

A Parallel Hardware Architecture for Fork-Join Parallel Applications

Atakan Doğan, İsmail San

Department of Electrical and Electronics Engineering
Anadolu University

Eskişehir, Turkey

email: atdogan@anadolu.edu.tr, email: isan@anadolu.edu.tr

Kemal Ebcioğlu

Global Supercomputing Corporation
Yorktown Heights, NY, USA

email: kemal.ebcioglu@acm.org

Abstract—In order to facilitate the implementation on

hardware and improve the performance of a class of fork-join

applications that can be modeled by an OpenMP program, a

parallel hardware architecture with a specialized memory

hierarchy is proposed. Furthermore, three different case

studies are provided to show how this model can be employed
for the hardware acceleration of such applications.

Keywords-parallel applications; parallel hardware; hardware

thread; caches; NoCs.

I. INTRODUCTION

The OpenMP Application Programming Interface is a
well-established standard for parallel programming on
shared-memory multiprocessors. OpenMP has adopted the
fork-join model of parallel execution. According to this
model, an OpenMP program begins as a single thread of
execution, called an initial thread. When any thread
encounters an OpenMP parallel construct, a team of master
and slave threads (this is the fork) is created to execute the
code enclosed by the construct. At the end of the construct,
only the master thread continues, while all slave threads
terminate (this is the join) [1].

In the literature, there are several studies that attempt to
generate a parallel hardware from OpenMP applications [2]-
[7]. A few High Level Synthesis (HLS) tools, such as
Xilinx’s SDAccel [8], have support to produce parallel
hardware from OpenCL. Finally, fork-join like hardware
constructs that are automatically generated from sequential
code using compiler dependence analysis is described in [9].

The most recent and similar study in the literature is
presented by [9]. However, [9] does not clearly specify how
it copes with at least the following issues: (i) How does it
achieve an implicit barrier among threads at the end of a
parallel region? (ii) How does it perform reduction on
hardware? (iii) Is multiple level of fork-join parallelism
possible? The parallel hardware architecture model proposed
here will be proved to have an answer for these questions
that are needed for the acceleration of OpenMP applications.

The rest of the paper is organized as follows: Section II
introduces the proposed parallel hardware architecture.
Section III shows how this architecture provides support for
the fork-join applications using three different case studies.
Finally, Section IV concludes the paper.

II. PARALLEL HARDWARE ARCHITECTURE

Motivated by these and other related studies, a generic
parallel hardware architecture that can be configured by an
OpenMP program for a class of fork-join parallel
applications is proposed in this study and illustrated in
Figure 1.

Figure 1. A parallel hardware architecture for parallel applications.

Inside an FPGA (Field Programmable Gate Array) or
ASIC (Application Specific Integrated Circuit) chip in
Figure 1, there are a few types of components, which include
hardware threads, L1 caches (L1 $), single L2 cache (L2 $),
and interconnection networks (INw). Each component
communicates with messages through its sending FIFO
(First-In First-Out) and receiving FIFO interfaces, where an
arrow in Figure 1 represents such a bidirectional message
communication interface.

A. Hardware Threads

A hardware thread component is a finite state machine

that performs either coordination (P0 in Figure 1) or

computation (Pi, i>0).

P0 is the master hardware thread that
coordinates/synchronizes the execution of a parallel

application among the slave hardware threads. That is, P0

57Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

spawns (forks) new slave threads by sending a start request
to each of these slave threads; a barrier synchronization

(join) among slave threads is completed once P0 receives a

finish response from each of them.
Pi, 1≤i≤N+M, are a team of slave hardware threads that

really implement the execution of parallel application as
follows:

 Waiting for a start request from its parent thread P0.

 After receiving a start request, working on the task
while sending memory load/store requests to L1
cache units. Note that the task, for example,

corresponds to the computation due to of #pragma
omp parallel for {…}.

 Upon completing the computation, sending a finish
response to P0.

B. Memory Hierarchy

A two-level on-chip memory hierarchy as shown in
Figure 1 is proposed to support the parallel hardware
acceleration.

L1 $ is a write-back cache that supports load, store, and
flush requests coming from the slave hardware threads. In
Figure 1, a dedicated L1 cache is instantiated per slave
thread that allows each thread to access memory
independently for the maximum performance. Note that this
model is complaint to the OpenMP shared memory model.

