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Abstract—The hardware implementation of the Substitution-Box
(S-box) of the Advanced Encryption Standard (AES) always
employs composite field GF ((2n)2) to obtain better efficiency.
In this paper, an improved class of S-boxes by direct inversion in
composite field is presented, and the choice of the subfield leading
to the most efficient implementation is discussed. Eliminating the
field isomorphic transformations, such a composite field is easier
to fix and the resulting hardware implementation is more efficient
than that of AES S-box. Some common cryptographic character-
istics for the composite field based S-boxes are examined, and it
turns out that direct inversion in composite field does not weaken
the cryptographic characteristics. In addition, a demonstration
for the immunity against the potential algebraic attack on AES
with the replacement of our S-box is given, and it is proven
that the revised AES is even more secure than the original AES
against the algebraic attack. As a result of this work, it could
be predicted that the isomorphism implies equal immunity from
certain cryptanalysis. Our S-box is suitable for the area-limited
hardware production.

Keywords–AES; Composite field; S-box; Hardware implemen-
tation.

I. INTRODUCTION
The Substitution-Box (S-box) is a basic component of

symmetric key algorithms, and should always be carefully
chosen to create strong confusion and to resist certain kinds
of cryptanalysis. The multiplicative inversion mapping over
Galois Field are frequently employed due to their ideal cryp-
tographic characteristics [1]. Most of the recent S-boxes in
block ciphers, such as the Advanced Encryption Standard
(AES) [2], Camellia (NESSIE and CRYPTREC winner) [3],
CLEFIA (developed by SONY) [4] and SMS4 (used in the
Chinese National Standard for Wireless LAN WAPI) [5] are
created based on the inversion on GF (28). Currently, the GF -
inversion has become one of the most popular algebraic tools
in block ciphers, and its hardware implementation, especially
targeted for AES is still a worldwide challenge.

Among so many state-of-art designs to implement GF -
inversion, one general idea is to employ the composite
field representation [6]. The fields GF (28), GF ((24)2) and
GF (((22)2)2) are linear isomorphic to each other, so that the
isomorphisms can be achieved by simple matrix multiplica-
tions, which means that finding the inverse in GF (28) can be
changed into calculating the low-cost addition, multiplication,
square and inversion in GF (24) [7] or GF ((22)2) [8].

Mentens et al. [9] used GF (((22)2)2), examined all possi-
ble choices for irreducible polynomials generating the exten-
sion field and all the transformation matrices mapping to the
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Figure 1. Structures of the different S-boxes in this paper.

corresponding GF (((22)2)2) representation, and pointed out
the area of [8] was still 5% from the minimum. Later, Canright
[10] considered not only polynomial bases but also normal
bases, with 432 cases including all in [9], and get the most
compact S-box up to date. However, the critical path delay,
substructure sharing and use of NOR and NOT gates were all
ignored, and then Zhang and Parhi [11] improved it and got a
seemingly better result. Nikova and Rijmen [12] decomposed
GF (28) to GF ((24)2) using normal bases and the result could
compete with that in [10]. For the other recent architectures,
Nogamni et al. [13] suggest mixing normal and polynomial
bases for the reduction of the critical path delay of S-box.

In this paper, we try to do the inversion directly in
composite field; see Figure 1. Then, the effect caused by
transformation matrixes can be ignored, and the choice of
irreducible polynomial for field extension would be easier.

The outline of this paper is as follows. In Section II, the
applications of composite field in S-box implementation is
introduced. In Section III, our new S-box based on inversion
in composite field is described. The complete cryptographical
analysis of this new S-box and some potential algebraic attacks
are given in Section IV and Section V, followed by the
conclusion.

II. PRELIMINARIES

In this section, we show the applications of the composite
field for the hardware implementation of AES S-box.
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The AES S-box involves an inversion mapping in GF (28)
followed by a GF (2)-affine transformation, here GF (28) =
GF (2)/(O(z)), O(z) = z8 +z4 +z3 +z+1. Denote the AES
S-box by S1(x),

S1(x) = A · x−1 + v = A · inv(x) + v, (1)

where inv(x) denotes GF (28) inversion of x. Denote the
binary representation of any x ∈ GF (28) by (x7, x6, · · · , x0)
with x7 the most significant bit. And

A =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


, v =



0
1
1
0
0
0
1
1


. (2)

