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Abstract—This work discusses and assesses the impact of
fundamental code optimization steps performed to maximize
computing performances and memory throughput on Intel®
Knights Landing (KNL) processor for Lattice Boltzmann (LB)
applications. The benefits of using different memory data layouts
is presented in regards to the most computationally intensive ker-
nels of such applications, reporting performance results measured
for the LBE3D code developed at the Applied Physics Department
of the Eindhoven University of Technology, and run on a single
KNL node for a common flow simulation case. We finally analyze
and discuss the impact of different memory layouts on energy
efficiency.

Index Terms—LBE3D; KNL; Optimization; Energy Efficiency;
Data Memory Layout; Vectorization; Performance Analysis.

I. INTRODUCTION

The combination of multi-threaded programming and vec-
torization, combined with efficient use of different levels
of memory hierarchy, are still considered to be the most
relevant solution to achieve high computing performances on
latest generations x86-64 processors. However, the majority
of legacy scientific codes are not yet capable to exploit all
these features, and optimized memory data layouts and access
patterns, together with efficient use of a large number of
threads and data vectorization, are necessary to obtain high
computing performances.

The Lattice Boltzmann Method [1] (LBM) is widely used
in computational fluid-dynamics to describe behavior of fluid
flows, and nowadays is commonly applied in several science
and engineering fields to accurately model single and multi-
phase flows, also using irregular boundary conditions. Fur-
thermore, applications based on LBM are also employed to
perform large scale simulations to study the dynamics and
the behavior of fluid and gases, requiring a huge amount of
computational resources. However, while these applications
are renown to deliver good scaling performances on distributed
systems enabling simulation of physical phenomena at high-
resolution, it is not easy to achieve high computing efficiency
even at level of single node. In fact, most of applications based
on LBM are not engineered and optimized for modern CPUs
based on multi-core architecture and using large vector unit,
where data organisation of application domain plays a key role
for enabling high computing efficiency.

In this work, we focus on the LBE3D code based on
D3Q19 LBM model, and assess the impact on computing

performances of several code optimization steps to maximize
both the number of flops and the memory throughput on
modern Intel® based many-core systems. In particular, we use
several data layouts to store the data domain of the application,
with the aim to find out a single memory layout that fits the
computing requirements of several kernel routines of the code.

Performances in term of both computing and energy con-
sumption of LBM applications have been studied in several
works for different architectures [2]–[4]. Here, we follow a
similar approach with the main difference that the analysis
reported refers to a real case application for a 3-dimensional
lattice.

The remainder of this paper is organized as follow: in
Section II, we introduce the main features of the KNL
processor, in Section III, we briefly describe the LBE3D
code and the data layouts aimed to improve performances
of LBM based applications, in Section IV, we present the
results obtained measuring the LBE3D code performances on
the KNL processors while in Section V, a short analysis on
energy efficiency is reported.

II. THE KNL PROCESSOR

The results presented in the following sections are all
obtained on a 64-cores Intel ® Xeon Phi™ CPU 7230 pro-
cessor, commonly referred as KNL, running at 1.30 GHz and
delivering a theoretical peak performance of about 3 TFlop/s in
double precision. The KNL processor is equipped with 6 Dou-
ble Data Rate fourth-generation (DDR4) channels, supporting
98 GB of synchronous Dynamic Random-Access Memory
(DRAM) with a peak raw bandwidth of 115.2 GB/s and four
high-speed memory banks based on the Multi-Channel DRAM
(MCDRAM) that provides 16 GB of memory, capable to
deliver an aggregate bandwidth of more than 450 GB/s. In
this work, we only consider the Quadrant cluster configuration
in which the 64-cores available are divided in four quadrants,
each directly connected to one MCDRAM bank. MCDRAM
on a KNL can be configured at boot time in Flat, Cache or
Hybrid mode. The Flat mode defines the whole MCDRAM as
addressable memory allowing explicit data allocation, whereas
Cache mode uses the MCDRAM as a last-level cache. In this
work, we used Intel® library for Message Passing Interface
(MPI) to compile the LBE3D application. Vectorization is en-
abled at compile level using the -xMIC-AVX512 Intel® com-
piler option. Multi-thread version of LBE3D is implemented
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Figure 1. Schematic representation of the D3Q19 lattice employed in this
work.

using OpenMP and enabled at compile time. Threads affinity
at run time is obtained with ”KMP AFFINITY=compact”
and ”I MPI PIN DOMAIN=socket” environment variables.
Memory allocation for all results related to the KNL con-
figured in Flat mode is made by using the numactl -m 1
mpirun ./lbe3d command.

