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I. INTRODUCTION

Over the past three decades, neural networks have been

widely studied since they have been successfully applied

to various processing problems such as optimization, image

processing, associative memory and many other fields (see

[10][12] and references given therein). Different types of

applications depend on the dynamical behaviors of the neural

networks. The existence and stability of equilibrium points and

periodic solutions are of particular interest.

In order to solve problems in the fields of optimization,

neural control and signal processing, neural networks have

to be designed such that there is only one equilibrium point

and this equilibrium point is globally asymptotically stable so

as to avoid the risk of having spurious equilibria and local

minima. In the case of global stability, there is no need to

be specific about the initial conditions for the neural circuits

since all trajectories starting from anywhere settle down at the

same unique equilibrium. If the equilibrium is exponentially

asymptotically stable, the convergence is fast for real-time

computations. The unique equilibrium depends on the external

stimulus. When the parameters of the neural network and the

external stimulus are not constants but periodic functions of

time, which is the case in many real-life problems, the role of

the equilibrium point is played by a periodic solution.

Numerical algorithms of Hopfield-type differential equa-

tions lead to discrete-time dynamic systems and such discrete-

time systems should not give rise to any spurious behavior

if either system is to be used for coding equilibrium as

associative memories corresponding to temporally uniform

external stimuli obtained. The discrete-time models serve as

global numerical methods on unbounded intervals for the

continuous-time systems [18].

A. Hirose wrote in the introduction to [13]: “Complex-

valued neural networks (CVNNs) are effective and powerful

in particular to deal with wave phenomena such as electro-

magnetic and sonic waves, as well as to process wave-related

information . . . Researchers extend the world of computation to

pattern processing fields based on a novel use of the structure

of complex-amplitude (phase and amplitude) information.”

Further on, he listed the following major application fields of

CVNNs: antenna design, estimation of direction of arrival and

beamforming of electromagnetic waves, radar imaging, acous-

tic signal processing and ultrasonic imaging, communications

signal processing, image processing, traffic-lights and electric-

power systems, quantum devices such as superconductive

devices, optical/lightwave information processing including

carrier-frequency multiplexing. CVNNs also find applications

in fields such as speech synthesis, spatiotemporal analysis of

physiological neural devices and systems and artificial neural

information processing [23]. CVNNs can be considered as an

extension of real-valued neural networks; however, they can

be used to solve problems which cannot be solved using their

real-valued counterparts [20]. The existence, global asymptotic

and exponential stability of equilibrium points of CVNNs have

been actively studied in the recent years [6][14][22]. On the

other hand, there are very few results on the existence, global

asymptotic and exponential stability of periodic solutions of

CVNNs [11][21]. These papers deal with delayed CVNNs,

respectively of neutral type and with impulses. In [23], suf-

ficient conditions are obtained for the existence and global

asymptotic stability of periodic solutions for delayed complex-

valued simplified Cohen-Grossberg neural networks.

In our previous paper [7], we constructed a discrete-time

counterpart of a complex-valued Hopfield network with time-

varying delays and impulses by using the semi-discretization

method. We found sufficient conditions for the existence of

periodic solutions of the discrete-time system thus obtained by

using the continuation theorem of coincidence degree theory.

The goal of the present paper is to find sufficient conditions

for the uniqueness and global exponential stability of the

periodic solution of the aforementioned discrete-time system.

The motivation for our study was the possibility to apply

to CVNNs methods previously applied to real-valued neural

network. The exposition is self-contained: its understanding

does not require reading of [7].

The rest of the paper is organized as follows: Section II

recalls the original continuous-time neural network of [7], its

discrete-time counterpart and representation as a real-valued

discrete-time neural network of double dimension, and the

sufficient conditions for the existence of periodic solutions.

In Section III, under some additional conditions including
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time-independence of the delays, we prove the uniqueness and

global exponential stability of the periodic solution by intro-

ducing an appropriate Lyapunov functional. More precisely, it

is shown that any two solutions of the discrete-time system

exponentially approach each other. The proof is more difficult

than in the case of real-valued neural networks because of the

more complicated form of the Lyapunov functional. Finally,

Section IV is Discussion, and Section V is Conclusion and

Further Work.