The basic idea of employing composite field comes
from the field isomorphism GF (2n) ∼= GF ((2n/2)2) ∼=
GF (((2n/4)2)2). However, all the basic arithmetics in
GF ((2n/2)2) are actually the ones in GF (2n/2). Each ele-
ment ∆ ∈ GF ((2m)2) = GF (2m)/(x2 + αx + β) where
α, β ∈ GF (2m), can be expressed as ∆ = δ1x + δ0, with
δ1, δ0 ∈ GF (2m). The multiplicative inversion of ∆ can be
obtained via

∆−1 = (δ1Γ)x+(δ0+δ1α)Γ,Γ = (δ21β+δ1δ0α+δ20)−1. (3)

GF (28) can be mapped to either GF ((24)2) or GF (((22)2)2).
The specific operation comprises of the following 3 steps:

(I) Field linear isomorphic transformation T maps each
GF (28) element into the composite field GF ((24)2)
(or GF (((22)2)2)).

(II) Inversion in composite field.
(III) Linear transformation T−1.

The operations using GF ((24)2) representation can be ex-
pressed as

S1(x) = A · T−11 · inv′(T1 · x) + v, (4)

where inv′(x) denotes GF ((24)2) inversion of x. In [8], there
is another architecture by mapping GF (28) to GF (((22)2)2),
and the operations can be expressed as

S1(x) = A · T−12 · inv′′(T2 · x) + v, (5)

where inv′′(x) denotes GF (((22)2)2) inversion of x.

III. IMPROVED S-BOXES BY INVERSION IN COMPOSITE
FIELD

A. The Specification of the Improved S-boxes
According to the designers of AES [2], the choice of

GF (28) inversion only comprises cryptographical reasons but
barely covers implementation efficiency. It provides very ideal
input-output correlation amplitude and difference propagation
probability, and the following GF (2)-affine transformation
(A, v) complicates the algebraic expression of S1(x). How-
ever, one may find it difficult to build the optimum hardware
architecture for S1(x) on composite field. We believe that three
reasons might lead to such a situation:

(I) Computational Complexity. As revealed by the Ex-
tended Euclid’s Algorithm [14], GF -inversion is es-
sentiality more complex than any other basic GF
arithmetic such as multiplication.

(II) Overfull Factors. Introducing the composite field
does reduce the area cost, however, additional factors
arise, such as the coefficients of the irreducible poly-
nomial generating the composite field. The following
factors must be considered:

a) Subfield multiplication of two multiplicands;
b) Subfield squaring;
c) Subfield constant multiplication;
d) Matrixes of T and A · T−1.

(III) How to Define the “optimum”? The criteria to build
the optimum architecture of the previous contribu-
tions [7]–[13] are unambiguous, which can not be
achieved simultaneously. For example, the throughput
usually contradicts the area since compact construc-
tion always causes more critical path delays, and
certain criterion is hard to be judged or quantified. As
shown by Mentens et al. [9], further area reduction
can be achieved by substructure sharing or introduc-
ing NOR gates or NOT gates, so the matrix for T
with the least number of “1” might not be the best
choice.

Recognizing the comparability among (1), (4) and (5), we
could try to overlook the field isomorphism Ti and T−1i and
directly carry out the multiplicative inversion in the isomorphic
composite field. So, two new S-boxes are obtained in (6) and
(7), and only the irreducible polynomials are to be fixed.

S2(x) = A · inv′(x) + v, x ∈ GF ((24)2)
GF ((24)2) = GF (24)/(M(x))

M(x) = x2 +m0x+m

GF (24) = GF (2)/(N(y))

N(y) = y4 + n2y
3 + n1y

2 + n0y + n

(6)

S3(x) = A · inv′′(x) + v, x ∈ GF (((22)2)2)

GF (((22)2)2) = GF ((22)2)/(P (x))

P (x) = x2 + p0x+ p

GF ((22)2) = GF (22)/(Q(y))

Q(y) = y2 + q0y + q

GF (22) = GF (2)/(R(z))

R(z) = z2 + r0z + r

(7)

First of all, fix R(z) = z2 + z + 1 since it is the only
irreducible polynomial over GF (2) with degree 2. Then, set
m0 = 1 ∈ GF (24) in (8) and p0 = 1 ∈ GF ((22)2), q0 = 1 ∈
GF (22) in (9) since they would reduce more multiplications
than m and p, q, similar to the AES settings in Section II.