III. LBE3D AND DATA LAYOUTS

The LBM is based on the synthetic dynamics of populations
arranged at the edges of a discrete lattice. It is discrete
in time, space and momenta, offering a large amount of
easily identifiable parallelism while making it an ideal tool
for investigating performances of modern systems for high-
performance computing [5]–[7]. At each time step, populations
are first moved from lattice-site to lattice-site applying the
propagate operator, and then are modified through a colli-
sional operator changing their values according to the local
equilibrium condition. The computing pattern for the collision
(collide) and the consequent propagation (propagate)
within the lattice grid are renown main bottlenecks for the LB
class of applications.

With this work, we transferred previous experiences on code
optimization for LB class of applications implementing new
data layouts on the LBE3D code, a LBM based application
featuring a standard single relaxation time with the Bhatnagar-
Gross-Krook (BGK) collision operator [8], which builds on
top of a generic compile/profiling library (ftmake), currently
maintained at the Eindhoven University of Technology, The
Netherlands. More in particular, the LBE3D code implements
a numerical scheme based on the LBM [9] and it has been
used to perform simulations under a broad range of flow and
fluid conditions [10]–[13].

Here, we focus on the D3Q19 LB stencil, a 3-dimensional
model with a set of 19 population elements corresponding to
(pseudo-)particles moving one lattice point away along all 19

Figure 2. Velocity field along the forcing direction. Snapshot taken once the
flow field reached the final steady state.

Figure 3. Top to bottom, AoS, SoA, CSoA and CAoSoA data memory layouts
for a 4 x 8 lattice with two populations (red and blue) per site.

possible directions. A schematic representation of the stencil
pattern is shown in Figure 1, where the arrows represent the
direction along which populations sitting at a site node are
allowed to stream. All presented performance measurements
are referred to a simple channel flow set-up as shown in
Figure 2. A fluid between two parallel solid walls is put into
motion by a homogeneous body force, and no-slip boundary
conditions are applied at these walls, while periodic boundary
conditions are applied along the two other directions.

Many stencil based applications, including LBM, are com-
monly implemented using either Array of Structures (AoS) or
Structure of Arrays (SoA) data layouts. In the AoS approach,
originally used in the LBE3D code too, population elements of
each lattice site are stored contiguously in memory. Therefore,
the AoS structure is constructed as a 3-dimensional lattice
where each element is composed by N population values
(NPOP). On the other hand, LB based applications adopting
the SoA schema allocate the 3-dimensional lattice as a col-
lection of NPOP arrays, each storing for every site a single
element population value. However, none of those two data
layouts have been demonstrated to be ideal for LB based
applications since, while the AoS delivers better performances
for the collide kernel, it lacks in memory bandwidth
if compared with SoA when considering the propagate
kernel.

Alternate data layouts aim to improve the overall perfor-
mances of LB based applications, and in Figure 3 we show
a graphical representation for a sample lattice of 4 x 8 using
two populations per site (memory addresses increase left-to-
right top-to-bottom). In summary, beside the AoS and SoA
layout, we have two new layouts called CSoA and CAoSoA.
The CSoA layout is an extension of the SoA where V L
lattice-site data at distance L/V L (L dimension of major
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order store) are clustered in consecutive elements for each
population array, with V L equal to the number of double
precision elements that can be stored in the vector register
available on the given architecture. This layout keeps the
data properly aligned in memory and allows to vectorize the
steps of propagate kernel. The CAoSoA structure is a mix
between CSoA and AoS, and allows to exploit the benefit of
the V L clusterization of lattice sites element as introduced by
the CSoA schema but with the benefit of higher locality in
regards to the populations. For this reason, this layout may
deliver better overall performances for the collide kernel.
In Figure 3, each dark grey-box is a cluster with V L=2 for
both the CSoA and the CAoSoA data layouts.

IV. ANALYSIS OF RESULTS

In this Section, we measure the impact of the different
memory layouts in terms of computing while an analysis
in term of energy consumption is provided in the following
paragraph. We first focus and analyze performance for the
propagate and collide kernels, and then we assess the
impact on the whole LBE3D code.

As mentioned earlier, LBM is characterised by a phase of
propagate, where populations move from lattice-site to lattice-
site, describing the flows momentum. Kernels implementing
this phase are, in particular, memory bounded because the
movement is practically implemented as the copy of a single
data (double precision floating point number) from one loca-
tion to another location in memory. Therefore, a key aspect to
achieve maximum speed is to describe this operation with a
memory access pattern that can exploit the maximum memory
bandwidth. Clustered data layouts allow to vectorize such
operation, whether data are aligned in memory, as the compiler
replaces the scalar operation of copy with a copy operation on
registers capable of multiple elements of the same kind (vector
registers). In Figure 4, we report the measured performances
of memory bandwidth obtained by the propagate kernel
on a KNL node configured in Flat mode. The CSoA version
allows to achieve almost 350 GB/s memory with a significant
improvement in performance if compared with the canonical
AoS or SoA approaches. We can confirm that also for the
cases of 3-dimensional lattices the CSoA version allows for the
propagate kernel to achieve the highest value of memory
bandwidth if compared with other analysed data layouts. It is
relevant to underline how in most cases the memory bandwidth
saturates at 64 threads (a single hardware thread per core).

The measured memory bandwidth drops if considering
larger lattices with a data domain unable to fit in the 16 GB/s
of the MCDRAM. In Figure 5, data are obtained with the
KNL configured in Cache mode and the real peak performance
achieved by the CSoA data layout is of about 80 GB/s, with a
factor of 4x reduction if compared with the memory bandwidth
obtained when data fit into the MCDRAM. Moreover, the
intensive use of the DRAM memory squeezes the performance
gap among the various data layouts such that CSoA becomes
only 10% better of the SoA and comparable with the CAoSoA
versions.

Figure 4. Measured memory bandwidth for the propagate kernel using
different data layouts: AoS, SoA, CSoA and CAoSA. KNL is configured in
flat mode.

Figure 5. Measured memory bandwidth for the propagate kernel using
different data layouts: AoS, SoA, CSoA and CAoSA. KNL is configured in
cache mode.

The other important phase of LBM is the collision phase.
It is implemented as the collide kernel which is generally
considered compute bounded because all discretised quantities
such as forces, velocities and densities are per site computed
with high data locality. For most of those quantities the lattice
elements are read from the input lattice and written to the out-
put lattice contiguously, but for the computation of the density,
and velocity, which requires accessing all population elements
for each site. While this is a cache friendly operation for the
AoS scheme, due to data locality (all populations elements are
stored contiguously), it is not for data layouts where per-site
population are scattered in memory, such as SoA and CSoA.
However, as per the CSoA version the speedup achieved by
vectorized operations on clustered data helps to overrun this
problem. The mixed schema of the CAoSoA is expected to
take advantage of accessing contiguous population elements
while working on clustered data.

In Figure 6, the measured value of peak performance is
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Figure 6. Measured real peak of performances for the collide kernel using
different data layouts: AoS, SoA, CSoA and CAoSA. The KNL is configured
in Flat mode

Figure 7. Measured real peak of performances for the collide kernel using
different data layouts: AoS, SoA, CSoA and CAoSA. The KNL is configured
in Cache mode

reported. In flat mode for a medium size grid of 256x256x128
we measure a peak performance of about 700 GFLOP/s
corresponding to around the 25% of the nominal peak: ap-
proximately half of the value reported on the Nov 2018
list of the TOP500 for KNL based architectures running the
High Performance Computing Linpack Benchmark. CSoA and
CAoSoA are confirmed to outperform canonical AoS and SoA
data layouts by a factor between 2x to 3x. However, when
increasing the lattice size while switching to the Cache mode
configuration, the performance gap between the various data
layouts drops significantly also in the case of the collide
kernel. As we report in Figure 7, when intensively using
DRAM the real performance peak is reduced by a average
factor 2x if compared with the same kernel running on KNL
in Flat mode, and the gaps between the different data layouts
drops between 1.5x to 2.5x.