II. PRELIMINARIES

In [7], we consider the following impulsive neural network

with time-varying delays:

żi(t) = −ai(t)zi(t) +

m
∑

j=1

bij(t)fj(zj(t))

+

m
∑

j=1

cij(t)gj(zj(t − τij(t))) + Ii(t),

t > 0, t 6= tk, (1)

∆zi(tk) = −αikzi(tk) +

m
∑

j=1

βijkΦj(zj(tk))

+

m
∑

j=1

γijkΓj(zj(tk − τij(tk))) + ζik,

k ∈ {0} ∪ N, (2)

zi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, m, (3)

where zi(t) is the complex-valued state of the i-th neuron

at time t; ai(t) is the rate with which the i-th unit resets

its potential to the equilibrium state when isolated from

the network and external inputs; fj(·), gj(·) denote complex

activation functions, respectively without and with delay; the

functions bij(t), cij(t) represent the weights (or strengths) of

the synaptic connections between the j-th neuron and the i-
th neuron, respectively without and with transmission delay

τij(t); Ii(t) denotes the complex-valued external bias on (input

signal introduced from outside the network to) the i-th unit

at time t; tk (k ∈ {0} ∪ N) are the moments (instants) of

impulse effect satisfying 0 = t0 < t1 < t2 < · · · < tk < · · ·
and lim

k→∞
tk = ∞; ∆zi(tk) := zi(tk + 0) − zi(tk − 0) ≡

zi(tk + 0)− zi(tk) represents the instantaneous change of the

state of the i-th neuron at time tk; Φj(·), Γj(·) : C → C

are some functions; αik, βijk, γijk, ζik are some complex

constants; and τ = max
i,j=1,m

sup
t>0

τij(t).

We included a real-life example which is a real-valued

neural network of the form (1)–(3) (see, for instance, [1] and

[16]):

Ciu̇i(t) = −
ui(t)

Ri

+

m
∑

j=1

aijfj(uj(t))

+

m
∑

j=1

bij(t)gj(uj(t − τij(t))) + Ii, t > 0, t 6= tk,

∆ui(tk) = Jjk(ui(tk)), k ∈ N,

ui(s) = ϕi(s), s ∈ [−τ, 0], i = 1, m,

where ui(t) denotes the state (voltage) of the i-th neuron

at time t, the positive constants Ci and Ri are the neuron

amplifier input capacitance and resistance, respectively.

For system (1)–(3) we made the following assumptions:

[H1] There exists a positive number ω and a positive

integer p such that

ai(t + ω) = ai(t), Ii(t + ω) = Ii(t) for

t ≥ 0 and i = 1, m,

bij(t + ω) = bij(t), cij(t + ω) = cij(t),

τij(t + ω) = τij(t) for t ≥ 0 and i, j = 1, m,

tk+p = tk + ω for k ∈ {0} ∪ N,

αi,k+p = αik, ζi,k+p = ζik for

k ∈ {0} ∪ N and i = 1, m,

βij,k+p = βijk, γij,k+p = γijk for

k ∈ {0} ∪ N and i, j = 1, m.

[H2] The complex-valued functions ai(t), bij(t), cij(t)
are continuous on [0,∞]; Reai(t) > 0 for t ≥ 0
and 0 < Reαik < 1 for k ∈ {0} ∪ N, i = 1, m.

[H3] There exist positive constants Fj, Gj ,Fj, Gj (j =
1, m) such that

max{|Refj(u) − Re fj(v)|, |Im fj(u) − Im fj(v)|}

≤ Fj(|Reu − Re v| + |Imu − Im v|),

max{|Regj(u) − Re gj(v)|, |Im gj(u) − Im gj(v)|}

≤ Gj(|Reu − Re v| + |Imu − Im v|),

max{|ReΦj(u)−Re Φj(v)|, |ImΦj(u)−Im Φj(v)|}

≤ Fj(|Reu − Re v| + |Imu − Im v|),

max{|ReΓj(u) − ReΓj(v)|, |ImΓj(u) − ImΓj(v)|}

≤ Gj(|Reu − Re v| + |Imu − Im v|)

for any u, v ∈ C.

[H4] The functions τij(t) (i, j = 1, m) are nonnegative

and continuous for t ≥ 0.

[H5] The functions ϕi(s) (i = 1, m) are piecewise con-

tinuously differentiable on the interval [−τ, 0], with

points of possible discontinuity of the form tk − ω.

To find an ω-periodic solution of system (1), (2) means to

determine the initial functions ϕi(s) so that the solution of the

initial-value problem (1)–(3) is ω-periodic.