For S2(x), there are only three choices for N(y), and for
M(x), only m is to be decided. When N(y) is fixed, there are
only limited candidate values for m to make M(x) irreducible.
The best value for m can be found through comparing the gate
counts of multiplying m. For S3(x), since R(z), p0 and q0 are
fixed, we find there are only eight choices of (p,q) to make
P (x) and Q(y) irreducible, so the best (p,q) can also be fixed
through simple comparison. Consequently, all the settings can
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TABLE I. NUMBER OF XOR GATE FOR T AND A · T−1
1

Design Field Original After Optimizations
[7] GF ((24)2) 43 Not available
[8] GF (((22)2)2) 45 Obtained by greedy algorithm
[9] GF (((22)2)2) 38 No optimization
[11] GF (((22)2)2) 36 28 (Gate) + 6 (Critical Path)
[11] GF (((22)2)2) 38 27 (Gate) + 6 (Critical Path)
S2 GF ((24)2) 32 18 (Gate) + 4 (Critical Path)
S3 GF (((22)2)2) 32 18 (Gate) + 4 (Critical Path)

be fixed:

S2(x) = A · inv′(x) + v, x ∈ GF ((24)2)
GF ((24)2) = GF (24)/(M(x))

M(x) = x2 + x+ {1001}2
GF (24) = GF (2)/(N(y))

N(y) = y4 + y + 1

(8)

S3(x) = A · inv′′(x) + v, x ∈ GF (((22)2)2)

GF (((22)2)2) = GF ((22)2)/(P (x))

P (x) = x2 + x+ {1100}2
GF ((22)2) = GF (22)/(Q(y))

Q(y) = y2 + y + {10}2
GF (22) = GF (2)/(R(z))

R(z) = z2 + z + 1

(9)

B. Performance of Hardware Implementation
Defined in composite filed, the inversion function in both

S2 and S3 could be implemented directly by (3) without field
isomorphism.

Observing the differences between (4) and (8), or (5) and
(9), our improvement on efficiency is manifest. Most of the
previous architectures for S1 based on composite field need to
do at least two matrix multiplications, T and A · T−11 , while
our S-boxes only need to multiply the matrix A. The number
of XOR gate for the two matrix multiplications of the previous
architectures are listed in Table I. Note that [10] [12] [13] used
different bases, while [11] provided us two optimal settings.)

The total number of XOR gate within the multiplication
of A is only 32. Our S-box, S2 or S3 has only one regular-
structured matrix A, while the hardware implementation of S1

has to deal with two irregular structured matrixes, T and A ·
T−11 . Further optimization would reach less gate counts and
critical path. If y = A · x where A is defined in (2), then

y7 = x5 +X2 +X1

y6 = x6 +X6

y5 = x1 +X6

y4 = X4 +X3

y3 = x7 + x3 +X5

y2 = X5 +X2

y1 = X7 +X3

y0 = x4 + x0 +X7

with



X7 = x5 +X2

X6 = x5 +X4

X5 = X3 + x2
X4 = X1 + x2
X3 = x1 + x0
X2 = x7 + x6
X1 = x4 + x3

. (10)

Apparently, there are totally 18 XORs in (10), and 4 XORs in
the critical path. From Table I, we can see that our S-boxes
have a great advantage over the known results.

The reduction in our S-box also optimises the counter-
measure against side-channel attack [15], such as differential

TABLE II. TEST RESULTS ON ANF OF Si

Terms f7 f6 f5 f4 f3 f2 f1 f0 Sum
S1 110 112 114 131 136 145 133 132 1013
S2 130 119 131 117 126 132 132 129 1016
S3 119 114 132 126 126 126 128 134 1005

power analysis [16], which uses statistical analysis of physical
quantities to deduce certain information about the secret key.
S1 can be effectively masked under composite field, so do S2

and S3. The only difference is that we only need to mask
A for S2 and S3, which is clearly more effective. Also for
S3, the inversion on GF (((22)2)2) can be split into that on
GF ((22)2), and can be split into GF (22), where x−1 = x2,
and inversion becomes linear. Hence, S3 might be easier to be
masked.

Our S-boxes are suitable for the encryption(decryption)
within the area-limited hardware productions, such as flash
memory cards, smart cards and mobile phones. Furthermore,
the idea to employ the composite filed to construct the S-box
is highly recommended in the design of the lightweight block
cipher [17].

IV. CRYPTOGRAPHIC CHARACTERISTICS OF S2 AND S3

In this Section, a security evaluation of S2 and S3

will be given by comparing some common cryptograph-
ic characteristics with those of S1. Denote S(x) =
(fm−1(xn−1, · · · , x0), ..., f0(xn−1, · · · , x0)) : GF (2n) 7→
GF (2m) as the S-box transformation, with fi(x),m − 1 ≥
i ≥ 0 the n-tuple Boolean function of the ith output bit.

