to speed up query process. Several RDBMSs
[19][28][29] support parallel queries, where data can be
partitioned across several nodes and accessed
simultaneously.

However, handling of large data set or Big Data such as
Petabyte data warehouse, it is not common to hear RDBMS
being used for having the ability to store in large data set and
perform data analysis efficiently [22][23]. In order to
facilitate data analysis on these large dataset, there are two
possibilities of addressing these, e.g. using massive parallel
processing (MPP) system such as Teradata [18][28], Vertica
[29] and Greenplum [19] or massive scale data processing
platform such as MapReduce [20], Hadoop [21], and Dryad
[22]. Each system is equipped with a high-level language
(e.g., SQL [23], Hive [16][17], Pig Latin [25], or Sawzall
[26]). Programs written in these languages are compiled into
a graph of operators called a plan. The plan is then executed
as a parallel program distributed across a cluster.

In the massive scale data processing, MapReduce,
Hadoop, Hive and Pig are commonly being used.
MapReduce [20] is a programming model for processing
massive-scale data sets in large shared-nothing clusters.
Users specify a map function that generates a set of key-
value pairs, and a reduce function that merges or aggregates
all values associated with the same key. A combination of
map function and reduce function is called a job. In
SQL(Structured Query Language), a MapReduce job can be
expressed as an aggregation query. Hadoop [21] is an open-
source implementation of MapReduce written in Java.
Hadoop consist of HDFS which provides high scalability to
store big data and MapReduce which presents an efficient
programming model in processing HDFS. However, for data
analyst, usual form of analyzing big data is through SQL
query rather than having to develop MapReduce program
code which is a heavy task. As a result, Facebook developed
and published Hive [16][17][27] in order to resolve this
problem. Hive processes the query of big data distributed and
stored in Hadoop by providing an interface significantly
similar to SQL called HiveQL(Hive Query Language).
However, since Hive underlying framework runs the
MapReduce of Hadoop, it does not have a performance
advantage as a relational database. Fig. 1 and Fig. 2 show the
overall flow and architecture of MapReduce and
Hive/Hadoop respectively.

Figure 1. Processing Flow of MapReduce

Figure 2. Hive Architecture Overview

In the Massive Parallel data processing in a shared-

nothing architecture there have been many research
conducted [32][33][34][35][36][37][38]. In addition, there
are some high-end commercial MPP products are on the
market today [19][28][29][30][31] that is a shared-nothing
MPP. One of the well-known commercial MPP is
Greenplum database which is a shared-nothing MPP
architecture. It is a MPP database [20] infrastructure coupled
with computational capabilities to provide faster querying.
Some of these MPP commercial databases presently are
supporting Hadoop. Nevertheless, they still require the
migration from Hadoop into MPP database. Our system
differs from this where we uses HDFS as the data store
without having to migrate.

We also perform background study on whether the
implementation should be performed on virtual or physical
cluster [14]. As our implementation stress on performance,
we found that for the same number of nodes, physical server
perform at least twice the speed of virtual server on the big
data set. Hence, our implementation work is performed on
physical cluster.

III. HPDW SYSTEM OVERVIEW

HPDW Big Data Analytical Platform consists of 4 major
sections: Data Streaming, Data Platform, Data Exploration
and Analytics. In Fig. 3, an overview of HPDW Big Data
Analytical Platform is shown:

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Figure 3. HPDW Data Platform Architecture Overview

HPDW Data Streaming provides a RESTful JSON

service to accept continuous data streaming in any JSON
format. The service uses Apache Kafka as the data streaming
queue to accept high-load of data stream. Streaming Data are
stored in HPDW Data Platform section for historical data
query.