In their paper [15] T. Insperger and G. Stépán presented an

efficient numerical method for the stability analysis of linear

delayed systems. The semi-discretization method is based on

discretization with respect to the past effect only. It was shown

that the semi-discretization method is much more effective

than the full discretization for the stability analysis. The semi-

discretization does not preserve the solutions of the original

system. However, it does preserve their exponential stability

if the semi-discretization is fine enough in some sense.

2Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-655-2

INFOCOMP 2018 : The Eighth International Conference on Advanced Communications and Computation



A modification of the semi-discretization method was used

for the stability analysis of neural networks by S. Mohamad

and K. Gopalsamy in [19] and numerous subsequent papers

of the same authors. In particular, it can be applied to not

necessarily linear neural networks if the nonlinearities satisfy

certain conditions.

Similarly to our previous papers [2][3][4], next we derived

a discrete counterpart of system (1)–(3) using a modification

of the semi-discretization method and obtained sufficient con-

ditions for the existence of periodic solutions of the latter.

For the sake of definiteness we assumed that τ ≤ ω. For a

positive integer N we chose the discretization step h = ω/N .

For the moment we assume N so large that h < min
k=1,p

(tk+1 −

tk). Then each interval [nh, (n + 1)h] contains at most one

instant of impulse effect tk .

For convenience we denoted n = [t/h], the greatest integer

in t/h, nk = [tk/h], and N0 = [τ/h].

Omitting the details, we present the derived discrete-time

counterpart of system (1)–(3):

∆zi(n) = −Ai(n)zi(n) + Ii(n)

+































m
∑

j=1

bij(n)fj(zj(n)) +
m
∑

j=1

cij(n)gj(zj(n − τij(n))),

n 6= nk,
m
∑

j=1

βijkΦj(zj(nk)) +
m
∑

j=1

γijkΓj(zj(nk − τij(nk))),

n = nk,

(4)

n ∈ {0} ∪ N,

zi(s) = ϕi(s) for s = 0,−1, . . . ,−N0, i = 1, m, (5)

where zi(n) is the complex-valued state of the i-th neuron

at time nh (n ∈ Z, n ≥ −N0; Ai(n) is a complex-valued

function with a positive real part; nk (k ∈ {0} ∪ N) are

integers satisfying 0 = n0 < n1 < n2 < · · · < nk < · · · and

lim
k→∞

nk = ∞; ∆zi(n) := zi(n + 1) − zi(n); Φj(·), Γj(·) :

C → C are some functions; αik, βijk, γijk, ζik are some

complex constants; ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕm(s))T ,

s = 0,−1, . . . ,−N0, are given initial vectors, and N0 =
max

i,j=1,m

sup
n≥0

τij(n).

From the assumptions H1, H2, H4, it follows that

[H6] There exist positive integers N and p such that

Ai(n + N) = Ai(n), Ii(n + N) = Ii(n) for

i = 1, m, n ∈ {0} ∪ N,

τij(n + N) = τij(n) for i, j = 1, m, n ∈ {0} ∪ N,

bij(n + N) = bij(n), cij(n + N) = cij(n) for

i, j = 1, m, n ∈ N \ {nk}k∈N,

nk+p = nk + N for k ∈ {0} ∪ N,

βij,k+p = βijk, γij,k+p = γijk for

k ∈ {0} ∪ N and i, j = 1, m.

[H7] 0 < ReAi(n) < 1 for i = 1, m, n ∈ IN :=
{0, 1, . . . , N − 1}.

To find an N -periodic solution of system (4) means to

determine the initial vectors ϕi(s) so that the solution of the

initial-value problem (4), (5) is N -periodic. For the sake of

definiteness, we assume that N0 ≤ N .

In order to formulate the main result of [7], we introduced

the following notation:

For an N -periodic sequence v(n), we denote ṽ =
N−1
∑

n=0

v(n)

(if v(n) is given by a long formula, we write v˜or (v)̃ instead);

bij = max{ sup
n 6=nk

|Re bij(n)|, sup
n 6=nk

|Im bij(n)|},

cij = max{ sup
n 6=nk

|Re cij(n)|, sup
n 6=nk

|Im cij(n)|},

βij = max{max
k=1,p

|Reβijk|, max
k=1,p

|Imβijk|},

γij = max{max
k=1,p

|Reγijk|, max
k=1,p

|Imγijk|}, i, j = 1, m;

ρi = (N − p)
m
∑

j=1

[

bij(|Re fj(0)| + |Im fj(0)|)

+ cij(|Re gj(0)| + |Im gj(0)|)]

+p

m
∑

j=1

[

βij(|ReΦj(0)| + |ImΦj(0)|)

+ γij(|ReΓj(0)| + |ImΓj(0)|)
]

, i = 1, m;

Bij = 2[(N − p)(bijFj + cijGj) + p(βijFj + γijGj)],

i, j = 1, m.

Next, we introduced the condition

[H8] min
i=1,m



R̃eAi − |ImAi|̃ −

m
∑

j=1

Bji



 > 0.

We introduce the m × m matrices

ÃR = diag

(

R̃eAi

1 − R̃eAi

1 + R̃eAi

, i = 1, m

)

,

ÃI = diag
(

|ImAi |̃ , i = 1, m
)

, B = (Bij)
m

i,j=1
,

and the condition

[H9] The 2m× 2m matrix

A =

(

ÃR − B −ÃI − B

−ÃI − B ÃR − B

)

is an M -matrix.

This condition implies that the matrix A is nonsingular and

its inverse has only nonnegative entries [5][8].

The main result of [7] is the following theorem.

Theorem 1: Suppose that conditions H3, H6–H9 hold. Then

the system (4) has at least one N -periodic solution.

The theorem was proved using Mawhin’s continuation theo-

rem [9, p. 40]. To this end, we denoted xi = Re zi, yi = Im zi

(i = 1, m), x = (x1, x2, . . . , xm)T , y = (y1, y2, . . . , ym)T ,

and considered z = (x, y)T as a vector in R2m. Next, we

rewrote the complex system (4) as the real system
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∆xi(n) = −ReAi(n)xi(n) + Im Ai(n)yi(n) + Re Ii(n)

+























































m
∑

j=1

[Re bij(n)Re fj(zj(n)) − Im bij(n)Im fj(zj(n))

+ Re cij(n)Re gj(zj(n − τij(n)))

− Im cij(n)Im gj(zj(n − τij(n)))] , n 6= nk;

m
∑

j=1

[ReβijkReΦj(zj(nk)) − ImβijkIm Φj(zj(nk))

+ Re γijkReΓj(zj(nk − τij(nk)))

− ImγijkIm Γj(zj(nk − τij(nk)))] , n = nk,

(6)

∆yi(n) = −Re Ai(n)yi(n) − ImAi(n)xi(n) + Im Ii(n)

+























































m
∑

j=1

[Re bij(n)Im fj(zj(n)) + Im bij(n)Re fj(zj(n))

+ Re cij(n)Im gj(zj(n − τi−m,j(n)))

+ Im cij(n)Re gj(zj(n − τi−m,j(n)))] , n 6= nk;

m
∑

j=1

[ReβijkImΦj(zj(nk)) + ImβijkReΦj(zj(nk))

+ Re γijkImΓj(zj(nk − τi−m,j(nk)))

+ Im γijkReΓj(zj(nk − τi−m,j(nk)))] , n = nk,

(7)

for i = 1, m.

In the next section, under some additional assumptions,

we prove the global exponential stability of any N -periodic

solution of system (4).

III. MAIN RESULT

Let us denote

Bij = 2 max(bijFj , βijFj),

Cij = 2 max(cijGj, γijGj). (8)

Next, we introduce the conditions

[H10] The delays τij (0 ≤ τij ≤ N0) are independent of n.

[H11] The inequalities

ReAi(n) − |ImAi(n)| −

m
∑

j=1

(Bji + Cji) > 0

are satisfied for all n ∈ IN and i = 1, m.

It is easy to see that condition H11 implies H8.

Our main result is the following theorem.

Theorem 2: Let conditions H3, H6, H7, H10, H11 hold.

Let z∗(n) = (x∗(n), y∗(n))T be an N -periodic solution of

system (4). Then there exist constants M > 1 and λ > 1 such

that for any λ ∈ (1, λ] and for any other solution z(n) =
(x(n), y(n))T of system (4) defined at least for n ≥ −N0 the

following estimate holds

m
∑

i=1

(|xi(n) − x∗
i (n)| + |yi(n) − y∗i (n)|) (9)

≤ Mλ−n

m
∑

i=1

max
−N0≤s≤0

(|xi(s) − x∗
i (s)| + |yi(s) − y∗i (s)|)

for all n ∈ {0} ∪ N.

In the proof of the theorem, we use the following lemma.

Lemma 1: Let condition H11 hold. Then there exists a

constant λ > 1 such that for any λ ∈ (1, λ]

λ



1 − ReAi(n) + |ImAi(n)| +

m
∑

j=1

Bji





+

m
∑

j=1

Cjiλ
1+τji − 1 ≤ 0

for all n ∈ IN and i = 1, m.

Proof: Consider the functions

χi(n, λ) :=λ



1 − ReAi(n) + |ImAi(n)| +

m
∑

j=1

Bji





+

m
∑

j=1

Cjiλ
1+τji − 1, n ∈ IN , i = 1, m.

For each n ∈ IN and i = 1, m, χi(n, λ) is a continuous

function of λ ∈ [1,∞) such that

χi(n, 1) = −



ReAi(n) − |ImAi(n)| −

m
∑

j=1

(Bji + Cji)



< 0

by virtue of condition H11, and lim
λ→∞

χi(n, λ) = +∞. Then

there exists λin > 1 such that χi(n, λin) = 0 and χi(n, λ) ≤ 0
for λ ∈ (0, λi,n]. It suffices to choose λ = max{λin| i =
1, m, n ∈ IN}.

Proof of Theorem 2: Let z∗(n) and z(n) be as in the

statement of Theorem 2. Our goal will be to construct a

Lyapunov functional V (n) of the difference z(n) − z∗(n),
which is decreasing with respect to n ∈ {0} ∪ N. First, we

denote

X(n) := x(n) − x∗(n), Y (n) := y(n) − y∗(n).

Then, from (6) for n ∈ {0} ∪ N, n 6= nk , we have

Xi(n + 1) = (1 − ReAi(n))Xi(n) + Im Ai(n)Yi(n)

+

m
∑

j=1

{

Re bij(n)[Refj(zj(n)) − Re fj(z
∗
j (n))]

− Im bij(n)[Im fj(zj(n)) − Im fj(z
∗
j (n))]

}

+

m
∑

j=1

{

Re cij(n)[Re gj(zj(n − τij)) − Re gj(z
∗
j (n − τij))]

− Im cij(n)[Im gj(zj(n − τij)) − Im gj(z
∗
j (n − τij))]

}

and, by virtue of H3, we derive

|Xi(n + 1)|

≤ (1 − ReAi(n))|Xi(n)|+ |ImAi(n)| |Yi(n)|

+

m
∑

j=1

2bijFj(|Xj(n)| + |Yj(n)|)

+

m
∑

j=1

2cijGj(|Xj(n − τij)| + |Yj(n − τij)|). (10)
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In a similar way, we obtain

|Xi(nk + 1)|

≤ (1 − ReAi(nk))|Xi(nk)| + |ImAi(nk)| |Yi(nk)|

+

m
∑

j=1

2βijFj(|Xj(nk)| + |Yj(nk)|)

+

m
∑

j=1

2γijGj(|Xj(nk − τij)| + |Yj(nk − τij)|). (11)

Using the notation (8), inequalities (10) and (11) can be written

by one formula as

|Xi(n + 1)|

≤ (1 − ReAi(n))|Xi(n)| + |ImAi(n)| |Yi(n)|

+

m
∑

j=1

Bij(|Xj(n)| + |Yj(n)|)

+

m
∑

j=1

Cij(|Xj(n − τij)|+ |Yj(n − τij)|) (12)

for all n ∈ {0} ∪ N.

Similarly, from (7) we derive

|Yi(n + 1)|

≤ (1 − ReAi(n))|Yi(n)| + |ImAi(n)| |Xi(n)|

+

m
∑

j=1

Bij(|Xj(n)| + |Yj(n)|)

+

m
∑

j=1

Cij(|Xj(n − τij)|+ |Yj(n − τij)|) (13)

for all n ∈ {0} ∪ N.

Next, we define the quantities

Wi(x) = λn|Xi(n)|, Ψi(n) = λn|Yi(n)|

for λ ∈ (1, λ], n ≥ −N0 and i = 1, m. Then, in view of (12)

and (13), we obtain

Wi(n + 1)

≤ λ(1 − ReAi(n))Wi(n) + λ|ImAi(n)|Ψi(n)

+λ

m
∑

j=1

Bij(Wj(n) + Ψj(n))

+

m
∑

j=1

Cijλ
1+τij [Wj(n − τij) + Ψj(n − τij)], (14)

Ψi(n + 1)

≤λ(1 − ReAi(n))Ψi(n) + λ|ImAi(n)|Wi(n)

+λ

m
∑

j=1

Bij(Wj(n) + Ψj(n))

+

m
∑

j=1

Cijλ
1+τij [Wj(n − τij) + Ψj(n − τij)]. (15)