A. Non-Linearity, Differential Distribution, Algebraic Degree,
and Algebraic Complexity

By simple calculations, the Non-Linearity (NL) [18], the
differential distributions [18], and the algebraic degree [18] of
both S2 and S3 stay the same as S1, and they show almost the
same number of terms in their algebraic normal form (ANF)
[18]; see Table II. In terms of algebraic complexity, since
the structure of both S2 and S3 are entirely the same as S1,
restricting the polynomial in each own field makes more sense.
It has been proven that every S-box with the form A ·x−1 + v
has only 9 terms in its polynomial expression, so does the
GF ((24)2) polynomial of S2 and GF (((22)2)2) polynomial
of S3, which equally show the ability against the interpolation
attack [19].

B. Algebraic Immunity
Algebraic Immunity comes from the algebraic attack [20].

For an n×n S-box, it is defined as Γ = ((t−r)/n)dt/re, where
r denotes the total number of linear independent equations, and
t denotes the number of monomials appearing in the equations,
including the constant terms.

For S1 in (1), where b = inv(a), a, b ∈ GF (28), one can
find r = 24 bi-affine equations between ai and bj . The first
set of eight equations comes from simplifying the following
polynomial in the bases {1, z, z2, · · · , z7}:( 7∑

i=0

aiz
i
)
·
( 7∑

i=0

biz
i
)
mod O(z) = 1. (11)

The second set of eight equations is derived from simplifying
any one equation from the group of the following GF (28)
equations:

a = a2 · b, a2 = a4 · b2, · · · , a128 = a · b128. (12)
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Since these eight GF (28)-equations in (12) are linearly equiv-
alent with each other, every two different GF (28)-equations
from (12) will generate two different but linearly depen-
dent sets of 8 GF (2)-equations between {ai} and {bj}.
The remaining 8 equations comes from the symmetry with
respect to the exchange of a and b [20]. Adding the affine
relationship c = A · b + v, all the {bj} can be replaced by
{ck}, and then totally 24 bi-affine equations between {ai}
and {ck} are obtained. The monomials of the system are:
{1, a0, a1, · · · , a7, c0, c1, · · · , c7, a0c0, a0c1, · · · , a7c7}, there-
fore t = 1 + 8 + 8 + 8× 8 = 81.

For S2, b = inv′(a), we have[( 7∑
i=4

aiy
i−4
)
x+

3∑
i=0

aiy
i
]
·
[( 7∑

i=4

biy
i−4
)
x

+

3∑
i=0

biy
i
]
≡ 1 mod M(x) mod N(y)

(13)

Unlike (11), the bases for (13) are
{1, y, y2, y3, x, yx, y2x, y3x}, still n = 8 equations are
get. In the same way, one can get another eight equations
from any one of the group (12) defined in GF ((24)2), and
eight more by exchanging a and b. Our simulation proved
that these r = 24 equations are linearly independent, and if
adding eight more from expanding any one equation from
the GF ((24)2) group (12) (or exchanging a and b), does not
change the rank of the system. Our simulation shows that
for S2, r = 24. Similarly, t stays unchanged. Therefore, the
Algebraic Immunity of S2 is the same as S1. For S3, the
result is also the same.

C. Influence on AES
Considering the coherence for the calculational field for

the sake of the analysis of the algebraic attack, we suggest
all the computation in AES being defined in the same field
according to the chosen S-box, which means that the matrix
multiplication for the MixColumn operation will be done in
GF ((24)2) if S2 is used or in GF (((22)2)2) if S3 is used.
Denote the AES with S1 replaced by S2 and GF ((24)2) matrix
multiplication for MixColumn by AEScf , and similarly with
S3 and GF (((22)2)2) matrix multiplication by AEStf .

By then, we can conclude that both AEScf and AEStf are
immune against linear attack, differential attack and interpola-
tion attack. While for the other attacks not related to S-boxes,
such as the square attack [21], the collisions attack [22] and
related-key attack [23], both AEScf and AEStf have the same
immunity as AES.

V. ALGEBRAIC ATTACK ON AEScf AND AEStf

Our improvement on S2 or S3 is simply the change of field.
In order to deeper demonstrate the advantage of the composite
field, a concrete algebraic attack on AEScf and AEStf will
be given. There are two ways to develop the algebraic attack,
one is put forward by N. T. Courtois and J. Pieprzyk in Asia
Crypt 2002 based on a GF (2)-system [20], and the other is
found by S. Murphy and M. J. Robshaw in CRYPTO 2002
with only simple algebraic operations in GF (28) [24]. The
GF (28)-system created in [24] is less complicated than the
GF (2)-system derived in [20], which indicates that any change
in the field evolved during the encryption should be considered
in algebraic attack, that is why three case are discussed below.

