
Automatic Generation of Adjoint Operators
for the Lattice Boltzmann Method

Stephan Seitz, Andreas Maier

Pattern Recognition Lab
Friedrich-Alexander-University Erlangen-Nürnberg

Erlangen, Germany
email: {stephan.seitz, andreas.maier}@fau.de

Martin Bauer, Negar Mirshahzadeh, Harald Köstler

Chair for System Simulation
Friedrich-Alexander-University Erlangen-Nürnberg

Erlangen, Germany
email: {martin.bauer, negar.mirshahzadeh, harald.koestler}@fau.de

Abstract—Gradient-based optimization techniques for Computa-
tional Fluid Dynamics have been an emerging field of research in
the past years. With important applications in industrial product
design, science and medicine, there has been an increasing
interest to use the growing computational resources in order to
improve realism of simulations by maximizing their coherence
with measurement data or to refine simulation setups to fulfill
imposed design goals. However, the derivation of the gradients
with respect to certain simulation parameters can be complex
and requires manual changes to the used algorithms. In the
case of the popular Lattice Boltzmann Method, various models
exists that regard the effects of different physical quantities and
control parameters. In this paper, we propose a generalized
framework that enables the automatic generation of efficient code
for the optimization on general purpose computers and graphics
processing units using symbolic descriptions of arbitrary Lattice
Boltzmann Methods. The required derivation of corresponding
adjoint models and necessary boundary conditions are handled
transparently for the user. We greatly simplify the process of fluid-
simulation-based optimization for a broader audience by pro-
viding Lattice Boltzmann simulations as automatic differentiable
building blocks for the widely used machine learning frameworks
Tensorflow and Torch.

Keywords–Lattice Boltzmann method; Computational Fluid Dy-
namics; Adjoint Methods; Gradient-based Optimization; Tensorflow.

I. INTRODUCTION
Applications for optimization using Computational Fluid

Dynamics (CFD) range from numerical weather prediction [1],
medicine [2], computer graphics [3], scientific exploration
in physics to mechanical [4] and chemical engineering [5].
The Lattice Boltzmann Method (LBM) is a promising al-
ternative to established finite element or finite volume flow
solvers due to its suitability for modern, parallel computing
hardware and its simple treatment of complex and changing
geometries [6]. These properties make it also well suited for
gradient-based optimization schemes. The gradient calculation
for LBMs is based on a backward-in-time sensitivity analysis
called Adjoint Lattice Boltzmann Method (ALBM) [7][8].
Manually deriving the adjoint method is a tedious and time-
consuming process. It has to be done for each concrete setup
because the adjoint method is highly dependent on the chosen
LBM, its boundary conditions, the set of free parameters,
and the objective function. This effortful workflow currently
impedes the usage of LBM-based optimization by a greater
audience with no experience in the implementation of this CFD
algorithm, despite the wide range of possible applications. Also
for experts, it might be tedious to efficiently implement ALBM
for a specific Lattice Boltzmann (LB) model and instance of a

problem, especially if MPI-parallel (message passing interface)
execution or Graphics Processing Unit (GPU) acceleration is
desired.

A great simplification for the efficient implementation of
optimization algorithms by non-experts has been achieved
recently in the field of machine learning. Array-based frame-
works like Tensorflow [9] and Torch [10] have dramatically
accelerated the pace of discovery and led to a democratization
of research in this discipline. Commonly needed building
blocks are exposed to scripting languages like Python or Lua
while preserving a relatively high single-node performance
through their implementation in C++ or CUDA. Most of
the available operators provide an implementation for the
calculation of their gradient which enables the automatic
differentiation and optimization of user-defined objective func-
tions. We are convinced that providing automatically generated
implementations for arbitrary LBMs as building blocks for
optimization frameworks could greatly simplify their usage
and increase the efficiency of their implementation. In this
paper, we thus present a code generation framework for a
wide range of LBMs with automatic derivation of forward and
adjoint methods. Our tool generates highly optimized, MPI-
parallel implementations for Central Processing Units (CPUs)
and GPUs, including boundary treatment. We automatically
account for optimizable, constant and time-constant variables.
The integration of our tool in the automatic differentiation
frameworks Tensorflow and Torch allows for rapid prototyping
of optimization schemes while preserving the flexibility of
switching between various LB models without making trade-
offs in terms of execution performance.

While many stencils code generation tools have been
proposed before, ours is the first to our knowledge which
facilitates automatic optimization using ALBM, given only a
specification of the LB model, the geometry and boundary
conditions. Another strength of our approach is that no new
domain-specific language is introduced. Instead, we rely on
an extension of the widespread computer algebra system
SymPy [11] which allows code generation in the familiar
programming environment of Python. The novel generation of
custom operations from symbolic mathematical representation
for both major machine learning frameworks might also be
useful for other applications.

Our framework [12] is available as open-source software
without the LBM abstraction layer [13]. The results of this pa-
per providing automatically derived operators and integration
for PyTorch and Tensorflow are about to be published in the
same place.

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

The remainder of this paper is organized as follows:
Section II presents related work regarding LBM, ALBM and
frameworks for automatic differentiation. Section III explains
the architecture of our framework, while Section IV evaluates
and Section V discusses its application on an example problem.

II. RELATED WORK
A. Lattice Boltzmann Method

The Lattice Boltzmann Method is a mesoscopic method
that has been established as an alternative to classical Navier-
Stokes solvers for Computational Fluid Dynamics (CFD) sim-
ulations [6]. It is a so-called kinetic method, using particle
distribution functions (PDFs) fi(x, t) to discretize phase space.
The PDFs thus represent the probability density of particles at
location x at time t traveling with the discrete velocity ci.
Macroscopic quantities like density and velocity are obtained
as moments of the distribution function. Space is usually dis-
cretized into a uniform Lattice of cells which can be addressed
using Cartesian coordinates. An explicit time stepping scheme
allows for extensive parallelization even on extreme scales
due to its high locality. The Lattice Boltzmann equation is
derived by discretizing the Boltzmann equation in physical
space, velocity space and time:

fi(x + ci∆t, t+ ∆t) = fi(x, t) + Ωi(f). (1)

Ωi denotes the collision operator that models particle collisions
by relaxing the PDFs towards an equilibrium distribution. De-
pending on the concrete collision operator, various different LB
models exist [6]: From single-relaxation-time (SRT) models
using the Bhatnagar–Gross–Krook approximation over two-
relaxation-time (TRT) models proposed by Ginzburg et al. [14]
up to generic multi-relaxation-time schemes [15][16]. Recent
contributions aim to increase the accuracy and stability of
the method by relaxing in cumulant-space instead of moment
space [17] or by choosing relaxation rates subject to an entropy
condition [18]. Several LBM frameworks exist that aid the user
with setting up a full LB simulation, e.g., Palabos [19][20],
OpenLB [21] and waLBerla [22][23]. However, none of these
frameworks support both LB code generation as well as
automatic differentiation for adjoint problems.

B. Adjoint Methods
Adjoint methods provide efficient means to evaluate gradi-

ents of potentially complex time-dependent problems. Given a
mathematical model to simulate forward in time, the method of
Lagrangian multipliers can be used to derive a complementary
backward model [24]. The adjoint can either be determined
from a mathematical description of the direct problem (an-
alytical derivation) or by an algorithmic analysis of the code
used for forward calculation (automatic differentiation). Exam-
ples for automatic derivation of forward and backward code
from a high-level symbolic description of partial differential
equations (PDEs) are the Devito [25][26] and the Dolfin
Adjoint framework [27][28]. Devito generates code for finite-
differences whereas Dolfin uses the finite element method.
Frameworks implementing the adjoint method using automatic
differentiation are usually not bound to a specific method.

For LBM, manual derivations of the adjoint dominate,
either by an analytical gradient of the discrete time step-
ping step [7] (discretize-then-optimize approach) or by re-
discretizing the gradient of a continuous formulation of the
Lattice-Boltzmann equation [8] (optimize-then-discretize). De-
spite most authors recommend the usage of a computer algebra

system for the derivation and Laniewski et al. [4] even use a
source-to-source auto-differentiation tool on a forward LBM
implementation to obtain backward code, a fully-automated
derivation of an ALBM scheme is still missing. ALBMs have
been applied to a wide range of problems, e.g., parameter
identification [7], data assimilation to measurement data [8],
or topology optimization [4][29]–[31]. Also, comparisons with
finite-element-based optimization have been made, giving
comparable results [30].

C. Automatic Differentiation
As alternative to analytical derivation, adjoint models can

also be obtained using automatic differentiation (AD). Se-
quential chaining of elementary differentiable operations often
helps to avoid typical problems of numerical and analytical
differentiation arising in highly complex expressions, like
numerical instabilities [24]

AD is based on the multi-dimensional chain rule where the
gradient ∇f of f = f1 ◦f2 ◦· · ·◦fN with respect to the inputs
of f1 can be calculated as

∇f = JN · JN−1 · · · · · J2 · J1 (2)

where J1 to JN are the respective Jacobians of f1 to fN .
The evaluation of this expression can be performed in

different ways [32]: forward-mode automatic differentiation
corresponds to a direct evaluation of Equation 2. This corre-
sponds to a direct tracing of the computation paths of the input
variables, such that the computation order and memory access
pattern is conserved.

In optimization applications, the last Jacobian JN usually
correspond to a scalar objective function. In this case, the
backward-mode evaluation order becomes favorable, that is
obtained by taking the transpose or adjoint of above expres-
sion.

∇f =
(
JT
1 · JT

2 · · · · · JT
N−1 · JT

N

)T
. (3)

Now, with JT
N being a vector, only matrix-vector multiplica-

tions have to be performed. This approach is more memory-
efficient and also facilitates the incremental calculation of
partial gradients. However, this comes with a disadvantage: the
paths in the calculation graph are inverted and the evaluation
can only begin after the forward pass has completed. All the
intermediate results of the forward pass need to be stored
and all memory accesses have to be transformed by turning
write operations into read operations and vice versa. Chang-
ing the memory access pattern can critically harm execution
performance, since efficient “pull” kernels that read multiple
neighbors and write only locally are transformed into “push”
kernels that read local values and write to neighboring cells.
This change also affects the parallelization strategy i.e. the halo
layer exchange for MPI execution.

For this reason, Hückelheim et al. proposed a scheme called
transposed forward-mode automatic differentiation (TF-MAD)
for stencil codes that mimics memory access patterns of the
forward pass [32]. In this scheme, the summations that evaluate
the gradients are re-ordered inside a single time step in similar
ways as in the forward differentiation. This preserves the
memory access structure while keeping the desired backward-
in-time evaluation order.

III. METHODS
In this section we first present a code generation tool for

forward LBMs that automates the derivation, performance op-
timization, and implementation of LBMs for CPUs and GPUs.

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

Then an extension of this tool for adjoint LBMs is described.
Finally, we show how the integration into popular automatic
differentiation frameworks enables the user to flexibly describe
a wide range of optimization problems.

A. Automatic LBM Code Generation
The main contribution of this work is a code generation

tool for Adjoint Lattice Boltzmann Methods that can be fully
integrated into popular automatic differentiation frameworks.
Our code generation approach aims to overcome the follow-
ing flexibility-performance trade-off: On the one hand, the
application scientist needs a flexible toolkit to set up the
physical model, boundary conditions and objective function.
On the other hand, a careful performance engineering pro-
cess is required, to get optimal runtime performance. This
process includes a reformulation of the model to save floating
point operations, loop transformations for optimal cache usage
and manual vectorization with single-instruction-multiple-data
(SIMD) intrinsics. While previously, this had to be done
manually, our tool fully automates this process.

On the highest abstraction layer, the Lattice Boltzmann
collision operator is symbolically formulated using the formal-
ism of multi relaxation time methods. A set of independent
moments or cumulants has to be provided, together with
their equilibrium values and relaxation times. This formalism
includes the widely used single relaxation time (SRT) and two
relaxation time (TRT) methods as a special case. Relaxation
times can be chosen either constant or subject to an entropy
condition [18]. This layer allows for flexible modification of
the model, e.g., by introducing custom force terms or by
locally adapting relaxation times for turbulence modeling or
simulation of non-Newtonian fluids. One important aspect that
increases the complexity of LB implementations significantly
is the handling of boundary conditions. Our code generation
framework can create special boundary kernels for all stan-
dard LB boundary conditions including no-slip, velocity and
pressure boundaries.