Inequalities (14), (15) suggest us to define the Lyapunov

functional

V (n) =

m
∑

i=1

[

Wj(n) + Ψj(n)

+

m
∑

j=1

Cijλ
1+τij

n−1
∑

s=n−τij

(Wj(s) + Ψj(s))





for all n ∈ {0} ∪ N. Then, we have

V (n + 1) =
m
∑

i=1

[

Wj(n + 1) + Ψj(n + 1)

+

m
∑

j=1

Cijλ
1+τij

n
∑

s=n+1−τij

(Wj(s) + Ψj(s))





≤

m
∑

i=1

{

λ

[

(1 − ReAi(n) + |ImAi(n)|)(Wi(n) + Ψi(n))

+

m
∑

j=1

Bij(Wj(n) + Ψj(n))





+

m
∑

j=1

Cijλ
1+τij

n
∑

s=n−τij

(Wj(s) + Ψj(s))







and

∆V (n) ≤

m
∑

i=1







λ



1 − ReAi(n) + |ImAi(n)| +

m
∑

j=1

Bji





+

m
∑

j=1

Cjiλ
1+τji − 1







(Wi(n) + Ψi(n))

=

m
∑

i=1

χi(n, λ)(Wi(n) + Ψi(n)) ≤ 0

in view of Lemma 1. This means that V (n + 1) ≤ V (n) for

all n ∈ {0} ∪ N. In particular,

V (n) ≤ V (0) for all n ∈ {0} ∪ N and λ ∈ (1, λ].

Taking into account that

V (n) ≥ λn

m
∑

i=1

(|xi(n) − x∗
i (n)| + |yi(n) − y∗i (n)|)

and

V (0) =

m
∑

i=1

[|xi(0) − x∗
i (0)| + |yi(0) − y∗i (0)|

+

m
∑

j=1

Cjiλ
1+τji

−1
∑

s=−τji

(|xi(s) − x∗
i (s)| + |yi(s) − y∗i (s)|)





≤ max
i=1,m



1 + λ
1+N0

m
∑

j=1

Cji





×

m
∑

i=1

max
−N0≤s≤0

(|xi(s) − x∗
i (s)| + |yi(s) − y∗i (s)|),
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we derive the estimate (9) with

M = max
i=1,m



1 + λ
1+N0

m
∑

j=1

Cji



 .

The proof of this estimate did not use the assumption that

the solution z∗(n) is N -periodic. In fact, it shows that system

(4) can have at most one N -periodic solution and such a

solution is globally exponentially stable.

IV. DISCUSSION

Our previous experience with papers devoted to neural

networks has shown us that most of these papers can be

assigned to one of two quite distinct classes — theoretical

and applied (practical).

The papers of the first class usually list some real-life appli-

cations in their introductions. These applications are normally

taken from surveys on neural networks or the introductions

of other papers of the same class. Then, the authors study a

mathematical model, which is usually a far-going generaliza-

tion of an application of neural networks to a real-life problem.

The properties of the mathematical model are examined using

methods, often much more complicated than in the present

paper. Finally, a few examples of low-dimensional neural

networks satisfying the conditions obtained may be given, and

some computations may be carried out. However, applications

of the results obtained to real-life problems are very seldom

given.

The papers of the second class are usually devoted to a quite

concrete real-life problem, say, the identification of people by

their fingerprints. Experimental data are usually given, but very

little mathematics is used and models to be studied by papers

of the first class are seldom given.

The present paper, as well as our previous papers devoted

to neural networks, belong to the first class. So it is not easy

to give applications to real-life problems.

To the best of our knowledge, the above mentioned two

classes of papers grow (maybe exponentially) quite indepen-

dently of each other. We hope that a cooperation between

“theoreticians” and “practicians” could prove fruitful for both

trends.

V. CONCLUSION AND FUTURE WORK

In the present paper, we obtained sufficient conditions for

any two solutions of a discrete-time complex-valued Hopfield

neural network with delays and impulses to infinitely approach

each other with time. The proof was accomplished by con-

structing an appropriate Lyapunov functional. The result ob-

tained implies the uniqueness and global exponential stability

of a periodic solution, provided that it exists.

In future, in the theoretical aspect, we can extend our

research to quaternionic neural networks, which are a general-

ization of CVNNs. On the other hand, in case of an available

“practician” as a co-author, we can concentrate on finding real-

life examples and applications of the CVNNs considered in the

present paper and the results obtained.
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