A. The GF (2)-Algebraic Attack
Firstly, put AEScf in the GF (2)-system. From Section

IV-B, the GF (2)-system of S2 is very similar to that of S1, for
they have the same algebraic lmmunity. For AddRoundkey and
ShiftRows, their GF (2)-system is apparently equal in scale. It
is easily seen that in GF (28) or GF ((24)2), constant multipli-
cation can be represented by a 8-order GF (2)-matrix-vector
multiplication. The operation in MixColumn is equivalent to
a 32-order GF (2)-matrix-vector multiplication. In [20], it was
proved that the GF (2)-system of AES is too complicated to
be solved, therefore, AEScf is safe from the GF (2) algebraic
attack.

B. The GF ((24)2)-Algebraic Attack
In [24], AES is embedded within the Big Encryption Sys-

tem (BES) which uses algebraic operations in GF (28) and can
be described by a system of multivariate quadratic equations in
GF (28) simpler than the GF (2)-system in [20]. Analogously,
we could embed AEScf within a BES-like cipher, and get a
GF ((24)2)-system of multivariate quadratic equations. Even
though this is better than the GF (2)-system of AEScf , the
solvability remains the same as that of the GF (28) system of
BES because these two systems are equal in scale.

C. The GF (24)-Algebraic Attack
To be more accurate, the arithmetic within AEScf is in

GF (24) rather than GF ((24)2). So, we may try to split the
round function of AEScf in GF (24). (Most of the notations
from [24] will be used below with the same indication.)

First of all, embed AEScf within another BES-like ci-
pher called BEScf . Define a mapping φ from GF (24) to
(GF (24))4, φ(a) = (a2

0

, a2
1

, a2
2

, a2
3

), and regard a ∈
(GF ((24)2))16 ( the state variable of AEScf ) as a column
vector, where

a = (a00, · · · , a30, a01, · · · , a31, · · · , a33)T . (14)

Each aij ∈ GF ((24)2) can be split as aij = aij1x + aij0, so
that the state space of AEScf is actually (GF (24))32. The
function φ can be extended to the state space of AEScf :
φ(a) = (φ(a001), φ(a000), · · · , φ(a331), φ(a330)), and the s-
tate space of BEScf is (GF (24))128. Using φ(aijm) =
(bijm0, · · · , bijm3), i, j = 0, · · · , 3,m = 1, 0, every BEScf

state vector b can be denoted as

b = (b0010, · · · , b0013, b0000, · · · , b0003,
· · · , b3310, · · · , b3313, b3300, · · · , b3303)T .

(15)

Our aim is to give every operation of AEScf a GF (24)
expression, and extend it to BEScf using the way of [24].

As noted in [24], the additive constant 0X63 in S1 (noted
by v in (1)) can be removed by incorporating it within a
modified key schedule, and so does S2 for AEScf . Our
reductions are as follows.

1) Subkey addition: This is the same as BES, just a bit-
wise XOR operation on GF (24)128.

2) S-box inversion: Since the inversion of S2 is
defined on GF ((24)2), it will act on each pair of
(aij1, aij0), i, j = 0, · · · , 3. From (3), the GF (24) expression
is get{

inv′(aij1, aij0) = (aij1 · t−1, (aij1 + aij0) · t−1),

t = a2ij1 · λ+ aij1 · aij0 + a2ij0.
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For every eight consecutive elements (bij10, · · · , bij03) from
b, the S-box inversion of BEScf can be expressed as:

tm = bij1(m+1) · λ2
m

+ bij1m · bij0m + bij0(m+1),

bij1m 7→ t−1m · bij1m,
bij0m 7→ t−1m · (bij1m + bij0m).