HPDW Data Platform is based on shared-nothing MPP
architecture where each node will use the local disks,
memory, etc. HPDW however is based on shared-nothing
MPP architecture where each node will use the local disks,
memory, etc. Basically HPDW allows for commodity based
servers to be connected on a dedicated high speed network
with its own parallel query execution engine and memory
where these nodes will be known as worker nodes which can
perform the reduce steps and then pass on the result back to
the master nodes which will aggregate all the nodes results to
the requester. All the aggregation processes are done in
memory for speed optimization. The parallel query execution
engine is responsible for converting SQL into a physical
execution plan by performing a query profiling and choosing
the query plan based on cost-based optimization. The query
execution will then be divided to all the nodes so that it can
be executed in parallel. The connection amongst the nodes
are provided through HPDW interconnect which uses
Infiniband. In the HPDW storage layer, it consists of HDFS
which is based on Hadoop cluster with MapReduce engine.
HDFS basically stores the data and the metadata of tables
loaded from HDFS. Fig. 4, shows the overview of the
processing steps of HPDW.

Figure 4. HPDW Data Platform Architecture Overview

HPDW Data Exploration is based on python to provide

data scientist the ability to perform data mining on both
stream and batch data using R, Spark and Python. The scripts
can connect to HPDW Data Platform for data mining of the
data stored there such as historical data stream.

HPDW Data Analytics is a web-based multi-data source
BI tool to provide analysis with dashboard, charts, GIS to
further understand the data. Presently the type of data
sources supported includes Twitter, Facebook, HPDW Data
Platform, PostgreSQL, Oracle, MySQL, CSV, SOLR,
IMPALA, Hive2, MongoDB, RESTful JSON. The charts
enable dynamic drill down, dynamic filtering, and dynamic
chart changing to enable easier visual analysis of data.

IV. DATA WAREHOUSE IMPLEMENTATION

As we have previously implemented a healthcare data
warehouse in PostgreSQL which encompasses from data
source ingestion until data marts for dashboards, we have
come across issues of performance with PostgreSQL. Hence,
performance comparison of data warehouse migrated from
RDBMS to HPDW big data is required to validate whether
the migration of the data warehouse is worthy to overcome
the performance issues we faced during the ETL process in
RBMS which is slow. We analyse the query performance
between HPDW and RDBMS (PostgreSQL) where we have
implemented the health data warehouse onto both HPDW
and RDBMS with the same set of data and data model. A
star schema is used to model the data warehouse in which
facts and dimensions are relate through their respective entity
keys to form a join table.

Fig. 5, 6 and 7, shows the star schema model in
conceptual, logical and physical data model representation.

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Hospital Gender

Fact Table

RegionState Date

Postcode

Figure 5. Conceptual Data Model of Data Warehouse implemented

with HPDW

Hospital Gender

HospitalId GenderId

Fact Table

HospitalId

GenderId

RegionStateId

PostcodeId

DateId

RegionState EcounterCount Date

RegionStateId DateId

Postcode

PostcodeId

 Figure 6. Logical Data Model of Data Warehouse implemented with
HPDW

Figure 7. Physical Data Model of Data Warehouse implemented with

HPDW

V. EXPERIMENT AND RESULT

In this section we present the performance results on a

physical cluster between RDBMS against HPDW system by

varying the size of the data warehouse for fact table queries

ranging from 7GB to 23GB data size. We compare the

results of the two systems to demonstrate the benefit of

using HPDW for processing very large data set.

A. Experiment

In the experiment, we pre-generated a number of random

data for the fact tables ranging from 100M to 300M rows.

We have implemented the HDFS using Hadoop 2.4 and

distribute the data to 4 physical nodes where one is serving

the Master Node and Hadoop Name Node and the others as

the Worker Node and Hadoop Data Nodes. Each node has a

128 GB memory in which the details are given in Table I.

TABLE I. HARDWARE SPECIFICATION FOR HPDW AND POSTGRESQL

 HPDW PostgreSQL

Nodes 4 x Physical Nodes N/A

CPU Intel Xeon Ten-Core E5-
2660v3 2.60Ghz
processors – 20 Cores

Intel Xeon Ten-Core
E5-2660v3 2.60Ghz
processors – 20 Cores

RAM 128 GB 96 GB

Storage HDD 4 TB (RAID 10) HDD 4 TB (RAID 5)

OS Ubuntu (64 bits) Ubuntu (64 bits)

We compare the performance of a set of SQL queries

given in Tab. II, IV and VI which runs on PostgreSQL and

our prototype system HPDW (MPP with HDFS). To capture

the SQL queries performance, we use Aqua Data Studio

[15] as the database client tool for both HPDW and

PostgreSQL query analysis. In order for the database tool to

access the HPDW system, a HPDW JDBC is provided.

B. Results

Fig. 8 shows the summary of the execution time of SQL

queries compared between HPDW and PostgreSQL on

various data set sizes. The experiment results show that

HPDW is more than 11-200 times faster than PostgreSQL.

With the speed it achieved, it will enable data analysis at a

much faster rate rather than the norm of data warehouse

where it needs to go through a number of stages and days to

aggregate the data.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Figure 8. Performance comparison between HPDW and PostgreSQL for

Q1, Q2, Q3 for data size between 7-23GB on 100M, 200M and 300M rows
respectively.

Following are the list of queries test we have

conducted on both HPDW and PostgreSQL for the same set

of queries and data size.

TABLE II. QUERY FOR TOTAL NUMBER OF PATIENTS

Number of

records

Query 1 Test Case: Total number of

patients

100 million select count (*) from fact_100m

200 million select count (*) from fact_200m

300 million select count (*) from fact_300m

TABLE III. EXECUTION TIME FOR TOTAL NUMBER OF PATIENTS

Figure 9. Execution time comparison for total number of patients

For Q1 test case: Total numbers of patients,

PostgreSQL takes about 313.7 seconds to execute 300 M

rows of records. HPDW just takes 3.2 seconds. It is 100

times faster than PostgreSQL.

TABLE IV: QUERY FOR TOTAL ENCOUNTERS BY MONTH & YEAR,

SERVICETYPE, NATIONALITY, AGEGRP, GENDER

No.
record

Query 2 Test Case: Total Encounters by month & year,

servicetype, nationality, agegrp, gender.

100
million

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS mth_yr
,st.svctype,n.nationaltype,ag.agegrp,g.gender,SUM(f.enc_cnt)
AS enc_cnt FROM fact_100m f JOIN dim_lk_servicetype st on
st.sk_dim_servicetype=f.sk_dim_servicetype JOIN
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender
JOIN dim_lk_nationality n ON
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR)
,st.svctype,n.nationaltype,ag.agegrp,g.gender

200
million

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS
mth_yr,st.svctype,n.nationaltype,ag.agegrp,
g.gender,SUM(f.enc_cnt) AS enc_cnt FROM fact_200m f JOIN
dim_lk_servicetype st on
st.sk_dim_servicetype=f.sk_dim_servicetype JOIN
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender
JOIN dim_lk_nationality n ON
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR),
st.svctype,n.nationaltype, ag.agegrp,g.gender

300
million

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS
mth_yr,st.svctype,n.nationaltype,ag.agegrp,g.gender,SUM(f.en
c_cnt) AS enc_cnt FROM fact_300m f JOIN dim_lk_servicetype
st on st.sk_dim_servicetype=f.sk_dim_servicetype JOIN
dim_lk_agegrp ag ON ag.sk_dim_agegrp=f.sk_dim_agegrp
JOIN dim_lk_gender g ON g.sk_dim_gender=f.sk_dim_gender
JOIN dim_lk_nationality n ON
n.sk_dim_nationality=f.sk_dim_nationality JOIN dim_date d
ON d.sk_dim_date=f.sk_dim_date where d.yr_pt=2013 GROUP
BY d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR), st.svctype,
n.nationaltype,ag.agegrp,g.gender

TABLE V. EXECUTION TIME FOR TOTAL ENCOUNTERS BY MONTH & YEAR,

SERVICETYPE, NATIONALITY, AGEGROUP, GENDER

Numbers of

records (in

millions)

Execution Time (in s)

HPDW PostgreSQL

1 2 3 4 5 Average 1 2 3 4 5 Average

100 26 25 25 26 25 25.4 5757 5757

200 47 46 51 49 47 48 12682 12682

300 92 103 89 89 89 92.4 21057 21057

For Q2 test case: Total Encounters by month &

year, servicetype, nationality, agegrp, gender , PostgreSQL

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

takes about 21057 seconds to execute 300 M rows of

records. HPDW just takes 92.4 seconds. It is 228 times

faster than PostgreSQL.

Figure 10. Execution time comparison for Total Encounters by month &

year, servicetype, nationality, agegrp, gender

TABLE VI. QUERY FOR TOTAL ENCOUNTERS BY MONTH & YEAR,
REFERENCE HOSPITAL, AGEGRP, GENDER

No.
recor
d

Query 3 Test Case: Total Encounters by month &

year, reference hospital, agegrp, gender

100
millio
n

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS
mth_yr,r.reference,
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt FROM
fact_100m f JOIN dim_lk_ref r on
r.sk_dim_ref=f.sk_dim_ref JOIN dim_lk_agegrp ag ON
ag.sk_dim_agegrp=f.sk_dim_agegrp JOIN
dim_lk_gender g ON
g.sk_dim_gender=f.sk_dim_gender
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date
where d.yr_pt=2013 GROUP BY d.mth_pt||'-
'||CAST(d.yr_pt AS VARCHAR), r.reference,
ag.agegrp,g.gender

200
millio
n

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS
mth_yr,r.reference,
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt FROM
fact_200m f JOIN dim_lk_ref r on
r.sk_dim_ref=f.sk_dim_ref JOIN dim_lk_agegrp ag ON
ag.sk_dim_agegrp=f.sk_dim_agegrp JOIN
dim_lk_gender g ON
g.sk_dim_gender=f.sk_dim_gender
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date
where d.yr_pt=2013 GROUP BY d.mth_pt||'-
'||CAST(d.yr_pt AS VARCHAR), r.reference,
ag.agegrp,g.gender

300
millio
n

SELECT d.mth_pt||'-'||CAST(d.yr_pt AS VARCHAR) AS
mth_yr,r.reference,
ag.agegrp,g.gender,SUM(f.enc_cnt) AS enc_cnt
FROM fact_300m f
JOIN dim_lk_ref r on r.sk_dim_ref=f.sk_dim_ref
JOIN dim_lk_agegrp ag ON
ag.sk_dim_agegrp=f.sk_dim_agegrp
JOIN dim_lk_gender g ON
g.sk_dim_gender=f.sk_dim_gender
JOIN dim_date d ON d.sk_dim_date=f.sk_dim_date
where d.yr_pt=2013 GROUP BY d.mth_pt||'-

'||CAST(d.yr_pt AS VARCHAR), r.reference,
ag.agegrp,g.gender

TABLE VII. EXECUTION TIME FOR TOTAL ENCOUNTERS BY MONTH & YEAR,

REFERENCE HOSPITAL, AGEGRP, GENDER

Numbers of

records (in

millions)

Execution Time (in s)

HPDW PostgreSQL

1 2 3 4 5 Average 1 2 3 4 5 Average

100 17 17 17 18 20 17.8 125.1 87.7 87.8 87.9 87.9 95.28

200 35 34 32 30 25 31.2 277 285 279 277.7 276.6 279.06

300 49 44 46 47 48 46.8 509.6 507.8 507.9 508.8 508.6 508.5

For Query 3: Total Encounters by month & year,

reference hospital, agegrp, gender, PostgreSQL takes about

508.6 seconds to execute 300 M rows of records. HPDW

just takes 46.8 seconds. It is 11 times faster than

PostgreSQL.

Figure 11. Execution time comparison for Total Encounters by month &

year, reference hospital, agegrp, gender

Overall, we can see HPDW outperforms

PostgreSQL greatly. In addition, we also perform queries

utilizing HPDW Data Analysis which is a multi-data source

data analysis tool we have developed. We developed

analytical charts against both HPDW and PostgreSQL using

Q2 100M records as shown in Fig. 12. With the HPDW

Data Analysis tool, we are able to perform data exploration

onto HPDW but not with PostgreSQL data source as the

query execution in PostgreSQL requires at least 95 minutes

for execution. The database connectivity will time out after

a period of 5 minutes.

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Figure 12. HPDW Data Analysis for multi data source exploration with

drill down. Shown here is data analysis on HPDW data source.

Figure 13. HPDW Data Exploration for data mining of data

VI. CONCLUSION

In this paper, we introduce HPDW Big Data Analytical

Platform which is a new big data analytical platform that

can provide end-to-end solution for both storing and

analyzing of historical and streaming data. It can be used to

analyse multi data source of data and unify the data for

further data exploration. In order to achieve the speed it

requires, HPDW uses InMemory for data process and

Infiniband as the high network speed to interconnect all the

data nodes. HPDW also incorporates RESTful JSON for

easy stream data insertion. Historical data stream can then

be analyzed through HPDW data analysis web system or

scripts as shown in Fig. 13. We also provide JDBC and

ODBC connection for further 3
rd

 party tool integration such

as Tableau.

In this paper, we evaluated the performance of a

commercial RDBMS (PostgreSQL) and HPDW on health

data warehouse for fact table queries ranging from 7GB to

23GB data size. Our tests indicate that overall HPDW

outperforms RDBMS (PostgreSQL) for large data sets in the

range of 11-200 times. In future, we will further improve

HPDW by having more SQL query commands to be

supported. This will enable more support for data analysis

of the data stored in HPDW. In addition, more types of data

sources for the HPDW Data Analysis will be supported such

as OData, Excel, Spark and others. Hence, this big data

analytical platform is able to provide data scientist and BI

analysis a piece of mind as it reduces the effort requires to

setup, developed and configure the big data storage, speed

and streaming required.

ACKNOWLEDGMENT

This work is funded by MOSTI under HPDW Techfund.

REFERENCES

[1] Boon Keong Seah, "An application of a healthcare data warehouse
system," Innovative Computing Technology (INTECH), 2013 Third
International Conference on , vol., no., pp.269-273, 29-31 Aug. 2013.

[2] Boon Keong Seah; Selan, N.E., "Design and implementation of data
warehouse with data model using survey-based services data,"

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Innovative Computing Technology (INTECH), 2014 Fourth
International Conference on , vol., no., pp.58-64, 13-15 Aug. 2014

[3] Apache Hadoop," http://hadoop.apache.org/”.

[4] Apache Hive," https://hive.apache.org/”.

[5] “SQL.Wikipedia, the free encyclopedia," [Online]. Available:
http://en.wikipedia.org/wiki/SQL.

[6] "PostgreSQL,” http://www.postgresql.org/.

[7] A.Thusoo, et. al. Hive : a warehousing solution over a map-reduce
framework. Facebook Data Infrastructure Team. 2009.

[8] Q. Wang, et.al. On The Correctness Criteria of Fine-Grained Access
Control in Relational Databases. In Proceedings of VLDB, 2007.

[9] McGuire T., Manyika J., Chui M., July / August 2012, "Why Big
Data is the New Competitive Advantage”, Ivey Business Journal,
www.iveybusinessjournal.com/topics/strategy/why-big-data-is-
thenew-competitive-advantage

[10] Mark B., "Gartner Says Solving 'Big Data' Challenge Involves More
Than Just Managing Volumes of Data". Gartner, June 27, 2011,
http://www.gartner.com/newsroom/id/1731916

[11] Johnson E. J., July/August 2012, "Big Data + Big Analytics = Big
Opportunity", Journal of Financial Executive, pp. 1-4.

[12] Nichols, W., March 2013, "Advertising Analytics 2.0", Harvard
Business Review, 91(3): 60-68.

[13] Thusoo, Ashish, et al, "Hive: a warehousing solution over a map-
reduce framework," Proceedings of the VLDB Endowment, vol.2,
no.4, pp.1626-1629, 2009.

[14] B. Arres, N. Kabbachi and O. Boussaid, "Building OLAP cubes on a
Cloud Computing environment with MapReduce", Computer Systems
and Applications (AICCSA), ACS International Conference, 27-30
May, 2013.

[15] "Aqua Data Studio,” http://www.aquafold.com/.

[16] SHVACHKO, Konstantin, et al, “The hadoop distributed file
system,” in: Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on, IEEE, pp. 1-10,2010.

[17] Thusoo, Ashish, et al, "Hive: a warehousing solution over a map-
reduce framework," Proceedings of the VLDB Endowment, vol.2,
no.4, pp.1626-1629, 2009.

[18] “Teradata,” http://www.teradata.com/.

[19] “Greenplum database,” http://www.greenplum.com/.

[20] Dean, Jeffrey, and S. Ghemawat., "MapReduce: simplified data
processing on large clusters," Communications of the ACM, vol.51,
no.1, pp.107-113, 2008.

[21] “Hadoop,” http://hadoop.apache.org/.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad:Distributed data-parallel programs from sequential building
blocks,” in Proc. of the European Conference on Computer Systems
(EuroSys), 2007, pp. 59–72.

[23] ISO/IEC 9075-*:2003, Database Languages - SQL. ISO, Geneva,
Switzerland.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language,” 2008.

[25] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in Proc. of the
SIGMOD Conf., 2008, pp. 1099–1110.

[26] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Scientific Programming, vol.
13, no. 4, 2005.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff, R. Murthy, "Hive - A Warehousing Solution Over a
Map-Reduce Framework," In Proc. of Very Large Data Bases, vol. 2
no. 2, August 2009, pp. 1626-1629.

[28] C. Ballinger, “Born to be parallel: Why parallel origins give Teradata
database an enduring performance edge,”
http://www.teradata.com/t/page/87083/index.html.

[29] “Vertica, inc.” http://www.vertica.com/.

[30] “IBM zSeries SYSPLEX,”
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topi
c=/com.ibm.db2.doc.admin/xf6495.htm.

[31] A. Pruscino, “Oracle RAC: Architecture and performance,” in Proc.
of the SIGMOD Conf., 2003, p. 635.

[32] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M.
Franklin, B. Hart, M. Smith, and P. Valduriez, “Prototyping Bubba, a
highly parallel database system,” IEEE TKDE, vol. 2, no. 1, pp. 4–24,
1990.

[33] L. Chen, C. Olston, and R. Ramakrishnan, “Parallel evaluation of
composite aggregate queries,” in Proc. of the 24th International
Conference on Data Engineering (ICDE), 2008.

[34] A. Deshpande and L. Hellerstein, “Flow algorithms for parallel query
optimization,” in Proc. of the 24th International Conference on Data
Engineering (ICDE), 2008.

[35] D. DeWitt and J. Gray, “Parallel database systems: the future of high
performance database systems,” Communications of the ACM, vol.
35, no. 6, pp. 85–98, 1992.

[36] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen, “The Gamma database machine project,”
IEEE TKDE, vol. 2, no. 1, pp. 44–62, 1990.

[37] G. Graefe, “Encapsulation of parallelism in the Volcano query
processing system,” SIGMOD Record, vol. 19, no. 2, pp. 102–111,
1990.

[38] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data skew in
parallel joins in shared-nothing systems,” in Proc. of the SIGMOD
Conf., 2008, pp. 1043–1052.

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

http://www.gartner.com/newsroom/id/1731916

