INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

What Do Scientific Applications Need?
An Empirical Study of Multirail Network Bandwidth

Edgar A. Ledén, Chris Chambreau, and Matthew L. Leininger

Lawrence Livermore National Laboratory
Livermore, California, USA
Email: {leon, chambreaul, leininger4}@1l1lnl.gov

Abstract—High performance computing applications are com-
monly executed on large parallel machines composed of com-
modity components. These commodity clusters utilize high-speed
interconnects that provide low latency and high bandwidth such
as InfiniBand. Understanding the characteristics of scientific
applications is important to properly configure and tune these
machines and their software stacks. Are applications limited
by network performance? Can they leverage increased network
bandwidth? What type of network operations and message
sizes do they use? This work provides a better understanding
of the communication requirements of scientific applications
by investigating the impact of multirail networking on their
performance. We measure the performance of a suite of high
performance computing mini-applications under different mul-
tirail configurations to determine their sensitivity to network
bandwidth. The selected mini-applications provide simplified
source code containing data access patterns and computational
characteristics of larger production codes. The type of analysis
presented in this paper can be applied to inform the procurement
of future systems maximizing application productivity within a
given capital budget.

Keywords—HPC; performance measurement; multirail network-
ing; network characterization; scientific applications.

I. INTRODUCTION

Most scientific applications use the Message Passing In-
terface (MPI) to leverage parallelism across multiple nodes.
As such, network performance is important for application
and system developers and those responsible for hardware
procurements. When procuring a supercomputing cluster, for
example, there is a range of options in terms of processor,
memory, and network capabilities. A question one may ask is
whether doubling the network bandwidth is worth sacrificing
upgrades in processor speed. The right balance depends on
the suite of applications that will execute on such system. The
more we understand the characteristics and requirements of
our applications, the better decisions we can make to provide
the best performance within a given capital or power budget.

In this work, we provide an empirical study of the net-
work requirements of a suite of high performance computing
(HPC) applications and the impact of network speed on their
performance. The codes we employ are part of a suite of
mini-applications that contain data access patterns and com-
putational characteristics of larger production codes within the
U.S. Department of Energy (DOE). These include sparse linear
algebra, shock hydrodynamics, Monte Carlo particle transport,
finite element, and radiation transport codes.

We start by characterizing the communication requirements
of these applications in terms of their point-to-point (P2P)
and collective operations and message sizes. Point-to-point

Copyright (c) The Government of USA, 2017. Used by permission to IARIA.

operations, such as Send and Receive, require some form
of synchronization between two processes and scale primarily
in terms of message size. Collective operations, such as
Barrier and Allreduce, require the synchronization of
all tasks in a particular group (often all MPI processes) and
scale with respect to the number of participating nodes and
message size.

We leverage multirail networking (multiple network inter-
faces per node) as a vehicle to examine the impact of network
speed on application performance. When using multirail we
evaluate several policies to understand locality and affinity
tradeoffs. Our sensitivity study includes two parts. In the first
part, we evaluate the performance improvements of multirail
on micro-benchmarks to determine the potential gains of this
technology. Although micro-benchmark evaluations have been
done in the past [1]-[4], we need information to assess how
much of these gains is actually realized by applications. This is
the focus of the second part, where we evaluate the sensitivity
of our codes to network bandwidth. Our goal is to better
understand how dependent these applications are to network
performance, information that can be used by application and
system developers and for system procurements.

The reminder of the paper is organized as follows. Sec-
tion II describes the machine environment used for the
empirical study. Sections III and IV describe the multirail
policies and applications employed, respectively, while Sec-
tion V characterizes the communication characteristics of the
selected applications. We measure the impact of multirail on
micro-benchmarks and applications in Sections VI and VII,
respectively. The limitations of this study are presented in
Section VIII and the related work presented in Section IX.
Finally, Section X presents our conclusion and future work.

II. MACHINE PARAMETERS

We employed the Catalyst machine at Lawrence Livermore
National Laboratory (LLNL), a 324 node Linux cluster with
two Intel IvyBridge (Xeon E5-2695 v2) processors and 128 GB
of memory per node. Each processor has 12 cores at 2.4 GHz
with 2 hardware threads per core (Intel Hyper-Threading).
The nodes are connected via an InfiniBand dual-rail, Quad
Data Rate network (Intel QDR-80) in a fully-provisioned Fat-
Tree topology. It runs the Tri-Lab Operating System Software
(TOSS) [5]. At the time the experiments were executed,
Catalyst was running TOSS version 2.2, which is based on
Red Hat Enterprise Linux Server release 6.5. Each processor
has a theoretical peak memory bandwidth of 59.7 GB/s and
uses DDR3 memory at 1866 MHz. The MPI library we used
is MVAPICH?2 version 1.9 with the GNU compiler.