Here, m = 0, · · · , 3, and m+ 1 is interpreted modulo 4.
3) S-box linear operation: Use Lagrange interpolation in

GF ((24)2), one can get

l(a) =′ 06′a+′ 4B′a2 +′ F6′a4 +′ 89′a8

+′ 46′a16 +′ C0′a32 +′ 8F ′a64 +′ 24′a128,
(16)

where l(a) denotes the GF (2) matrix multiplication of S2.
Furthermore, set a = a1x + a0 and by only simple calcula-
tions on GF (24), (16) can be converted from GF ((24)2) to
GF (24):

l(a1x+a0) =
[ 3∑

i=0

(lia
2i

1 + li+4a
2i

0 )
]
x+

3∑
i=0

(li+4a
2i

1 + lia
2i

0 ),

where (l0, · · · , l7) = (′0′,′B′,′ 9′,′D′,′ 4′,′ 8′,′ 7′,′A′). Also
the following vector form is used,

a1 7→ (l0, · · · , l7) · ã,
a0 7→ (l4, · · · , l7, l0, · · · , l3) · ã,
ã = (a1, a

2
1, a

4
1, a

8
1, a0, a

2
0, a

4
0, a

8
0)T .

The extension to BEScf requires a 128× 128 GF (24) matrix
LinB, a block diagonal matrix with 16 identical blocks, that

is, LinB = Diag16(LB), where LB =

(
LB1 LB2
LB2 LB1

)
and

LB1 =


l2

0

0 l2
0

1 l2
0

2 l2
0

3

l2
1

1 l2
1

2 l2
1

3 l2
1

0

l2
2

2 l2
2

3 l2
2

0 l2
2

1

l2
3

3 l2
3

0 l2
3

1 l2
3

2

 ,LB2 =


l2

0

4 l2
0

5 l2
0

6 l2
0

7

l2
1

5 l2
1

6 l2
1

7 l2
1

4

l2
2

6 l2
2

7 l2
2

4 l2
2

5

l2
3

7 l2
3

4 l2
3

5 l2
3

6

 .

4) ShiftRows: This can be represented as a 128 ×
128 GF (24) matrix RB when we only need to ensure every two
vector conjugates (8 elements) are moved as a single entity.

5) MixColumn: We have assumed this operation on
GF ((24)2). For AEScf it can be represented as a 8×8 GF (24)
matrix CA, that is

a0i1
a0i0
a1i0
a1i1
a2i0
a2i1
a3i0
a3i1


7→



y 0 y + 1 0 1 0 1 0
0 y 0 y + 1 0 1 0 1
1 0 y 0 y + 1 0 1 0
0 1 0 y 0 y + 1 0 1
1 0 1 0 y 0 y + 1 0
0 1 0 1 0 y 0 y + 1

y + 1 0 1 0 1 0 y 0
0 y + 1 0 1 0 1 0 y


·



a0i1
a0i0
a1i0
a1i1
a2i0
a2i1
a3i0
a3i1


.

Here, y is a root of N(y) that defines GF (24) in (8).
To maintain the conjugacy for extension to BEScf ,
four matrixes are needed: p = 0, · · · , 3,C(p)

B =



y2
p

0 (y + 1)2
p

0 1 0 1 0
0 y2

p

0 (y + 1)2
p

0 1 0 1
1 0 y2

p

0 (y + 1)2
p

0 1 0
0 1 0 y2

p

0 (y + 1)2
p

0 1
1 0 1 0 y2

p

0 (y + 1)2
p

0
0 1 0 1 0 y2

p

0 (y + 1)2
p

(y + 1)2
p

0 1 0 1 0 y2
p

0
0 (y + 1)2

p

0 1 0 1 0 y2
p


.

and C(0)
B = CA and if (b0, · · · , b7)T = CA · (a0, · · · , a7)T ,

then (b2
p

0 , · · · , b2
p

7 )T = C(p)
B · (a2

p

0 , · · · , a2
p

7 )T . The whole
operation can be represented as a 128 × 128 GF (24) matrix
MixB and by a simple basis re-ordering MixB is a block
diagonal of sixteen 8× 8 matrices.

6) Key Schedule: The key length for AEScf is sixteen
bytes, while for BEScf it is sixty-four bytes. The 64-byte
BEScf key will generate eleven subkeys with the same length.
Additionally, the embedded image of the AEScf key kA is
the BEScf key kB = φ(kA), then for every round subkey
(kB)i = φ((kA)i), the same as BES.

