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Abstract—In order to facilitate the implementation on 

hardware and improve the performance of a class of fork-join 

applications that can be modeled by an OpenMP program, a 

parallel hardware architecture with a specialized memory 

hierarchy is proposed. Furthermore, three different case 

studies are provided to show how this model can be employed 
for the hardware acceleration of such applications. 
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I.  INTRODUCTION 

The OpenMP Application Programming Interface is a 
well-established standard for parallel programming on 
shared-memory multiprocessors. OpenMP has adopted the 
fork-join model of parallel execution. According to this 
model, an OpenMP program begins as a single thread of 
execution, called an initial thread.  When any thread 
encounters an OpenMP parallel construct, a team of master 
and slave threads (this is the fork) is created to execute the 
code enclosed by the construct. At the end of the construct, 
only the master thread continues, while all slave threads 
terminate (this is the join) [1].  

In the literature, there are several studies that attempt to 
generate a parallel hardware from OpenMP applications [2]-
[7]. A few High Level Synthesis (HLS) tools, such as 
Xilinx’s SDAccel [8], have support to produce parallel 
hardware from OpenCL. Finally, fork-join like hardware 
constructs that are automatically generated from sequential 
code using compiler dependence analysis is described in [9]. 

The most recent and similar study in the literature is 
presented by [9]. However, [9] does not clearly specify how 
it copes with at least the following issues: (i) How does it 
achieve an implicit barrier among threads at the end of a 
parallel region? (ii) How does it perform reduction on 
hardware? (iii) Is multiple level of fork-join parallelism 
possible? The parallel hardware architecture model proposed 
here will be proved to have an answer for these questions 
that are needed for the acceleration of OpenMP applications. 

The rest of the paper is organized as follows: Section II 
introduces the proposed parallel hardware architecture. 
Section III shows how this architecture provides support for 
the fork-join applications using three different case studies. 
Finally, Section IV concludes the paper.  

II. PARALLEL HARDWARE ARCHITECTURE 

Motivated by these and other related studies, a generic 
parallel hardware architecture that can be configured by an 
OpenMP program for a class of fork-join parallel 
applications is proposed in this study and illustrated in 
Figure 1.  
 

  
Figure 1. A parallel hardware architecture for parallel applications. 

 

Inside an FPGA (Field Programmable Gate Array) or 
ASIC (Application Specific Integrated Circuit) chip in 
Figure 1, there are a few types of components, which include 
hardware threads, L1 caches (L1 $), single L2 cache (L2 $), 
and interconnection networks (INw). Each component 
communicates with messages through its sending FIFO 
(First-In First-Out) and receiving FIFO interfaces, where an 
arrow in Figure 1 represents such a bidirectional message 
communication interface. 

A. Hardware Threads 

A hardware thread component is a finite state machine 

that performs either coordination (P0 in Figure 1) or 

computation (Pi, i>0). 

P0 is the master hardware thread that 
coordinates/synchronizes the execution of a parallel 

application among the slave hardware threads. That is, P0 
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spawns (forks) new slave threads by sending a start request 
to each of these slave threads; a barrier synchronization 

(join) among slave threads is completed once P0 receives a 

finish response from each of them. 
Pi, 1≤i≤N+M, are a team of slave hardware threads that 

really implement the execution of parallel application as 
follows: 

 Waiting for a start request from its parent thread P0. 

 After receiving a start request, working on the task 
while sending memory load/store requests to L1 
cache units. Note that the task, for example, 

corresponds to the computation due to of #pragma 
omp parallel for {…}.     

 Upon completing the computation, sending a finish 
response to P0. 

B. Memory Hierarchy 

A two-level on-chip memory hierarchy as shown in 
Figure 1 is proposed to support the parallel hardware 
acceleration. 

L1 $ is a write-back cache that supports load, store, and 
flush requests coming from the slave hardware threads. In 
Figure 1, a dedicated L1 cache is instantiated per slave 
thread that allows each thread to access memory 
independently for the maximum performance. Note that this 
model is complaint to the OpenMP shared memory model. 

L2 $ is a write-back cache that receives line read and line 
write requests from L1 $ components and responds to the 
requests accordingly. All initial and final data of the parallel 
application are assumed to be kept in the L2 cache. 
Furthermore, according to Figure 1, the L2 $ state data is 
held in an on-chip memory, whereas the application data are 
kept in an off-chip memory accessed through a memory 
controller. 

C. Interconnection Network 

Interconnection Network (INw) is a packet-based 
network-on-chip network (NoC) that interconnects various 
components of the architecture [9].  

III. CASE STUDIES 

A. Matrix-Vector Multiplication 

The first case study considers the matrix-vector 
multiplication of y = A×x, where A is an n×n matrix, and 
both x and y denote n×1 vectors. The parallel 
implementation of the matrix-vector multiplication is 
supported by Figure 1 as follows: 

 Each hardware thread Pi, 1≤i≤N, starts its 
computation upon receiving a start request from P0. 

 Each Pi, 1≤i≤N, computes n/N vector elements y[k], 
where y[k]=A[k,:]×x requires a complete row A[k,:] 
of the matrix A and the whole vector x.  

 The L1 cache directly attached to every Pi (L1i) is 
loaded with n/N rows of the matrix and the vector x 
from the L2 cache during the computation.  

 Each Pi computes its part of y[k] and stores it into its 
L1 cache. At the end of its computation, each Pi sends 
a flush request to L1i so that all dirty lines of y[k] in 
L1i are written back to the L2 cache.  

 Each Pi waits for a flush acknowledgement from L1i, 
and then sends a finish response to P0. Once P0 
receives N finish responses, the matrix-vector 
multiplication is completed. 

Note that the following components in Figure 1 will not 
be needed for case A: hardware threads Pi, N+1≤ i ≤ N+M, 

the corresponding interconnection networks and L1 caches. 

As a result, the matrix-vector multiplication is implemented 

as a single fork-join paradigm. 

B. Vector Inner-Product 

The second case study considers the vector inner-product 
of r = b×x, where b is a 1×n row vector, x denotes an n×1 
column vector, and r is a resulting scalar value. The 
parallelization of the vector inner-product can be 
accomplished within the framework of Figure 1 as follows: 

 Upon receiving a start request from P0, each Pi, 
1≤i≤N, computes a partial sum scalar value y[i] by 
means of multiplying its exclusive part of n/N 
elements of vectors b and x, and then performing n/N 
sums.  

 Since each thread needs n/N elements of both vectors, 
L1i is loaded with n/N columns of b and n/N rows of 
x from the L2 cache. 

 After the computation of y[i] is over, each Pi, 1≤i≤N, 
writes y[i] into L1N+1, and then sends a finish 
response to P0. 

 After P0 receives N finish responses, P0 sends another 
start request to the thread PN+1 so that PN+1 can 
perform the final reduction sum over y[i], 1≤i≤N, in 
cache L1N+1 and write the result r into L1N+1.  

 Finally, PN+1 sends a flush request to L1N+1, waits for 
a flush acknowledgement from L1N+1, and sends a 
finish response to P0. Once P0 receives this final 
finish response message, the vector inner-product is 
finished. 

The hardware threads Pi, N+2≤ i ≤ N+M, the related 

networks and L1 caches in Figure 1 will not be needed for 

case B. Thus, the implementation of a vector-inner product 

requires a fork-join type of parallel execution followed by a 

reduction operation.  

C. Matrix-Matrix Multiplication 

Finally, the matrix-matrix multiplication of C = A×B, 
where each matrix is an n×n dense matrix, is considered as 
the third case study. Such a matrix multiplication, for 
example, can be performed as a block-matrix multiplication 
using (n/Q)x(n/Q) submatrices for Q=2 as shown below: 
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The parallel implementation of the block matrix 
multiplication is supported by Figure 1 as follows: 
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 Each Pi, 1≤i≤N, starts its computation upon receiving 
a start request from P0. 

 Each Pi, 1≤i≤N, deals with a single submatrix 
multiplication Yjkl = Ajk×Bkl (for example, 
Y111=A11×B11, Y121=A12×B21, and so on).  As a result, 
each Pi requires the corresponding Ajk and Bkl 
submatrices with dimensions of (n/Q)×(n/Q). There 
will be N=Q3 submatrix multiplications. 

 L1i is loaded with two submatrices Ajk and Bkl from 
the L2 cache during the submatrix multiplication. 

 Each Pi completes the submatrix multiplication, 
stores the result submatrix Yjkl into the cache LN+j+l-1, 
and then sends a finish response to P0. 

 After P0 receives N finish response messages, P0 

sends a start request to each hardware thread PN+i, 
1≤i≤Q2, so that PN+i can perform the final sum over Q 
different submatrices Yjkl kept in cache LN+j+l-1 to 
compute Cjl. 

 At the end of its computation, each PN+i, 1≤i≤Q2, 

sends a flush request to LN+i so that all dirty lines of 
Cjl in this L1 cache are written back to the L2 cache. 

 PN+i, 1≤i≤Q2, waits for a flush acknowledgement 
from its cache, and then sends a finish response to P0. 
Once P0 receives Q2 finish messages more, the 
matrix-matrix multiplication is done. 

 
 Different from case A and case B, the matrix-matrix 
multiplication implementation requires the use of all 
hardware components shown in Figure 1. Furthermore, it 
features two level of fork-join parallelism where the different 
number of threads are working on different tasks at each 
level. 

IV. CONCLUSIONS 

A parallel hardware architecture for a class of parallel 
applications that can be modeled by a fork-join programming 
model, such as OpenMP, is introduced. Its features are 
further highlighted on three different case studies. 

Future work involves devising a compiler to generate 
such parallel hardware from regular OpenMP applications; 
measuring and reporting the performance that can be 

attainable by the generated parallel hardware using a set of 
benchmark OpenMP applications, and making this compiler 
to support the most of OpenMP constructs. 
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