L2 $ is a write-back cache that receives line read and line
write requests from L1 $ components and responds to the
requests accordingly. All initial and final data of the parallel
application are assumed to be kept in the L2 cache.
Furthermore, according to Figure 1, the L2 $ state data is
held in an on-chip memory, whereas the application data are
kept in an off-chip memory accessed through a memory
controller.

C. Interconnection Network

Interconnection Network (INw) is a packet-based
network-on-chip network (NoC) that interconnects various
components of the architecture [9].

III. CASE STUDIES

A. Matrix-Vector Multiplication

The first case study considers the matrix-vector
multiplication of y = A×x, where A is an n×n matrix, and
both x and y denote n×1 vectors. The parallel
implementation of the matrix-vector multiplication is
supported by Figure 1 as follows:

 Each hardware thread Pi, 1≤i≤N, starts its
computation upon receiving a start request from P0.

 Each Pi, 1≤i≤N, computes n/N vector elements y[k],
where y[k]=A[k,:]×x requires a complete row A[k,:]
of the matrix A and the whole vector x.

 The L1 cache directly attached to every Pi (L1i) is
loaded with n/N rows of the matrix and the vector x
from the L2 cache during the computation.

 Each Pi computes its part of y[k] and stores it into its
L1 cache. At the end of its computation, each Pi sends
a flush request to L1i so that all dirty lines of y[k] in
L1i are written back to the L2 cache.

 Each Pi waits for a flush acknowledgement from L1i,
and then sends a finish response to P0. Once P0
receives N finish responses, the matrix-vector
multiplication is completed.

Note that the following components in Figure 1 will not
be needed for case A: hardware threads Pi, N+1≤ i ≤ N+M,

the corresponding interconnection networks and L1 caches.

As a result, the matrix-vector multiplication is implemented

as a single fork-join paradigm.

B. Vector Inner-Product

The second case study considers the vector inner-product
of r = b×x, where b is a 1×n row vector, x denotes an n×1
column vector, and r is a resulting scalar value. The
parallelization of the vector inner-product can be
accomplished within the framework of Figure 1 as follows:

 Upon receiving a start request from P0, each Pi,
1≤i≤N, computes a partial sum scalar value y[i] by
means of multiplying its exclusive part of n/N
elements of vectors b and x, and then performing n/N
sums.

 Since each thread needs n/N elements of both vectors,
L1i is loaded with n/N columns of b and n/N rows of
x from the L2 cache.

 After the computation of y[i] is over, each Pi, 1≤i≤N,
writes y[i] into L1N+1, and then sends a finish
response to P0.

 After P0 receives N finish responses, P0 sends another
start request to the thread PN+1 so that PN+1 can
perform the final reduction sum over y[i], 1≤i≤N, in
cache L1N+1 and write the result r into L1N+1.

 Finally, PN+1 sends a flush request to L1N+1, waits for
a flush acknowledgement from L1N+1, and sends a
finish response to P0. Once P0 receives this final
finish response message, the vector inner-product is
finished.

The hardware threads Pi, N+2≤ i ≤ N+M, the related

networks and L1 caches in Figure 1 will not be needed for

case B. Thus, the implementation of a vector-inner product

requires a fork-join type of parallel execution followed by a

reduction operation.

C. Matrix-Matrix Multiplication

Finally, the matrix-matrix multiplication of C = A×B,
where each matrix is an n×n dense matrix, is considered as
the third case study. Such a matrix multiplication, for
example, can be performed as a block-matrix multiplication
using (n/Q)x(n/Q) submatrices for Q=2 as shown below:

11 12 11 12 11 12

21 22 21 22 21 22

C C A A B B

C C A A B B

11 11 11 12 21

12 11 12 12 22

,

,

C A B A B

C A B A B

21 21 11 22 21

22 21 12 22 22

,C A B A B

C A B A B

The parallel implementation of the block matrix
multiplication is supported by Figure 1 as follows:

58Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

 Each Pi, 1≤i≤N, starts its computation upon receiving
a start request from P0.