In the following we present the impact of the different data
layouts in regards to the LBE3D application. We concentrate

on performances of the main LB loop (Figure 8), computa-
tionally the most significant part of the LBE3D application.
Indeed, initialization and finalization phases, as well as the
time spent on I/O operations are disregarded because becom-
ing irrelevant at the increasing of the number of time steps (in
production). In the particular case of the the I/O, it remains
irrelevant as long as the frequency of I/O operations is kept
low in regards to the number of LB loops (user driven).

Other than the propagate and the collide kernels
also boundaries update is considered as well as the update
of the sites near to the walls (see par. 4). We also include the
analysis of performances for the fused version of the code.
As illustrated in Figure 8 by fused we mean a version of the
LBE3D were the propagate and the collide kernels are
nested within the same loop that parses all the populations of
the 3-dimensional lattice. In the case of 3-dimensional lattices
the number of elements per dimension is limited because
considering regular lattices the memory requirement grows
exponentially at the increasing of the number of elements per
dimension. For instance a lattice dimensions of 5123 requires
20GB of memory which goes much beyond the memory
available on the KNL’s MCDRAM. At the same time, reducing
the number of elements per dimension includes the risk of
unbalance at the increasing of the number of threads while the
vectorization benefits of irregular grids larger on the most inner
dimension. To reduce the problem of threads imbalance we
also introduced the OpenMP collapse clause distributing
threads workload among the two outermost dimensions of
nested loops over a 3d-lattice for all significant sections of
the LBE3D code. However, this only minimally reduced the
effect of imbalance when increasing the number of threads.

Figure 8. On the left, a pseudo-code description of the main loop of LB based
application. On the right, a representation of the fused version of the two main
kernels.

In Figure 9, performance results for the LBE3D case are
reported. It is evident the benefit of using the clustered versions
CSoA or CAoSoA if compared with more canonical AoS or
SoA data layout. We have measured this impact to be a factor
of 2x to 3x depending by the lattice dimension with the KNL
configured in Flat mode. Achieved vectorization by the fused
version of LBE3D is shown in Table I where we report the
Vector Processing Unit (VPU) activity as the measured ratio of
the two Vtune’s counters UOPS RETIRED.SCALAR SIMD
and UOPS RETIRED.PACKED SIMD. The final value is
given by the ratio between the number of vector operations
the core performed (PACKAED SIMD) to the sum of all op-
erations (SCALAR SIMD and PACKED SIMD) as properly
described in [14].
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TABLE I. VPU USAGE MEASURED BY THE INTEL® VTUNE FOR
FUSED LBE3D

data layouts Vector VPU Intensity
AoS 20%
SoA 20%
CSoA 100%
CAoSoA 100%

Figure 9. Time to solution for 1000 time steps of the LB main loop for the
LBE3D application. Performances are reported across the multiple data layout
presented, at the increasing of the number of hardware threads active per core.

Increasing the number of threads beyond 2 hardware threads
per core does not provide any performance improvement,
actually Figure 9 reports that with the KNL configured in
Flat mode the best results are achieved using 2 hardware
threads per core among all versions. In general, beyond
the 2 hardware threads per core there are some fluctuations
within the 20% of the total time of the main LBE3D loop
(see Figure 8) but there is an unexpected degradation of
performances, almost by a factor 2x, for both the fused SoA
and CSoA versions at 256 threads. By deeper analyzing this
phenomena with Vtune we saw that the peak is associated to
a strong increase of misses at Level-2 (L2) of the translation
lookaside buffer (TLB), measured monitoring the counter
MEM OUPS RETIRED.DTLB MISS LOADS (see [14] for
better details). At the same time, a deeper profiling has
shown that for this particular cases the most time consuming
function becomes the routine kmp flag 64::wait, from the
limiomp5.so library which includes the Intel® implementation
of OpenMP. Despite we still cannot explain this high number
of TLB misses for this particular case, we can state how
this configuration drastically slows down due to a problem of
threads unbalancing that coincides with a peak of the number
of L2 TLB misses.

The benefit of the fused version is generally 1.5x with
respect to the canonical version which uses two separate
kernels for propagate and collide. In Figure 10, we
report the profiling breakdown for 2 hardware threads per core
(128 threads in total). The profiling chart shows the impact of
the various data layouts for the propagate and collide
kernel in regards to the whole LB main loop. The impact of
the fused version of the kernel is also well in evidence.

Figure 10. Profiling breakdown for a single time step of the LB main loop
for the LBE3D application. Data are reported using the OpenMP version of
the LBE3D application using 2 hardware thread per core.

V. ENERGY EFFICIENCY

We now consider energy efficiency for the LBE3D across
the multiple data layouts presented. We use data from the
Running Average Power Limit (RAPL) register counters avail-
able in the KNL read through the custom library developed
in [15]. In Figure 11, we show the measured values of energy
consumption (Joule) for the LBE3D application respectively
for the processor and the off-chip DRAM memory.

The DRAM energy consumption is lower as the KNL is
configured in Flat mode and during the simulation data are all
stored into the MCDRAM. Indeed, energy consumption for
the DRAM memory only registers the value in the state of
idle while for the MCDRAM is accounted within the CPU
(on cheap memory).

What is relevant to notice is that despite the CSoA and
CAoSoA data layouts are expected to stress the CPU system
more than the AoS and SoA (higher utilization of the VPU),
we can assume the absorbed power remains approximately
constant when considering different data layouts. Indeed, it is
evident how the energy consumption remains mostly propor-
tional to the time to solution such that Figures 11 and 9 are
comparable and showing a similar trend: usage of the CSoA
data layout brings a factor from 2x to 3x advantage both in
term of time to solution, and energy to solution.

VI. CONCLUSION

In this contribution, we have presented the impact on
computing performances and energy consumption of different
data layouts for the case of the LBE3D code.

Best improvements are given by the newly introduced data
layouts (CSoA and CAoSoA) on the KNL, when the data
domain fits the MCDRAM memory capability of 16 GB. In
this case, the LBE3D application shows best performances
setting 2 hardware threads per core (128 threads in total), while
exhibits a problem of load unbalancing when increasing the
number of hardware threads per core beyond 2. Considering
the whole main LB loop in terms of time to solution, the
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Figure 11. Energy consumption profiling of the LBE3D application.

CSoA and the CAoSoA data layouts are comparable offering
an overall better performance corresponding to approximately
2-3x faster compared to the other layout schemes: AoS and
SoA. In particular, the CSoA shows a peak performance of
about 700 GFlop/s for the collide kernel, and 350 GB/s
in terms of memory bandwidth for the propagate kernel.
Larger lattices that do not fit the MCDRAM requires access to
the DRAM memory which in Cache mode provide an average
time to solution lower by approximately a factor 2x. This
bottleneck put at the same level the performances exhibit by
all version of the code.

Analysis on the LBE3D in regards to energy efficiency
shows that the both CSoA and CAoSoA data layouts are more
efficient because delivering faster time to solution, although a
slightly higher average power drain is measured due to a more
intense utilization of the on-chip system.

The optimization steps presented here for the case of
the LBE3D are quite general and can also be applied to
other LB production codes. Moreover, we expect that similar
performance improvements can also be achieved on other
kind of processor based on large vector registers. In fact, the
optimizations shown are mainly targeted to make efficient use
of VPU capable to perform high number of operations per
clock cycle.

In future works, we will keep on investigating how the
proposed data layouts perform on current and next generation
of computer architectures for high-performance computing,
including accelerators based platforms.
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