ISBN: 978-1-61208-567-8 35

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

IIT. MULTIRAIL NETWORKING POLICIES

Multirail networks consist of multiple network interface
controllers (NICs) per compute node. Catalyst has two Infini-
Band cards per node (4x10 Gb/s links per card) connected to
a single plane. Each card is placed in proximity to a processor
socket. The MPI library is implemented on top of a low-level
network layer: Intel Performance Scaled Messaging (PSM).
PSM provides options for binding network traffic from a given
MPI task or process to a given card [6].

To understand the impact of the increased bandwidth
provided by multirail and the affinity to a local NIC, we
instrumented the policies shown in Table I.

TABLE I. MULTIRAIL NETWORK POLICIES.

Default ~ PSM default dual-rail policy. It allocates MPI processes to
the NICs in an alternating or round robin fashion
NIC-0 Route all traffic through card 0

NIC-1 Route all traffic through card 1
Local-NIC ~ Route traffic from each socket through its local NIC

We make the following observations about our policies and
network configurations. First, we consider both policies NIC-0
and NIC-1 because even though the hardware configuration is
symmetric, NIC 0 is used for system-level traffic. Depending
on the application, this network noise may have an impact
on performance. Second, the PSM driver version installed on
Catalyst does not instrument striping of messages across NICs
or using a local NIC at the PSM level (thus the need for
our Local-NIC policy). And, third, even though MVAPICH
provides dual-rail policies, they were not implemented for Intel
fabrics at the time the experiments were executed.

Our goal is not to provide a comprehensive study of
multirail policies but to understand the impact of the network
on application performance.

IV. APPLICATIONS SUITE

Our codes consist of five mini-applications from the
CORAL benchmark suite [7], which represent DOE work-
loads and technical requirements [8]. CORAL is the re-
sult of a joint Collaboration between Oak Ridge, Argonne,
and Lawrence Livermore National Laboratories, and provides
simplified source code to emulate the data access patterns
and computational characteristics of larger production codes.
These codes were used in the procurement of LLNL’s next
advanced technology system, Sierra, which will provide over
100 petaflop/s and is expected to be operational in 2018.

The CORAL benchmarks are grouped into several cate-
gories including scalable science, throughput science, and data-
centric benchmarks. In this paper, we use the throughput codes
shown in Table II and will study the other two categories in
future work. The throughput benchmarks represent particular
subsets of codes used as part of the everyday workload of sci-
ence applications frequently executed on commodity clusters.

AMG2013 is a benchmark application derived directly
from the BoomerAMG solver in the Hypre linear solvers
library. AMG2013 is an algebraic multigrid solver for linear
systems built from problems on unstructured grids. The default
problem is a Laplace-type problem with various jumps and
anisotropy in one part.

Copyright (c) The Government of USA, 2017. Used by permission to IARIA.

TABLE II. OUR CORAL THROUGHPUT BENCHMARK SUITE.

AMG2013 Algebraic multi-grid linear system solver
LULESH Shock hydrodynamics for unstructured meshes
MCB Monte Carlo transport
miniFE Finite element code
UMT2013 Unstructured mesh deterministic radiation transport

LULESH is an explicit hydrodynamics application per-
formed on a staggered grid mesh. It solves the Sedov problem
on one octant of a sphere using Lagrangian hydrodynamics.
Originally developed as one of the five DARPA UHPC chal-
lenge problems, it is now used in DOE co-design activities and
machine procurements.

MCB is a Monte Carlo particle transport proxy-application
for multi-physics simulation codes. It is written in C and uses
MPI+OpenMP for parallelism. MCB performs a significant
number of integer operations as well as branches.

miniFE is designed to be the “best approximation to an un-
structured implicit finite element or finite volume application,
but in 8000 lines or fewer.” The benchmark attempts to provide
as much coverage of the implicit finite element application
space as possible given its size constraints.

UMT is an unstructured-mesh deterministic radiation trans-
port benchmark. It is a single physics package code that
performs three-dimensional, non-linear, radiation transport cal-
culations using deterministic methods. UMT exercises memory
bandwidth and is compute intense.

V. MPI CHARACTERISTICS OF APPLICATIONS

We collect MPI statistics using mpiP, an MPI profiling
library [9]. Figure 1 shows the percentage of execution time
spent on communication (left) and the average message size
exchanged by our applications (right). These metrics are item-
ized in terms of P2P and collective operations using two con-
figurations: MPI-only—1 task per core—and MPI+OpenMP—
1 task per socket with 12 threads per task. Given that each
node has two sockets, each with 12 cores, the MPI-only
configuration has 24 processes per node (PPN) while the
MPI+OpenMP configuration has 2 PPN. The MPI performance
characteristics were similar for these two configurations.

We observe that most applications spend more than half of
their MPI execution time performing collective operations. The
exceptions are AMG and MCB. AMG spends a large fraction
of time on P2P calls. In addition, it spends by far the highest
percentage of execution time on communication. Despite tak-
ing a large percentage of execution time, AMG sends mostly
small P2P messages. Similarly, MCB uses small messages for
P2P operations but larger messages for collectives.

With the exception of MCB, collective operations send
significantly less data across the network than P2P operations
in the same application. LULESH spends nearly all of its MPI
time making calls to Allreduce with a message size of 8§ bytes,
while a number of Isend calls incur orders of magnitude
more bandwidth while requiring roughly one tenth of the time
compared to the Allreduce calls.

Based on the communication characteristics of applica-
tions, we expect their sensitivity to network bandwidth to be
application-dependent. In AMG or UMT, we would expect
increased bandwidth to be helpful. However, in LULESH or

ISBN: 978-1-61208-567-8 36

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

40

30

20 —

Percentage of Total Application Time

10

Point-to-Point Operations
Collectives Operations
1.0

Average Message Size (MB)
o o
o ©

I
>

0.2]

N NN ™
< D Q < <
%{ﬁ? AR A8 g oA \XTL?

< @”‘QQ\A«(;LQ?\A .1“QQ$
W TN '

L
& »\)&c}\ o

\: &
W <<\\

0.0

N D D N S N
SN AR LN 6_1?‘? 2% o 2 (&?? '_,Lge‘?

Q- 1 b &] PR
RSNSOI
W O L RS R SR

Figure 1. Collectives and P2P communication breakdown as a percentage of total execution time and their average message size.
Experiments executed under two configurations, MPI-only (24 PPN) and MPI+OpenMP (2 PPN), on 256 nodes.

miniFE factors affecting latency, such as system noise and
message injection rate, may impact their performance more
than efforts to increase bandwidth.

VI. CHARACTERIZING MULTIRAIL BANDWIDTH

To assess the potential benefits of multirail we employ the
Phloem MPI Benchmarks [10]. They provide a collection of
vendor-independent benchmarks that measure various aspects
of MPI performance including aggregate bandwidth, intercon-
nect messaging rate, collective latencies, and point-to-point
latency. We focus on network bandwidth.

A significant advantage of dual-rail over single-rail is the
potential for doubling the off-node communication bandwidth.
Using the Phloem Presta aggregate bandwidth benchmark [10],
we measured off-node aggregate bandwidth by exchanging
messages between 24 tasks on one node and 24 tasks on a dif-
ferent node. Message sizes range between 32 bytes and 8§ MB.
As Figure 2 shows, for small message sizes, single and dual-
rail performance is similar, with only a slight advantage for
dual-rail. However, for message sizes greater than 256 bytes,
the dual-rail aggregate bandwidth provides better performance
reaching twice the bandwidth at around 1 KB. For message
sizes of 32 KB and greater, the aggregate bandwidth for both
single-rail and dual-rail plateaus with the dual-rail aggregate
bandwidth essentially twice that of single rail.

Thus, using micro-benchmarks, dual-rail can double the
off-node bandwidth when messages are sufficiently large. The
next aspect to evaluate is whether the selected applications can
benefit from this doubling of network bandwidth.

VII. IMPACT ON APPLICATIONS

Each of the CORAL benchmarks reports a metric called
Figure of Merit (FOM) indicative of application performance.
The FOM is defined independently for each application and
designed to scale linearly with performance [8]. We measured
the FOM for each application with our network policies
between 80 and 100 times because of nontrivial levels of

Copyright (c) The Government of USA, 2017. Used by permission to IARIA.

14000

e V/vm s

12000

10000 /\

N

®
8
3
38

Default
=@=NIC-0

@
3
3
38

=NIC-1

=o=Local-NIC
4000

2000

Aggregate Bandwidth in M|

> v

ol o v > $
) S
P

R A)
S o $ P S
PSS

-
ol
,‘/‘0

Message Size in Bytes

Figure 2. Network bandwidth between two nodes, each node uses 24 tasks.

runtime variations between runs. Using box-and-whisker plots,
we show the first and third quartiles, median, minimum,
maximum, and outliers. Figure 3 shows the MPI-only results
for AMG, miniFE, and LULESH, where higher (FOM) is
better. The MCB results are not shown because they are similar
to miniFE and we discuss UMT separately (Figure 4) since this
application demonstrated the most gains with dual-rail.

We observe negligible difference in application perfor-
mance with the different network policies, except for slight
improvements with the default dual-rail on AMG and UMT.
Second, there is a significantly higher variability in execution
time with NIC-0 compared to NIC-1 as shown by miniFE and
MCB. As mentioned previously, system messages use NIC-
0 for communication affecting the larger messages sent with
collective operations of these two applications.

As shown in Figure 3c, despite significant time spent on
P2P communications, AMG only benefits from the increased

ISBN: 978-1-61208-567-8 37

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

3.0 , , , , 2.301e6 1510
— = + —
28 l 1 228 - o -—] 120 — E i
l - I -V I
2.6 1 226 1 1 | |] - — ‘
: ' : 1.15 !
R R = =1 :
A
! ‘ ! 1.10
2.2 | 222 ! ! ! |]
i — . | |
! | 1.05
2.0 | 2.20 + ! —-
e v
1.00]
1.8 + 4 218 . + . , .
1.6 2.16 . ’ ’ . 0.95
Default NIC1 NICO Local NIC Default NIC1 NICO Local NIC Default NIC1 NICO Local NIC
(a) miniFE (b) LULESH (c) AMG

Figure 3. Application performance, measured as Figure of Merit, as a function of different network configurations. Higher is better.

bandwidth provided by multirail on the order of 2%. This is
due to the relatively small average P2P message size, which
indicates that MPI performance for AMG is driven more by
latency and synchronization overhead than bandwidth.

UMT exhibited the most gains from multirail but even
here performance only increased by approximately 3.2%. To
understand this result, we measure the percentage of execution
time spent on MPI (vertical axis) as a function of P2P and
collective operations over many runs (horizontal axis) and plot
it in Figure 4. Most of the UMT gains with dual-rail are
due to reductions in time spent on P2P operations (contrast
solid lines at the top and bottom), which are as much as 18%
faster overall, with collectives showing modest improvements
but significant variations in performance.

v A\/\/f\/\/ /\JK\/\/\/\/\/“A“\/\/&/\/\‘/\,\/\/V

i

12.

11.5

—
g
=

v
Vi

,_.
e
»

©
5]

MPI Percentage of Execution Time
s
o

©
=)

o
»

— Default: P2P
- Default: Collective
— NIC1: P2P

- NICL: Collective
NICO: P2P
NICO: Collective

— Local NIC: P2P
- Local NIC: Collective

8.0

6000 12000

8000 10000 14000
Timestamp (gettimeofday, seconds) +1.40656€9

Figure 4. UMT percentage of execution time spent on MPI itemized by P2P
(solid lines) and collective operations (dashed lines) over successive runs.
Colors represent different network configurations.

While both AMG and UMT spend significant time on P2P
operations, UMT’s messages are larger on average, making it
more sensitive to bandwidth increases. In contrast, miniFE and
LULESH heavily rely on collective communications, where
performance is dominated by issues of synchronization, com-
municator size, and latency. As Figure 4 also shows, collectives
show significant variations in performance because of their
sensitivity to system noise.

VIII. DISCUSSION AND LIMITATIONS

In this work, we demonstrate that a suite of scientific HPC
codes are, mostly, not sensitive to network bandwidth. The

Copyright (c) The Government of USA, 2017. Used by permission to IARIA.

current bandwidth provided by a single rail is sufficient for
our codes resulting in negligible improvements with an addi-
tional rail. In addition, these applications spend a significant
percentage of communication time in collectives of small sizes,
which are more sensitive to system noise rather than network
speed. Furthermore, as scale increases so does the impact of
noise and, thus, the amount of time spent on collectives.

The throughput benchmarks studied here represent im-
portant subsets of applications that are executed as part of
the everyday workload of science applications on commodity
clusters. This, however, does not mean that all scientific appli-
cations behave this way. In particular, other scalable science
applications designed to run at the highest scale on the largest
non-commodity machines may present a different sensitivity.
Similarly, data-centric applications such as data analytics may
impose more demanding network requirements. Furthermore,
the differences between the mini-applications and the full-
fledged applications from which they are derived may have
an impact on their communication.

The scale of this study involves up to 6,144 MPI tasks
over 256 nodes. Even though this scale is representative of
workloads in commodity systems, it is likely that as scale
increases to a few thousand nodes the ratio of compute to
communication may change significantly resulting in different
communication bottlenecks than what we observed here.

Finally, we want to emphasize that using realistic bench-
marks such as the CORAL mini-applications and, ideally, full-
fledged applications, provides a more accurate representation
of the real impact of a proposed technique or approach. While
micro-benchmarks are useful in the design of hardware and
software components, ultimately, these are not the codes that
are run on production systems. As we demonstrated, multirail
can double network bandwidth on micro-benchmarks, but this
improvement does not necessarily translate in a significant im-
provement in application performance. As shown in Section V,
a medium-sized run with 6 K processes shows that codes are
not necessarily bound by network bandwidth.

IX. RELATED WORK

Related work includes the evaluation of different ap-
proaches to leverage multiple rails including striping messages
across two NICs [1]-[4]. These mechanisms have shown
significant improvements in network bandwidth and latency.
Communication libraries such as MPI have been instrumented

ISBN: 978-1-61208-567-8 38

INFOCOMP 2017 : The Seventh International Conference on Advanced Communications and Computation

accordingly to take advantage of multirail networks. Simu-
lation approaches have also been useful in complementing
empirical studies with added flexibility in terms of network
topology, routing algorithms, etc. [11], [12]. Furthermore, mul-
tiple rails have been shown to address network congestion and
network failures [13], [14]. For many of these studies, micro-
benchmarks have been used to demonstrate the improvements
in latency and bandwidth with multi-rail.

The investigations closer to ours include empirical studies
that analyze the impact of multirail on the performance of
applications. Choi et al. evaluates the AMBER and LAMMPS
applications on a Torus network using 256 and 512 cores [15].
Schreiber et al. shows performance improvements of the LS-
DYNA application on a Hypercube network on 256 cores [16].
Liu evaluates the performance of LAMMPS under different
input tests on a Hypercube network on 1,536 cores [17].
Depending on the application and input test, performance
improvements with multirail vary.

In this paper, we focus our multirail evaluation on several
codes of interest to the DOE. The scale of our study involves
6,144 cores on a fully-provisioned Fat-Tree network. While
there are multiple factors in multirail performance including
topology, scale, and congestion, ultimately, its performance
impact depends on the communication characteristics of the
workloads of interest.

X. CONCLUSION AND FUTURE WORK

This work provides a better understanding of the network
characteristics of a suite of scientific mini-applications repre-
senting data access patterns and computational characteristics
of larger applications within the U.S. Department of Energy.
Increased network bandwidth via multirail may be of limited
benefit for many scientific codes running on commodity clus-
ters. Despite substantial improvements on micro-benchmarks,
the communication patterns of scientific workloads seem to
benefit only slightly. These applications are not bandwidth
bound sending mostly small messages, and many of the larger
messages are performed asynchronously. These codes are more
sensitive to network latency and load imbalance.

There are multiple avenues for future work. First, char-
acterizing the selected codes at larger scales, particularly to
identify any potential changes in compute to communication
ratios. Second, analyzing other types of applications including
scalable science and emerging data-centric codes. Third, com-
paring the effects of varying network bandwidth on application
performance via other mechanisms including down clocking
network links, say, from 50 Gb/s (HDR link speed) to 25 Gb/s
(EDR link speed). Then, we can compare the tradeoffs of
having one fast NIC per node vs. two slower NICs per node,
e.g., HDR single rail vs. EDR dual rail.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
useful feedback. Our appreciation to our colleagues Trent
D’Hooge, Adam Moody, and Jim Foraker for their help and
support with the Catalyst system.

Copyright (c) The Government of USA, 2017. Used by permission to IARIA.

Prepared by LLNL under Contract DE-AC52-07NA27344.

LLNL-CONF-670475.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

J. Cai, A. P. Rendell, and P. E. Strazdins, “Non-threaded and threaded
approaches to multirail communication with uDAPL,” in International
Conference on Network and Parallel Computing, ser. NPC’09. Gold
Coast, Australia: IEEE, Oct. 2009, pp. 233-239.

V. Vishwanath, T. Shimizu, M. Takizawa, K. Obana, and J. Leigh, “To-
wards Terabit/s systems: Performance evaluation of multi-rail systems,”
in High Speed Networks Workshop. Anchorage, AK: IEEE, May 2007.

A. Vishnu, G. Santhanaraman, W. Huang, H.-W. Jin, and D. K. Panda,
“Supporting MPI-2 one sided communication on multi-rail InfiniBand
clusters: Design challenges and performance benefits,” in International
Conference on High Performance Computing, ser. HIPC’05, Dec. 2005,
pp. 137-147.

J. Liu, A. Vishnu, and D. K. Panda, “Building multirail InfiniBand
clusters: MPI-level design and performance evaluation,” in Conference
on Supercomputing, ser. SC’04. Pittsburgh, PA: IEEE, Nov. 2004,

p- 33.
“TOSS: Speeding up commodity cluster computing,” Apr.
2016. [Online]. Available: https://computation.llnl.gov/projects/

toss-speeding-commodity-cluster-computing

True Scale Fabric OFED+ Host Software. User Guide., Intel Corpora-
tion, Sep. 2013.

“CORAL benchmark codes,” Dec. 2013. [Online]. Available: https:
//asc.llnl.gov/CORAL-benchmarks/

CORAL: Collaboration of Oak Ridge, Argonne and Livermore National
Laboratories, “Draft CORAL build statement of work,” Office of
Science and the National Nuclear Security Administrations Advanced
Simulation and Computing (ASC) Program, U.S. Department of Energy,
RFP No. B604142, LLNL-PROP-636244, Dec. 2013.

“mpiP: Lightweight, scalable MPI profiling,” Mar. 2014. [Online].
Available: http://mpip.sourceforge.net/

“ASC Sequoia benchmark codes,” Jun. 2013. [Online]. Available:
https://asc.1Inl.gov/sequoia/benchmarks/

N. Wolfe, M. Mubarak, N. Jain, J. Domke, A. Bhatele, C. D. Carothers,
and R. B. Ross, “Preliminary performance analysis of multi-rail fat-

tree networks,” in International Symposium on Cluster, Cloud and Grid
Computing, ser. CCGrid’17. Madrid, Spain: IEEE/ACM, May 2017.

S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L. Gurvits, “Using
multirail networks in high-performance clusters,” in International Con-
ference on Cluster Computing. Newport Beach, CA: IEEE, Oct. 2001,
pp. 15-24.

S. P. Raikar, H. Subramoni, K. Kandalla, J. Vienne, and D. K.
Panda, “Designing network failover and recovery in MPI for multi-rail
InfiniBand clusters,” in International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, ser. IPDPSW’12. IEEE, 2012,
pp. 1160-1167.

A. Nukada, K. Sato, and S. Matsuoka, “Scalable multi-GPU 3-D FFT
for TSUBAME 2.0 supercomputer,” in International Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC’12. Salt Lake City, Utah: IEEE, 2012, pp. 44:1-44:10.

D. J. Choi, G. K. Lockwood, R. S. Sinkovits, and M. Tatineni, ‘“Per-
formance of applications using dual-rail InfiniBand 3D Torus network
on the Gordon supercomputer,” in Conference on Extreme Science and
Engineering Discovery Environment, ser. XSEDE’14. Atlanta, GA:
ACM, 2014, pp. 43:1-43:6.

O. Schreiber, M. Raymond, and S. Kodiyala, “LS-DYNA performance
improvements with multi-rail MPI on SGI Altix ICE clusters,” in
International LS-DYNA Users Conference, Dearborn, MI, Jun. 2008,
pp. 5:21-5:26.

J. Liu, “LAMMPS on advanced SGI architectures,” SGI, White Paper,
2011.

ISBN: 978-1-61208-567-8 39