This high-level LBM description is then automatically
transformed into a stencil formulation. The stencil formulation
consists of an ordered assignment list, containing accesses to
abstract arrays using relative indexing. These assignments have
to be independent of each other, such that they can all be
executed in parallel.

Both representations are implemented using the SymPy
computer algebra system [11]. The advantages of using a
Python package for symbolic mathematics are evident: a high
number of users are familiar with this framework and problems
can be formulated intuitively in terms of abstract formulas.
Mathematical transformations like discretization, simplifica-
tions and solving for certain variables can be concisely for-
mulated in a computer algebra system. To reduce the number
of operations in the stencil description, we first simplify the
stencil description by custom transformations that make use of
LBM domain knowledge, then use SymPy’s generic common
subexpression elimination to further reduce the number of
operations.

Next, the stencil description is transformed into an algorith-
mic description, explicitly encoding the loop structure. Loop
transformations like cache-blocking, loop fusion and loop split-
ting are conducted at this stage. The algorithmic description
is then finally passed to the C or CUDA backend. For CPUs,
an OpenMP parallel implementation is generated that is also
explicitly vectorized using SIMD intrinsics. We support the

Forward
Time Step

Model
Parameters

Boundary
Control

Forward
Time Step

Model
Parameters

Boundary
Control

Forward
Time Step

Model
Parameters

Boundary
Control

Initial
Conditions

Scalar
Objective
Function

(a) Forward pass

Backward
Time Step

Gradient
Model

Parameters

Gradient
Boundary
Control

Backward
Time Step

Gradient
Model

Parameters

Gradient
Boundary
Control

Backward
Time Step

Gradient
Model

Parameters

Gradient
Boundary
Control

Gradient
Initial

Conditions

Gradient
Objective
Function

(b) Backward pass

Figure 1. Auto-differentiation-based optimization with automatically
generated kernels for forward and backward pass.

Intel SSE, AVX and AVX512 instruction sets. Vectorization
can be done without any additional analysis steps since our
pipeline guarantees that loop iterations are independent. Condi-
tionals are mapped to efficient blend instructions. To run large
scale, distributed-memory simulations, the generated compute
kernels can be integrated in the waLBerla [22][23] framework
that provides a block-structured domain decomposition and
MPI-based synchronization functions for halo layers.

Feasibility and performance results for this framework have
been shown already in the context of large-scale phase-field
simulations using the finite element method [12].

B. Automatic Stencil Code Differentation
In the following, we take advantage of the symbolic repre-

sentation of the forward stencils as SymPy assignments and use
the capabilities of this computer algebra system to implement a
set of rules to automatically generate the assignments defining
the corresponding adjoint. This distinguishes our method from
automatic derivation of adjoint finite difference in the Devito
framework [25] which uses SymPy to derive the adjoint directly
from the symbolic representation of the partial differential
equation and its discretization for finite differences. Our ap-
proach is not bound to a specific discretization scheme and
can therefore also be applied for LBM.

1) Backward Automatic Differentiation: As aforemen-
tioned, we can automatically generate CPU or GPU code for
one time step of the targeted method if we are able to express
the necessary calculations as a set of symbolic assignments
operating on relative read and write accesses. We consider
therefore one time step as an elementary operation for our
automatic backward differentiation procedure (see Figure 1).
This means we determine the gradients of an arbitrary objective
function by successively applying the chain rule for each time
step and propagate the partial gradients backward in time.

We will represent the forward kernel mathematically as
a vector-valued function f(.) = (f1 (.) , f2 (.) , . . . , fM (.))
which depends on argument symbols r0, r1, . . . , rN for N
read accesses. The result of each component will be assigned
to one of the symbols w0, w1, . . . , wM representing M write

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

accesses. Both wi and rj operate on two sets of fields that
may not be disjunctive.

wi ←− fi(r0, r1, . . . , rN) i ∈ {1, . . . ,M} (4)

Symbolic differentiation as provided by SymPy is used to
determine and simplify corresponding assignments for the
calculation of the discrete adjoint and also for common
subexpression elimination. For automatic backward differen-
tiation, an additional buffer for each intermediate result in the
calculation graph is required. We denominate relative write
and read accesses to adjoint variables corresponding to wi

and rj with ŵi and r̂j . In other words, our adjoint kernel
calculates the Jacobian of the outputs wi of one time step
of the forward pass with respect to its inputs rj in order to
apply the multidimensional chain rule and to backpropagate
the accumulated gradients ŵ to r̂.

r̂j ←−
M∑
i=1

∂fi
∂rj

(r0, r1, . . . , rN) · ŵi j ∈ {1, . . . , N}

(5)
Equation 5 is represented, symbolically evaluated, and simpli-
fied directly in SymPy. Note that store accesses are transformed
into loads and load accesses into stores, while the relative
offsets remain unchanged. As long as the stencils defined by
rj do not overlap, stores to r̂j can be performed in parallel.
Otherwise, the stores have to be realized by atomic additions,
accumulating the contributions of each grid cell. This can
critically harm execution performance.

In the case of a two-buffer LBM scheme, there are no over-
lapping read and write accesses. Hence, automatic backward
differentiation can safely be applied for parallel execution.

2) Backward Automatic Differentation with Forward Mem-
ory Access Patterns: A change in the memory access patterns
by transforming forward kernels into backward kernels may
not be an issue if the parallel execution can still be guaranteed.
However, this is not the case for most stencil operations and
one must be aware of the fact that a change in the memory
access pattern also affects the implementation of boundary
handling. As previously proven by Hückelheim et al. [32], the
derivations in the sum of equation 5 can be reordered to mimic
the access patterns of the forward pass if certain conditions
are met. This is based on the observation that in most cases
the forward assignments are written in a form that the write
operations can be performed collision-free and in parallel on
each output cell. If the perspective is changed and indexing
based on the read buffers, Equation 5 can be reformulated in
order to yield equivalent operations with collision-free writes
in the backward pass: For the sake of simplicity of notation,
we assume that all read accesses r0, r1, . . . , rN operate on the
same scalar field r. In this case, we can state that each cell
of r will have exactly once the role of each r0, r1, . . . , rN .
Therefore, we can simply sum over all the read accesses in
the forward kernel in order to obtain the gradient r̂ for each
cell of the read field r:

r̂ ←−
N∑
j=1

M∑
i=1

∂fi
∂rj

(r0, r1, . . . , rN) · wj (6)

Since in TF-MAD, the indexing is based on the read accesses
in the forward pass, the sign of the relative indexes of ŵ has
to be switched, which is indicated by w, e.g., the south-east
neighbor of the forward write is the north-west neighbor of
the forward read.

(a) Forward boundary handling (b) Backward boundary handling

Figure 2. Adjoint bounce-back boundary: invalid red memory locations and
have to be swapped with facing violet locations.

C. Automatic Generation of Adjoint Lattice Boltzmann Meth-
ods

To calculate the correct adjoint, not only the method itself
but also the boundary handling has to be adapted. Using
backward-mode automatic differentiation, a LB scheme with
pull-reads from neighboring cells is transformed into a push-
kernel that writes to neighboring cells. This transformation
also changes the memory access pattern of all boundaries
as shown for a bounce-back boundary in Figure 2. Similar
to compute kernels, the boundary treatment is also generated
from a symbolic representation. This allows us to re-use the
same auto-differentiation techniques that we applied earlier to
compute kernels and generate backward boundary kernels from
their respective forward implementations. The only difference
of boundary kernels is their iteration pattern. While compute
kernels are executed for each cell, a boundary kernel is
executed only in previously marked boundary cells. Boundary
values like density or velocity can either be set to a constant or
marked for optimization. In the latter case, the gradient with
respect to the boundary parameters is automatically derived
and calculated as well. All boundary options are accessible to
the user through a simple, high-level user interface.

D. Interface to Machine Learning Frameworks
Next, the automatically generated, efficient CPU/GPU im-

plementations of a LB time step with boundary treatment are
integrated into the Tensorflow and Torch packages. We provide
building blocks for the LB time step itself and for initialization
and evaluation steps that compute LB distribution functions
from macroscopic quantities and vice versa. For performance
reasons, it is beneficial to combine multiple LB time steps into
a single Tensorflow/Torch block.

This allows the user to easily specify an optimization
problem by constructing a computation graph in Tensorflow
or Torch. The user can choose which quantities should be
optimizable, constant or constant over time. The system then
automatically derives the necessary gradient calculations. Both
machine learning frameworks offer test routines that check
whether gradients are calculated correctly by comparing them
to results obtained via a time-intensive but generic numerical
differentiation method. We use these routines to ensure the cor-
rectness of our generated implementations. For simplicity, we
do not use advanced checkpointing schemes, like revolve [33],
and instead save all the intermediate results of the forward
pass. Alternatively, the user can opt to checkpoint only each
n-th time step and use interpolated values for determination
of the Jacobian of the missing forward time steps.

IV. EVALUATION
For evaluation of our framework, we chose a simple

geometry optimization problem after verifying the correctness

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

of our gradient calculations for standard LBM methods by
numerical differentiation. Many LBM-based approaches were
proposed to make cell-wise optimization stable and feasible,
mainly differing in the way of defining the objective functions
and their porousity models. The values of various parameters
are crucial for the existence of non-trivial solutions and the
stability of an optimization scheme.

Our code generation framework allows us to specify objec-
tive functions and porous media models in an abstract way that
is very close to their mathematical description. Thus one can
implement setups from literature without much development
effort. As an example we present here a setup investigated by
Nørgaard et al. [31]. They use the partial bounceback model of
Zhu and Ma [34] and achieve better optimization stability by
separating the design domain from the physical permeability.
Physical permeability is obtained by applying a filter followed
by a soft-thresholding step. The “hardness” of the thresholding
is increased during the optimization procedure to enforce a
zero/one solution.

We set up a similar problem as described in their work,
by requiring a generated geometry in the design domain to
have as close area as possible to a certain fraction θ of the
total available domain space and enforcing minimal pressure
drop in steady-state. We operate in a low Reynolds number
regime with fixed velocity (0.01 lattice units per time step,
inlets on left side) and fixed pressure conditions (1 in lattice
units, outlets on right side) as shown in Figure 3. With the same
objective function [31], that penalizes pressure drop, deviation
from a given volume fraction and instationarity of the LB
simulation, we obtain the results as shown in Figure 3.

V. CONCLUSION
Our work shows that adjoint LBMs can be automatically

derived from a high-level description of the forward method.
This makes optimization based on this method also tractable
for non-CFD-experts in a wide range of problem domains, by
hiding the inherent complexity caused by adjoint derivation,
boundary handling, and model implementation.

High-Level
RepresentationLBM Model

Backpropagation
Operator

Forward
Code

Backward
Code

Symbolic Transformations Tensorflow/Pytorch
Operator

Initialization LBM
time step

Boundary
Handling 1

Boundary
Handling 2

Objective
Function

Figure 4. Proposed work flow for optimization with ALBM.

In our exemplary geometry optimization problem, we
could successfully apply our suggested automated work flow
(Figure 4): a high-level LB model layer is used to derive
a porous media LB scheme, define the simulated geometry
and generate corresponding SymPy expressions for all nec-
essary operations including initialization, time stepping and
boundary handling. Forward expressions are transformed into
their respective adjoint and finally combined into Tensorflow
and Torch operations. Note that we decided for performance
reasons to fuse time steps and boundary operations to a
single operation. Derived gradients are automatically assessed
for correctness in concrete problem instances by numerical
differentiation.

Code generation is well suited for adjoint-based optimiza-
tion, especially ALBM. Our tool can be used to experiment
with different LB models, boundary treatments, optimizers
and objective functions without facing the burden of a man-
ual implementation. The symbolic intermediate representation
facilitates a simple automatic derivation of gradients for 2D
and 3D models. This helps to maintain clean and re-usable
code bases. Our code generation approach still guarantees good
performance by delegating hardware-specific optimizations to
different backends (CPU, GPU), which has been proven for
large-scale phase-field simulations [12], though a performance
evaluation for LBM and ALBM is still future work. Portability
is provided since integration for new frameworks only requires
minimal wrapper code to call our dependency-free C code. We
hope that this approach could help to save time and money to
bring future code from prototypical experiments to large-scale
production.

Our initial work leaves room for a lot of open questions,
which need to be evaluated in the future under more realistic
conditions. Scientific computing applications need to proof
optimum execution performance also on large scale MPI sys-
tems. Efficient CFD-based optimization needs to use dedicated
optimization frameworks with support for MPI simulations and
efficient step size control while machine learning frameworks
might be sufficient only for prototyping. Also a more advanced
checkpointing strategy, like revolve [33] is needed to reduce
memory usage. Furthermore, more research is required to
test which generated ALBM models are suited in practice by
analyzing their performance in real world examples.

Acknowledgments: Stephan Seitz thanks the Interna-
tional Max Planck Research School Physics of Light for
supporting his doctorate.

REFERENCES

[1] I. M. Navon, “Data assimilation for numerical weather prediction: A
review,” Data Assimilation for Atmospheric, Oceanic and Hydrologic
Applications, 2009, pp. 21–65.

[2] F. Klemens, S. Schuhmann, G. Guthausen, G. Thäter, and M. J. Krause,
“CFD-MRI: A coupled measurement and simulation approach for accu-
rate fluid flow characterisation and domain identification,” Computers
& Fluids, vol. 166, 2018, pp. 218–224.

[3] T. Kim, N. Thürey, D. James, and M. Gross, “Wavelet turbulence for
fluid simulation,” ACM Trans. Graph., vol. 27, no. 3, Aug. 2008, pp.
50:1–50:6.

[4] Ł. Łaniewski-Wołłk and J. Rokicki, “Adjoint lattice boltzmann for
topology optimization on multi-gpu architecture,” Computers & Math-
ematics with Applications, vol. 71, no. 3, 2016, pp. 833–848.

[5] S. Yang, S. Kiang, P. Farzan, and M. Ierapetritou, “Optimization
of reaction selectivity using CFD-based compartmental modeling and
surrogate-based optimization,” Processes, vol. 7, no. 1, Dec 2018, p. 9.

[6] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and
E. M. Viggen, The Lattice Boltzmann Method. Springer International
Publishing, 2017.

[7] M. M. Tekitek, M. Bouzidi, F. Dubois, and P. Lallemand, “Adjoint
lattice boltzmann equation for parameter identification,” Computers &
fluids, vol. 35, no. 8-9, 2006, pp. 805–813.

[8] M. J. Krause, G. Thäter, and V. Heuveline, “Adjoint-based fluid flow
control and optimisation with lattice boltzmann methods,” Computers &
Mathematics with Applications, vol. 65, no. 6, Mar 2013, pp. 945–960.

[9] M. Abadi et al., “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015, http://arxiv.org/abs/1603.04467, Software
available from tensorflow.org.

[10] R. Collobert, S. Bengio, and J. Marithoz, “Torch: A modular machine
learning software library,” 2002, technical report, infoscience.epfl.ch/
record/82802/files/rr02-46.pdf.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

Figure 3. Optimization solution for a simple minimal-pressure-drop design after n optimization steps for given fraction θ of the design area targeted.
Gray value intensity indicates permeability.

[11] A. Meurer et al., “SymPy: symbolic computing in Python,” PeerJ
Computer Science, vol. 3, Jan. 2017, p. e103.

[12] M. Bauer et al., “Code generation for massively parallel phase-field sim-
ulations,” in Accepted at: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, 2019, in press.

[13] M. Bauer et al., “pystencils,” software available at www.github.com/
mabau/pystencils.

[14] I. Ginzburg, F. Verhaeghe, and D. d’Humieres, “Two-relaxation-time
lattice boltzmann scheme: About parametrization, velocity, pressure
and mixed boundary conditions,” Communications in computational
physics, vol. 3, no. 2, 2008, pp. 427–478.

[15] P. Lallemand and L. Luo, “Theory of the lattice boltzmann method: Dis-
persion, dissipation, isotropy,galilean invariance, and stability,” Physical
Review E, vol. 61, no. 6, 2000, pp. 6546–6562.

[16] D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo,
“Multiple-relaxation-time lattice Boltzmann models in three dimen-
sions.” Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences, vol. 360, no. 1792, 2002, pp. 437–451.

[17] M. Geier, M. Schönherr, A. Pasquali, and M. Krafczyk, “The cumulant
lattice Boltzmann equation in three dimensions: Theory and validation,”
Computers and Mathematics with Applications, vol. 70.4, 2015, pp.
507–547.

[18] F. Bösch, S. S. Chikatamarla, and I. V. Karlin, “Entropic multirelaxation
lattice boltzmann models for turbulent flows,” Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 2015, p. 043309.

[19] J. Latt and et al., “Palabos, parallel lattice Boltzmann solver,” 2009,
software available at palabos.org.

[20] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, “Advances in multi-
domain lattice boltzmann grid refinement,” Journal of Computational
Physics, vol. 231, no. 14, 2012, pp. 4808–4822.

[21] M. Krause, A. Mink, R. Trunk, F. Klemens, M.-L. Maier, M. Mohrhard,
A. Claro Barreto, H. M., M. Gaedtke, and J. Ross-Jones, “Openlb re-
lease 1.2: Open source lattice boltzmann code,” 2019, online openlb.net,
Accessed Jan. 2019.

[22] C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde,
“A framework for hybrid parallel flow simulations with a trillion cells
in complex geometries,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 35:1–35:12.

[23] F. Schornbaum and U. Rüde, “Massively parallel algorithms for the
lattice boltzmann method on nonuniform grids,” SIAM Journal on
Scientific Computing, vol. 38, no. 2, 2016, pp. C96–C126.

[24] M. Asch, Data assimilation. Methods, algorithms, and applications, ser.
Fundamentals of algorithms. Philadelphia, PA: SIAM, Society for
Industrial and Applied Mathematics, 2016, vol. 11.

[25] F. Luporini et al., “Architecture and performance of devito, a system
for automated stencil computation,” Geosci. Model Dev., July 2018,
preprint available at https://arxiv.org/abs/1807.03032.

[26] M. Louboutin et al., “Devito: an embedded domain-specific language
for finite differences,” Geoscientific Model Development, vol. 12, Aug
2018, pp. 1165–1187.

[27] P. Farrell, D. Ham, S. Funke, and M. Rognes, “Automated derivation
of the adjoint of high-level transient finite element programs,” SIAM
Journal on Scientific Computing, vol. 35, no. 4, 2013, pp. C369–C393.

[28] S. W. Funke and P. E. Farrell, “A framework for automated PDE-
constrained optimisation,” CoRR, vol. abs/1302.3894, 2013, preprint
available at https://arxiv.org/pdf/1302.3894.pdf.

[29] G. Pingen, A. Evgrafov, and K. Maute, “Topology optimization of
flow domains using the lattice boltzmann method,” Structural and
Multidisciplinary Optimization, vol. 34, no. 6, Dec 2007, pp. 507–524.

[30] K. Yaji, T. Yamada, M. Yoshino, T. Matsumoto, K. Izui, and S. Nishi-
waki, “Topology optimization using the lattice boltzmann method
incorporating level set boundary expressions,” Journal of Computational
Physics, vol. 274, 2014, pp. 158–181.

[31] S. Nørgaard, O. Sigmund, and B. Lazarov, “Topology optimization of
unsteady flow problems using the lattice boltzmann method,” Journal
of Computational Physics, vol. 307, 2016, pp. 291–307.

[32] J. Hückelheim, P. Hovland, M. Strout, and J.-D. Müller, “Parallelizable
adjoint stencil computations using transposed forward-mode algorithmic
differentiation,” Optimization Methods and Software, vol. 33, no. 4-6,
2018, pp. 672–693.

[33] A. Griewank and A. Walther, “Algorithm 799: Revolve: An implemen-
tation of checkpointing for the reverse or adjoint mode of computational
differentiation,” ACM Trans. Math. Softw., vol. 26, 03 2000, pp. 19–45.

[34] J. Zhu and J. Ma, “An improved gray lattice Boltzmann model for
simulating fluid flow in multi-scale porous media,” Advances in Water
Resources, vol. 56, 2013, pp. 61–76.

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