 Each Pi, 1≤i≤N, deals with a single submatrix
multiplication Yjkl = Ajk×Bkl (for example,
Y111=A11×B11, Y121=A12×B21, and so on). As a result,
each Pi requires the corresponding Ajk and Bkl
submatrices with dimensions of (n/Q)×(n/Q). There
will be N=Q3 submatrix multiplications.

 L1i is loaded with two submatrices Ajk and Bkl from
the L2 cache during the submatrix multiplication.

 Each Pi completes the submatrix multiplication,
stores the result submatrix Yjkl into the cache LN+j+l-1,
and then sends a finish response to P0.

 After P0 receives N finish response messages, P0

sends a start request to each hardware thread PN+i,
1≤i≤Q2, so that PN+i can perform the final sum over Q
different submatrices Yjkl kept in cache LN+j+l-1 to
compute Cjl.

 At the end of its computation, each PN+i, 1≤i≤Q2,

sends a flush request to LN+i so that all dirty lines of
Cjl in this L1 cache are written back to the L2 cache.

 PN+i, 1≤i≤Q2, waits for a flush acknowledgement
from its cache, and then sends a finish response to P0.
Once P0 receives Q2 finish messages more, the
matrix-matrix multiplication is done.

 Different from case A and case B, the matrix-matrix
multiplication implementation requires the use of all
hardware components shown in Figure 1. Furthermore, it
features two level of fork-join parallelism where the different
number of threads are working on different tasks at each
level.

IV. CONCLUSIONS

A parallel hardware architecture for a class of parallel
applications that can be modeled by a fork-join programming
model, such as OpenMP, is introduced. Its features are
further highlighted on three different case studies.

Future work involves devising a compiler to generate
such parallel hardware from regular OpenMP applications;
measuring and reporting the performance that can be

attainable by the generated parallel hardware using a set of
benchmark OpenMP applications, and making this compiler
to support the most of OpenMP constructs.

REFERENCES

[1] B. Chapman, G. Jost, R. van der Pas, Using OpenMP Portable
Shared Memory Parallel Programming. London, UK: The
MIT Press, 2008.

[2] J. Choi, St. Brown, and J. Anderson, “From software threads
to parallel hardware in high-level synthesis for FPGAs,”
International Conference on Field-Programmable Technology
(FPT’13), IEEE Press, Dec. 2013, pp. 270-277, doi:
10.1109/FPT.2013.6718365.

[3] Y. Y. Leow, C. Y. Ng, and W.F. Wong, “Generating
hardware from OpenMP programs,” IEEE International
Conference on Field Programmable Technology, (FPT 2006),
IEEE Press, Dec. 2006, pp. 73-80, doi:
10.1109/FPT.2006.270297.

[4] A. Cilardo, L. Gallo, and N. Mazzocca, “Design space
exploration for high-level synthesis of multi-threaded
applications,” Journal of Systems Architecture, vol. 59, pp.
1171-1183, Nov. 2013, doi: 10.1016/j.sysarc.2013.08.005.

[5] A. Podobas and M. Brorsson, “Empowering OpenMP with
automatically generated hardware,” International Conference
on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), IEEE Press, Jul. 2016, pp. 201-
205, doi: 10.1109/SAMOS.2016.7818354.

[6] L. Sommer, J. Korinth, and A. Koch, “OpenMP device
offloading to FPGA accelerators,” 2017 IEEE 28th
International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2017), IEEE Press, Jul.
2017, pp. 201-205, doi: 10.1109/ASAP.2017.7995280.

[7] L. Sommer, J. Oppermann and A. Koch, “Synthesis of
interleaved multithreaded accelerators from OpenMP loops”
International Conference on ReConFigurable Computing and
FPGAs (ReConFig), IEEE Press, Dec. 2017,
10.1109/RECONFIG.2017.8279823.

[8] Xilinx SDAccel. [Online]. Available from
https://www.xilinx.com/products/design-tools/softwarezone/
sdaccel.html/ 2018/06/08.

[9] K. Ebcioglu, E. Kultursay, and M. T. Kandemir, “Method and
system for converting a single-threaded software program into
an application-specific supercomputer,” US8,966,457B2,
2015.

[10] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys,
vol. 38, pp. Jun. 2006, doi: 10.1145/1132952.1132953.

59Copyright (c) IARIA, 2018. ISBN: 978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation

