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Abstract—The paper considers the performance and energy
consumption of Parallella board with Epiphany coprocessor for
molecular dynamics simulation. The coprocessor has cacheless
many-core architecture, which is a promising energy efficient
technology for the evolution of modern supercomputers. The
paper describes the development and verification of molecular
dynamics simulation program for the new platform. It reveals the
capabilities of effective parallelization of the code on currently
available system taking into account the future development.
Comparison of the energy consumption with a modern general-
purpose processor Cortex-A53 shows the advantage of the Paral-
lella platform, while there are still opportunities to improve the
software.

Keywords–PGAS; OpenSHMEM; atomistic modelling;
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I. INTRODUCTION

Molecular Dynamics (MD) is an extremely powerful math-
ematical and computational tool of modern science. MD mod-
els are used in materials science, chemistry, biology, physics
and many interdisciplinary fields. Users of the method perform
researches to refine the models, to achieve a better fit to
experimental data, to expand the limits of applicability of the
method, and to create new empirical interaction potentials.
However, this paper does not concern these topics directly,
it is devoted to the computational aspects of the molecular
dynamics method.

Since MD is a very computationally demanding problem
and it accounts for a large fraction of the computational time
on the supercomputers all over the world, the issues of effective
implementation and parallelization techniques of the method
are well studied. Nevertheless, these issues are closely related
to the particular considered computer architecture.

The possibilities of using MD calculations to solve real
problems are significantly limited by the achievements of
the modern computer industry. To solve a number of urgent
problems, at least the exaflop level of computing power is
required, the achievement of which is associated with many
difficulties.

After many years of extensive growth, the dominant com-
puter architecture has come close to its limits, and the further
development of the industry lies in the use of new architec-
tures. The many-core mass-parallel processor architecture is
considered as a promising technology. Among modern devices,
Epiphany is almost the only available for a wide range of
researchers example of mass-parallel processor architecture
and deserves close attention [1].

The rest of this paper is organized as follows: Section II
is a review of related work. In Section III we describe

hardware and software system, used in this paper. Section IV
briefly describes the test simulation problem. In Section V
we consider the adaption of MD algorithm for parallel pro-
cessor architecture Epiphany. Over the naive implementation,
we describe a method for reducing the memory exchanges
between processors in a parallel program. Power of the board
running MD simulation is measured using digital watt-meter
in Section VI. The results are compared with modern general-
purpose Central Processing Unit (CPU), that have compared
power. Finally, Section VII contains the conclusion.

II. RELATED WORK

The balance of programming complexity for data-parallel
accelerators was discussed by Lee et al. [2]. In the recent
review [3], the key aspects of accelerator-based systems per-
formance modelling were considered. Wu et al. revealed the
properties of MD codes on multi- and many core proces-
sors [4]. Paper [5] present the results of experiments with
parallel algorithms (including MD) on Tilera’s TilePro64, that
shows the advantage of cashless mode.

The recent work [6] is devoted to the development of
general-purpose high-performance computing libraries for the
Epiphany architecture. Ross and Richie discussed a threaded
Message Passing Interface (MPI) model and its implementation
for Epiphany [7]. The design of the OpenMP 4.0 infrastructure
for the Parallella board was presented in [8].

Sukhinov and Ostrobrod [9] reported a successful im-
plementation of an applied face-detection algorithm for the
Epiphany-III coprocessor. The paper [10] discusses the use
of the Parallella board with E16G3 for solving the problem
of computational fluid dynamics. A simple test program was
implemented, performance was measured and compared with
a modern server processor and graphics accelerator. At a
low overall performance, the Parallella platform showed high
energy efficiency comparable to a graphics accelerator. In
the paper, it was shown that the small amount of memory
available on the computing elements is a serious limitation
for the algorithm. Thus, the results obtained in the work are
characteristic of a particular class of algorithms, and can not
be directly generalized to the molecular dynamics.

III. EPIPHANY ARCHITECTURE AND PROGRAMMING
MODEL

In this work, we use the prototype board Parallella (Fig-
ure 1). It includes a dual-core ARM host CPU, FPGA (Field-
Programmable Gate Array) and a 16-core Epiphany-III co-
processor (E16G301) and 1 GB of memory. There are several
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Figure 1. The scheme of the Parallella board.

Figure 2. The Epiphany chip architecture scheme.

interfaces: Gigabit Ethernet, Micro-SD storage, 48 General-
Purpose Input/Output (GPIO) pins, High Definition Multime-
dia Interface (HDMI) and Universal Serial Bus (USB). The
host runs an Ubuntu Linux modification (so-called Parubuntu
Linux). The Epiphany architecture [11] is a distributed shared
memory architecture comprised of an array of Reduced In-
struction Set Computer (RISC) processors communicating via
a low-latency mesh Network on Chip (NoC), see Figure 2. The
eMesh NoC consists of three separate and orthogonal mesh
structures, each serving different types of transaction traffic.

1) The cMesh is used for write transactions to on-
chip mesh-nodes. It has a maximum bandwidth of
4.8 GB/s up, and 4.8 GB/s down in each of the four
routing directions. Write transactions move through
the network with a latency of 1.5 clock cycles per
routing hop. A transaction traversing from the left
edge to right edge of a 64-core chip would thus take
12 clock cycles.

2) The rMesh is used for all read transactions. Read
transactions do not contain any data, but travel across
the rMesh until the destination node is reached. Here,
a write transaction is initiated to transport the data
back to the requesting node. The rMesh can issue
one read transaction every 8 clock cycles, resulting
in 1/8th of the maximum cMesh bandwidth.

3) The xMesh is used for write transactions destined
for off-chip resources and for passing through trans-
actions destined for another chip in a multi-chip
configuration. It is split in a North-to-South and an
East-to-West network. The bandwidth of the xMesh
is matched to the off-chip links of the architecture.

Each node in the processor array is a complete RISC
processor capable of running an operating system with small
amount of fast local memory (32 KB).

Epiphany uses a flat cacheless memory model. All amount
of the distributed memory is readable and writable by all

processors in the system. The edges of the 2D array can
be connected to non-Epiphany interface modules, such as
memory modules, FIFOs, I/O link ports, or standard buses.
The array of processors with 32-bit address map can be
scaled up to 4095 cores on a single chip. The existing
prototype Epiphany-V reaches the value of 1024 cores on
a single chip [12]. Epiphany-IV (2011) with 64 cores is
able to demonstrate 70 GFlops/W processing efficiency at the
core supply level through such architectural properties as the
absence of cache. According to Vocke, E16G301 peak power
efficiency of 32 GFlops/W can be attained at 400 MHz clock
frequency [13], while on the Parallella board the Epiphany
co-processor runs at a fixed frequency of 600 MHz.

In this work, the OpenSHMEM for Epiphany is used for
the parallel algorithm development [14][15]. This is an open
source OpenSHMEM 1.4 implementation that can be built
using Epiphany eSDK.

OpenSHMEM is responsible for data exchange between
Processing Element (PE) and implements the parallel pro-
gramming model named “Partitioned Global Address Space”
(PGAS). All the memory on the processing elements is ad-
dressable, but it is divided into logical sections and allows
one to consider the use of data locality. This model perfectly
matches the architecture of Epiphany. The technology of
Remote Direct Memory Access (RDMA) to is used. The main
programming idea is to create a universal function that can
process memory areas from specified computational elements.

Figure 3. The scheme of the threaded host-device (CPU - Epiphany)
program for the Parallela board.

Library and toolchain COPRTHR-2.0 are responsible for
the loading and start of the program kernel. It loads the
compiled code into PEs under the control of a lightweight OS
and launches it (Figure 3). Also, through the functions of this
library, the initial data is transferred from the main memory
of the board. Using the utility from the COPRTHR toolkit one
can analyze the memory allocation in the compiled code. An
essential limitation is that the compiled code takes up to 77%
of the memory of PEs, syscore and fragmentation drains up
to 5% of memory, so free memory is estimated at just 6608
bytes for code with manual loop unrolling and slightly more
without that optimization.
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IV. MOLECULAR DYNAMICS MODEL

The dynamics of N interacting particles is described by
the system of Newton’s equations of motion. Force Fi, acting
on a particle is defined by the potential function U , which
determines the physical properties of the system. In this work,
we use the Lennard-Jones potential, which represents the
generic interaction of neutral atoms:

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (1)

In computer simulations, the Lennard-Jones potential can
be considered equal to zero for sufficiently long distances (e.g.,
r ≥ 2.5σ). We use such a truncated potential in this work.

The integration of equations of motion is performed by
the velocity Verlet scheme. This scheme is well studied, the
optimality of the scheme for molecular-dynamics simulations
was shown [16][17].

V. IMPLEMENTATION

A. Program Structure
The conceptual scheme of an MD simulation program is

presented on Figure 4. The Verlet scheme is separated in
two steps: Verlet Initial Integrate and Verlet
Final Integrate. Between these steps the forces are
updated. This is the most intensive part of the algorithm (it
costs about 80% of the total computational time).

Initial Setup
Periodic Boundary Conditions
Compute Forces
loop over N time steps:

Verlet Initial Integrate
Periodic Boundary Conditions
Clear Forces
Compute Forces
Verlet Final Integrate

(a)

*Initial Setup
Periodic Boundary Conditions
*Compute Forces
loop over N time steps:

Verlet Initial Integrate
Periodic Boundary Conditions
*Particles exchange
Clear Forces
*Compute Forces
Verlet Final Integrate

(b)

Figure 4. The pseudocode of the main loop of the MD program: (a) the atom
decomposition parallelization; (b) domain decomposition the parallelization.

The difference between two algorithms on Figure 4 is in
the approaches to parallelism. In the details, all functions are
different in these two cases, but the key algorithmic differences
are in the steps “Initial Setup”, “Compute Force” and “Particles
exchange” (highlighted by the asterisk).

The current state of an MD model is represented as two
arrays of structures. Since Epiphany is a cacheless processor,
it does not matter whether one uses an array of structures or a
structure of arrays — that was confirmed by the experiment.

The first structure contains three coordinates (a three-
dimensional vector) and the ID of a particle, which are needed

to compute the interactions. The second structure contains 3
velocities and 3 forces, that are necessary for the evolution
of the system. In single precision, it gives 40 bytes per
particle. The memory management routines are atypical on
Epiphany [14]. With only 6608 bytes of free local memory on
PEs (see Section III), the simulation is limited by just ∼ 140
particles per PE.

// Number of particles is predefined and the same on each

processing element

const n = Total num. of particles / num. of PEs;
forall processing elements of Epiphany do in parallel

my ca = array of n particles coordinates vectors from this PE;
my fa = array of n particles forces vectors from this PE;
forall PE of Epiphany do

Select PE;
remote ca = RDMA to coordinates vectors on selected PE;
for i = 0 to n do

~r1 = my ca[i];
foreach ~r2 in remote ca do

distance = |~r1 − ~r2|;
if distance ≤ r2c then

f = PairForce(distance);
my fa[i] += f · (~r1 − ~r2);

end

end

end

end

end

Figure 5. The parallel force computation loop in the case of atom
decomposition approach.

forall processing elements of Epiphany do in parallel
// Num. of particles varies on PEs and changes over time

n = num. of particles on this PE;
my ca = array of particles coordinates vectors from this PE;
my fa = array of particles forces vectors from this PE;
forall PE neighboring to this PE do

Select PE;
remote n = number of particles on selected PE;
remote ca = RDMA to coordinates vectors on selected PE;
for i = 0 to length(my ca) do

~r1 = my ca[i];
foreach ~r2 in remote ca do

distance = |~r1 − ~r2|;
if distance ≤ r2c then

f = PairForce(distance);
my fa[i] += f · (~r1 − ~r2);

end

end

end

end

end

Figure 6. The parallel force computation loop in the case of domain
decomposition approach.

During the “Initial Setup” step (before the main loop)
the MD data is loaded from the main global memory to the
local memory of each core of Epiphany. In the case of atom
decomposition approach, data for all the particles in the MD
model are equally divided between the local core memory
blocks and remain there until the end of the calculation. In the
case of domain decomposition approach, each particle takes
place in the memory of a core according to its coordinate
in the MD simulation box. To maintain this state, a “Particles
exchange” communication is performed on each time step. The
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force computation is adapted to the parallelization approach in
both cases (see Figure 5 and Figure 6).

B. Parallelism
As it was mentioned above, the force computation loop

takes about 80 % of the total time to solution, thus the most
of the effort is devoted to accelerating this part of the MD
algorithm. Fortunately, the natural parallelism in MD is that the
force calculations and velocity/position updates can be done
simultaneously for all atoms [19]. To do this, the calculated
equations must be distributed among the processors. It is
achieved in two popular ways, both of which are discussed
in more details below.

The analysis of parallelism is limited by the following
conditions:

1) The small amount of memory on a single core. We
can not test a whole medium size problem on a single
core of Epiphany, the data must be “spread out”
throughout the entire computational field to solve the
problem.

2) Only 16 cores are available the Epiphany-III chip that
is used in this work.

It will be shown below that under such conditions the issue
of parallelism in our case is closely related to the algorithms
of finding all atom pairs.

1) Atom Decomposition: The particles are distributed
among the cores, regardless of their geometric positions in
the model. Every core gets a subgroup of atoms, and processor
computes forces on its atoms no matter where they move in the
course of the MD simulation. At Figure 7 each box represent
the whole computational domain in the memory of a core.
The particles that are stored in the local memory of some core
are shown as filled circles. Particles that are accessed by the
remote core via the network-on-chip interconnect are shown
as open circles. The potential cutoff radius is depicted around
the same particle on both cores. At every time step, “all-

Figure 7. The atom decomposition scheme: an example for the case of two
cores.

to-all” data exchanges are performed to search and receive
coordinates of neighbor particles because interacting particles
(i.e., located closely enough in the simulation box at this time
step) can be found on any other core. This communication
provides not a significant load for the 16-cores Epiphany chip
with very fast and low-latency NoC, but massive and frequent
“all-to-all” communications are a limiting factor for scalable
algorithms. Thus, they must be eliminated.

This approach is quite easy to implement on Epiphany with
shared memory and hardware RDMA feature. While one has

Figure 8. The domain decomposition scheme.

to store identical copies of atoms information on all cores in
a distributed memory system, information replication is not
required while using shared memory. On each time step, the
atom information from other processors is obtained by direct
memory access in the force computation loop.

2) Domain Decomposition: The MD simulation box is
divided into blocks and each block is assigned to one of
the processor’s cores. All particles from a certain block are
stored in the memory of the corresponding core. As a particle
moves through the MD simulation box, it passes to another
core. It is done in the “Particles exchange” part on each time
step that is presented on Figure 4 and discussed in previous
Subsection V-A. To calculate the interactions for particles on
each core, it is sufficient to make exchanges, not with all cores,
but to communicate only with neighboring cores to cover the
cut-off radius of the potential. The idea is shown at Figure 8:
the white square is an area dedicated to a single core. The
light-gray squares represent the adjacent cores that contain
the particles that can be located close enough to interact with
particles on the core considered. The particles in the dark-gray
area are too far from the considered domain to contribute to the
interparticle interactions. The circle represents a cut-off radius
of the potential.
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Figure 9. The time-to-solution per particle plotted versus the number of
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The benchmarking of two decomposition techniques and
their comparison with popular MD code LAMMPS [19] are
represented on Figure 9, which depict the results for atom
decomposition and domain decomposition run on Parallella
with Epiphany-III chip and the performance of LAMMPS
package on a single core of ARMv8 Cortex-A53 core. The
test model was configured for constant volume that minimizes
the difference between the cut-off radius rc and the domain
decomposition block edge length d. The number of atoms was
varied by the change of density. The MD package LAMMPS
was run on the single core of ARMv8 Cortex-A53 processor
in double precision. It keeps all data in the main memory
and thus has no parallelization overhead. On the other hand,
Parallella has higher peak performance and Epiphany-III uses
single precision floating point arithmetic, so LAMMPS timings
should be compared taking into account the differences of
the peak performance. Loop unrolling is very beneficial for
acceleration of computation on Epiphany cores, however in
this case more local memory on each core is needed for the
code itself and the maximum number of particles in the MD
model becomes lower.

The peak floating point performance of Epiphany (in single
precision) is 19.2 GFlops that is 4 times higher than the
peak floating point performance (in double precision) of one
Cortex-A53 core considered. Our MD algorithm in single
precision on Epiphany is 2 times faster on Epiphany than
the similar algorithm in LAMMPS running on a Cortex-A53
core. The non-ideal scaling with respect to the peak floating
point performance [18] can be explained by the memory access
limitation on the Epiphany architecture.

C. Interference of Parallelism and Complexity Reduction
There are two most common approaches to reduce the N2

complexity of N -body problems with short-range potentials:
the Verlet neighbor list method and the cell lists method. In
modern MD packages, the combination of these two methods
is used usually to achieve better performance. Neighbor lists
require a huge amount of extra memory, thus they are not
applicable on Epiphany due to strict memory limitations.
Cell lists are implemented for the Epiphany MD code in
the framework of this study. For the atom decomposition
parallelization method, the use of the cell lists for particles
on all cores simultaneously is not effective due to the low
number of particles on separate cores.

There is a reasonable relation between the parameters of
the LJ potential, the cut-off radius and the density of particles
in the MD model. The number of particles that fits into
the memory of a single core is also given. In this way, the
range of the most used block edge lengths (d) in the domain
decomposition method is determined.

In the case of d� rc, it is effective to implement separate
complexity reduction algorithm. In the case of Epiphany, d is
relatively close to rc, and the division of particles into the
cells is naturally maintained by the domain decomposition
algorithm. If we implement both domain decomposition and
cell linked-list algorithms, we have to pay a full cost for the
latter in terms of computer time, while it does not bring much
time-saving.

Without additional cell lists on every time step, a core just
gets the information only from itself and from nearest cores
(e.g., for 2D projection there are 8 neighbor cores, Figure 8).

0 20 40 60

Time, s

3,9

4

4,1

4,2

4,3

P
ow

er
, W

Basic power

Power increase

Figure 10. Energy consumption timeline.

In this way, instead of computation of N ∗N pair forces, we
reduce this number to N ∗ (N ∗ 9/16). However, it still has
non-linear complexity, that is shown of Figure 9. But for the
given configuration, it is more effective than the classic close-
to-linear algorithm with a much higher time-to-solution.

D. Verification
The verification of our prototype program is one of the

important steps in the development. We used several criteria:
conservation of total energy, comparison of the potential
energy time evolution with a priory correct program results
(we use the popular package LAMMPS [19]), and direct
comparison of the resulting coordinates or velocities of atoms
with the coordinates or velocities, calculated by the reference
program with the same initial conditions and the same time
step.

By default, LAMMPS performs the calculation in dou-
ble precision floating-point arithmetic, while Parallella with
Epiphany-III supports only single precision hardware acceler-
ated arithmetic. Hardware double precision is implemented in
the newer models of Epiphany only. Single precision MD is
implemented in most packages (e.g., LAMMPS, GROMACS,
HOOMD). Single precision is sufficient for MD simulations.
It is especially useful for calculations on desktop-level GPUs,
which have limited double-precision performance. That is why
the Epiphany-III chip limitation of floating point operations in
single precision only is not crucial for the MD algorithm.

VI. ENERGY EFFICIENCY

To measure energy consumption, we use a high-precision
digital watt-meter ODROID Smart Power. It draws an energy
consumption profile with 10 Hz sample rate when the program
starts. As an opponent of the Parallella, we chose the popular
platform Raspberry Pi 3, since it can be supplied and measured
using the same device. Peak performance of one core of
Raspberry Pi 3 processor Cortex-a53 is 4 times lower than
peak performance of 16 cores of Epiphany-III. Let us note
that Raspberry Pi 3 is manufactured using 40 nm technology,
while Epiphany-III is made using 65 nm technology. We can
assume that the implementation of the same architecture in
a more modern technical process can bring an additional
advantage. In Figure 10 presents the energy profile when the
program is started on Parallella, that can be used for direct
calculation of energy-to-solution [20]. It is possible to separate
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TABLE I. ENERGY CONSUMPTION VALUES.

Time, s Total Energy, J Energy Increase, J
Parallella 24 100.7 3.8
Raspberry Pi 3 51 183.6 40.8

the background energy consumption, which mainly falls on the
CPU and interfaces, from the consumption of Epiphany, which
is of primary interest to us. According to our measurements,
when Epiphany is under load, the power consumption increases
by only 0.2 Watt. The obtained results can be used to estimate
power consumption of hardware systems, running real-life
supercomputing programs.

VII. CONCLUSION AND FUTURE WORK

We described the OpenSHMEM implementation for the
Epiphany architecture of the domain-decomposition paral-
lelization for a generic molecular dynamics algorithm with the
short-ranged Lennard-Jones potential. The correctness of the
new algorithm was verified by the comparison with the same
model calculation with LAMMPS. The difference between the
resulting trajectories corresponds to the machine precision. It
was shown that manual loop unrolling speeds up algorithm
significantly. The comparison with LAMMPS running on a
single ARMv8 Cortex-A53 core shows that the algorithm for
Epiphany running on all 16 cores is 2 times faster, while
there remain opportunities for improving the algorithm. The
comparison of total energy consumption shows that Parallella
board is ∼2 times more energy efficient that Raspberry Pi 3
in terms of total energy-to-solution. The isolated consumption
of Epiphany-III chip is ∼11 times less, than the consumption
of modern and effective processor Arm Cortex-A53.
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[16] M. López-Marcos, J. Sanz-Serna, and J. Dı́az, “Are Gauss-Legendre
methods useful in molecular dynamics?” Journal of Computational and
Applied Mathematics, vol. 67, no. 1, 1996, pp. 173–179.
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