7) A multivariate quadratic GF (24)-system for BEScf :
As usual, the S-box linear operation, ShiftRows and MixCol-
umn can be combined into one Matrix denoted by MB =
MixB · RB · LinB. Denote p, c ∈ (GF (24))128 as the plain-
text and ciphertext, ki ∈ (GF (24))128, i = 0, · · · , 10 as
the eleven BEScf subkeys, and the state vectors before and
after the ith invocation of the GF ((24)2) inversion layer by
wi ∈ (GF (24))128 and xi ∈ (GF (24))128, i = 0, · · · , 9
respectively, with ti ∈ (GF (24))64 a temporary variable during
the GF ((24)2) inversion. For each vector above except ti, four
subscripts are given, (j,m, p, q), j,m, q = 0, · · · , 3, p = 0, 1,
where j,m indicate the (4∗j+m)th component corresponding
ajm ∈ GF ((24)2) in (14), p indicates one of the two GF (24)
segments of ajm and q represents the coordinate of conjugate.
For ti, the subscript p is discarded since ti is used only for
GF ((24)2) inversion where both the GF (24) segments of ajm
mingle. The BEScf encryption can then be described by the
following GF (24) systems:

0 = w0,(j,m,p,q) + p(j,m,p,q) + k0,(j,m,p,q), (17)
for i = 0, · · · , 9,

0 = ti,(j,m,q) + wi,(j,m,1,q+1) · λ2
q

+ wi,(j,m,1,q) · wi,(j,m,0,q) + wi,(j,m,0,q+1),
(18)

0 = ti,(j,m,q) · xi,(j,m,1,q) + wi,(j,m,1,q), (19)
0 = ti,(j,m,q) · xi,(j,m,0,q) + wi,(j,m,1,q)

+ wi,(j,m,0,q),
(20)

0 = w2
i,(j,m,p,q) + wi,(j,m,p,q+1), (21)

0 = x2i,(j,m,p,q) + xi,(j,m,p,q+1), (22)

0 = t2i,(j,m,q) + ti,(j,m,q+1), (23)
for i = 1, · · · , 9,

0 = wi,(j,m,p,q) + ki,(j,m,p,q)+∑
(j′,m′,p′,q′)

α(j′,m′,p′,q′) · xi−1,(j′,m′,p′,q′), (24)

0 = c(j,m,p,q) + k10,(j,m,p,q)+∑
(j′,m′,p′,q′)

β(j′,m′,p′,q′) · x9,(j′,m′,p′,q′). (25)
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TABLE III. ITEMS FOR THE GF (24) SYSTEM OF BEScf

Eq. Num. Property Increased Variables Increased Quadratic Terms
(17) 128 linear 256 0
(18) 640 quadratic 1792 640
(19) 640 quadratic 640 640
(20) 640 quadratic 640 640
(21) 1280 quadratic 0 1280
(22) 1280 quadratic 0 1280
(23) 640 quadratic 0 640
(24) 1152 linear 1152 0
(25) 128 linear 128 0

TABLE IV. ITEMS FOR THE SYSTEM OF BES AND BEScf

Items BES [24] BEScf

Equations in total 5248 6528
Linear Equations 1408 1408

Quadratic Equations 3840 5120
Terms in total 7808 9728

Quadratic Terms 3840 5120
State Variables 2560 3200
Key Variables 1408 1408

Note that the equations in (21), (22) and (23) indicate conju-
gacy. In (24) and (25), α(j′,m′,p′,q′) and β(j′,m′,p′,q′) denote
the elements in MB and M∗B = RB ·LinB respectively, and q+1
is interpreted modulo 4. The numbers of items of the GF (24)
systems are listed in Table III.

The system contains 6528 equations, of which 1408 are
linear and 5120 are (extremely sparse) quadratic equations. The
system comprises 9728 terms made from 3200 state variables
and 1408 key variables, of which 4608 are linear terms (state
variables and key variables), 3200 are square terms and 1920
are quadratic terms. The details are listed in Table IV.

The effectiveness for the algebraic attack lies in the solv-
ability of the system. Courtois and Pieprzyk [20] present a
method called XSL to solve the GF (2)-system for AES, and it
is also available for the GF (28)-system for BES. However, up
till now, there exists no authentic estimation for XSL attack,
so it is of no worth to give a complete comparison of the
GF (28) attack for BES and the GF (24) attack for BEScf .
However, we find three evidences leading to the insolvability
of the GF (24)-system for BEScf :

(I) The GF (24)-system has more terms and more equa-
tions. The complexity of the XSL algorithm is on
average O(Tω) [20]; here T denotes the number of
terms.

(II) The GF (24)-system for BEScf has more quadratic
equations than the GF (28)-system for BES. The
quadratic terms of BEScf occupy 5120/9728 =
52.6% in total, more than 3840/7808 = 49.2% for
BES. According to the analysis in [20] , the GF (24)-
system for BEScf would be more complex to carry
out XSL attack than the GF (28)-system for BES.
In fact, most of the extra terms of BEScf are the
new variables ti used for the special treatment with
composite field inversion.

(III) In [25], there is another definition of Algebraic
Immunity for the XSL S-box. For each XSL S-box
of BEScf , the related equations are (18)-(23).
First, the size n = 8 is fixed because each XSL
S-box works on eight state variables of BEScf .
The terms appearing in (18)-(23) are: ti,(j,m,q),
wi,(j,m,p,q), xi,(j,m,p,q), wi,(j,m,1,q) · wi,(j,m,0,q),

ti,(j,m,q) · xi,(j,m,1,q), ti,(j,m,q) · xi,(j,m,0,q),
w2

i,(j,m,p,q), x2i,(j,m,p,q), t2i,(j,m,q). Summing up
according to the subscripts p and q, the number of
terms is t = 4+8+8+4+4+4+8+8+4 = 52 and
the number of equations r = 4+4+4+8+8+4 = 32,
then the Algebraic Immunity for XSL S-box of
BEScf is Γ = ( t−r

n )d
t−r
n e = 2.53 = 15.625 which

is larger than 9.6 of BES. The S-box based on
composite field seems more immune from the
potential algebraic attack.

Furthermore, adding the key schedule, the system may not be
any simpler since it has the same number of S-box substitutions
as BES. By then, we can conclude that AEScf is immune
from the GF (24)-system, and the potential algebraic attack
for AEScf may not work.

Similarly, one can consider AEStf in a GF ((22)2) system
and get a GF ((22)2)-system for AEStf , with the same scale
of system of equations as the GF (24)-system for AEScf . And
even more, one can think of splitting the GF ((22)2) system
into the field GF (22), where the basic GF ((22)2) operations,
especially the inversion, have to be replaced by the basic
operations on GF (22). However, based on what we have done
before, splitting GF ((24)2) inversion into basic operations on
GF (24), which complicates the system, one can see that the
expected GF (22)-system for AEScf may not be any simpler.

VI. CONCLUSION
In this paper, we tried to change the computational field

used in AES S-box, and created a new class of S-box with
better efficiency while preserving the cryptographical security.
Two 8 × 8 S-boxes S2 and S3 are constructed, by direct
inversion in composite fields GF ((24)2) and GF (((22)2)2)
respectively, combined with a GF (2) affine transformation,
the same used in AES S-box to give a rational comparison
of the composite field. The choice of the subfield leading
to the most efficient implementation is mainly discussed. By
simple comparison, our new S-boxes have better hardware
implementation than AES S-box. The masking strategy against
differential power attack is also more convenient.

We also studied the cryptographic characteristics with such
a S-box based on composite field inversion. The results show
that both S2 and S3 have comparatively the same cryptographic
characteristics with AES S-box. Thus, the replacement to
composite field does not weaken the cryptographic characteris-
tics. Moreover, we investigated whether or not those effective
cryptanalysis of AES might work if our S-box took the place,
especially the algebraic attack. Due to the different fields
involved, algebraic attacks applied on GF (2), GF ((24)2) and
GF (24) are discussed, respectively. And we proved that with
the replacement of S2 or S3 and the corresponding field for
MixColumn operation, the revised AES, denoted by AEScf or
AEStf , had no effective algebraic attack and was even more
solid than the original AES with S1.

In fact, the essence of our design is just to try to overlook
the underlying computational fashion and to choose the most
efficient one while preserving the cryptographic characteristics.
The most compact AES S-box to date was created by normal
bases [11]. The advantage for normal bases is that they have
very sparse matrixes in the implementation compared with
polynomial bases [11], but finding inversion will be as hard
as under polynomial bases. The S-box constructed on normal
bases would also survive those attacks.
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TABLE V. COMPOSITE FIELD IN BLOCK CIPHER

Cipher Field Structure
AES GF (28) A · x−1 + v

SMS4 GF (28) A · (A · x + v)−1 + v
CLEFIA GF (28) A2 · (A1 · x + v1)−1 + v2
Camellia GF ((24)2) A2 · (A1 · (x + v1))−1 + v2

Based on our argument, we suggest composite field
GF ((2n)2) in the design of block cipher. And we think that
our settings for S2 or S3 is indeed a balance between the im-
plementation complexity and the theoretical security. It seems
that the designers of block ciphers did not truly realize the
advantage of GF ((2n)2), see Table V. Even though Camellia
uses composite field, the structure is the most complex. As a
result, we suggest SMS4 and CLEFIA use composite field for
a more efficient hardware implementation.
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