
Task Classifying Model based on Data Traits for High Efficiency

in Cloud Infrastructure Modeling and Simulation Environment

Sunghwan Moon, Jaekwon Kim, Taeyoung Kim, Jeongseok Choi and Jongsik Lee

Department of Computer and Information Engineering

Inha University

Incheon, South Korea

email: shmoon@inhaian.net, jaekwonkorea@naver.com, silverwild@gmail.com,

jeongseokchoi.korea@gmail.com and jslee@inha.ac.kr

Abstract—We proposed task Classifying Model based on Data

Traits (CMDT) and conducted experiments using this model.

CMDT classifies tasks from user taking account of its own data

traits. The classified tasks are allocated to each of the nodes

which can process them as fast as possible. In conclusion,

CMDT improves a service throughput which is the index of

efficiency on cloud.

Keywords-data traits; task classifying model; CMDT.

I. INTRODUCTION

Raising user-level has led to increase the demand for
processing highly complex tasks. Service providers meet
their demand using high performance computing which is
composed of diverse computing resources on cloud
service[1]. Clients and providers contract a Service Level
Agreement (SLA) for high performance computing service.
According to a SLA, a client pays a specific fee and a
provider ensures parameters matching agreement[2]. A low
expense for task processing is economic to the client. On the
other hand, a high performance for service is profitable to the
provider. In cloud Infrastructure as a Service (IaaS)[3], a
SLA should be guaranteed by allocating physical computing
resources efficiently.

Users request processing tasks which include the data.
The data comes in a lot of types such as videos, images,
audios, texts, logs, etc. The task including data has a
dependency on nodes. The nodes are physical computing
resources for processing tasks; their performances are closely
related with the efficiency of whole system. If the system
classifies the tasks regardless of its own data traits, most of
tasks may be processed slowly in a long time[4]. This
situation results in breach of a SLA.

In this paper, we propose a task Classifying Model based
on Data Traits (CMDT) to increase a resource efficiency on
cloud environment. CMDT classifies the requested task with
its own data traits. The classified task is allocated to the node
which has a dependency on the data. CMDT can increase the
efficiency by reducing turnaround time at each node and also
ensure a SLA degree for stakeholders.

The rest of this paper is structured as follows: In Section
2, we describe our key idea for task classifying in cloud
environment. Section 3 explains the experiment settings and
results. Finally, we conclude the paper in Section 4.

II. TASK CLASSIFYING METHOD BASED ON DATA TRAITS

We introduce CMDT in this section. CMDT classifies a
task according to its own data traits and allocates the task to
highly relevant physical resource. Figure 1 shows a designed
architecture of the proposed CMDT.

Figure 1. CMDT Architecture

CMDT consists of three modules for resource allocation.

These modules take roles as follows. First, Task Classifier
stores a requested task from user to each queue according to
its own data traits. The data traits depend on the metadata of
tasks. Second, Resource Allocator distributes tasks from
Task classifiers to each queue according to their physical
properties to process efficiently. Third, Task Processor
receives tasks from Resource allocators and processes them.

 These phases perform on each of the modules as
follows:

A. Task Classifier

There are various requests in cloud services. Some tasks
include complex applications which need high powered
computing. Others are just based on web services. Task
classifier stores every task with many purposes referring to
its own data traits, three roles of which are as follows.

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

Figure 2. Process for Task Classification

1) As shown in Figure 2, Task classifier stores every

task from users in each queue. The tasks is classified by its

own data traits. Classified tasks are stored to pre-deployed

queues. We use four queues for each trait. Table 1 shows

detailed criteria for classification.

TABLE I. QUEUE IN TASK CLASSIFIER MODULE

Queue Description Data

Q_Video
Enqueue the User-Request
Job including Video-Data

.avi, .mkv, .mp4, .
wmv, etc.

Q_Image
Enqueue the User-Request

Job including Image-Data

.jpg, .png, .gif, .tif

, etc.

Q_Audio
Enqueue the User-Request
Job including Audio-Data

.wav, .ogg, .mp3, .
wma, etc.

Q_etc
Enqueue the User-Request

Job including Other data
.txt, .log, etc.

2) Task classifier sends stored tasks when Resource

allocator requests new task as shown in Figure 3. The

request occurs when its queue size downs to less than a

certain amount. This amount can be adjusted as high or low

depending on the maximum length of the queue.

Figure 3. Process for Task Selection

3) Task classifier receives finished tasks from Task

processor and returns them to the users. Users can request

their tasks if uncompleted.

B. Resource Allocator

Resource allocator manages new tasks taking account of
acceptable workloads and throughputs of the computing
resource on cloud. Two roles of this module are as follows.

1) Resource allocator receives the task which was

classified by its own data traits. These tasks are reclassified

in view of the performance ratio of Task processor. A

classification criteria is described in the following reasons.

 A task including videos and dynamic images:
Most of tasks need real-time encoding, decoding and
storing for large-scale data. Because of this, CPU
utilization is extremely high for these kinds of
tasks[5].

 A task including graphics and static images:
Most of tasks need preview and storing images.
RAM utilization is high for these kinds of tasks[6].

 A task including audios and voice speech:
Most of tasks are streaming service and real-time
transmission. These kinds of tasks need minimizing
of the network delay[7].

Equation (1) presents a priority rule for allocation of each

task to physical computing resource because of the reasons
mentioned above.

Video-Data : Q_CPU > Q_NetResp. > Q_RAM > Q_All
Image-Data : Q_RAM > Q_CPU > Q_NetResp. > Q_All

Audio-Data : Q_NetResp. > Q_RAM Q_CPU > Q_All
(1)

The tasks are allocated into each queue in this module.

Resource allocator has four specified queues as described in
Table 2.

TABLE II. QUEUE IN RESOURCE ALLOCATOR MODULE

Queue Description Property

Q_CPU
Enqueue the Job to be assigned

Node which has High-Level CPU

Job including

Video-Data

Q_RAM
Enqueue the Job to be assigned

Node which has High-Level RAM

Job including

Image-Data

Q_NetResp.
Enqueue the Job to be assigned

Node which has High-NetResponse
Job including
Audio-Data

Q_All
Enqueue the Job to be assigned

Node on Low-Load

Job including

Other data

2) Resource allocator sends a task according to

requests from Task processor. This module estimates how

much time Task processors would finish the tasks because

the processors have different performances. Resource

Allocator operates for allocating the tasks as shown in

Figure 4.

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

Figure 4. Process for Resource Allocation

C. Task Processor

Task processor, called ‘node’ on cloud, is a physical
computing resource. This module processes the allocated
tasks and sends a finished task to Task classifier. Task
processor operates for processing the tasks as shown in
Figure 5.

Figure 5. Process for Task Process

III. EXPERIMENT DESIGN AND RESULT

We designed the cloud environments in order to verify a
performance of CMDT. This is a virtual distributed
environment based on Discrete Event System Specification
(DEVS) formalism[8]. We experiment and measure a
throughput as a performance index.

Figure 6. Virtual Environment based on DEVS Formalism

A. Experiment Scenario

In this paper, we build a virtual distributed environment
for CMDT using DEVS formalism. This experiment is built
to verify the performance of CMDT. Figure 6 shows a test
bed and the description is as follows.

1) User generates and requests a task. It also receives a

finished task. This module is a generator model.

2) Task Classifier has queues to classify and store a

generated task according to its own data traits. This module

is a queue model.

3) Resource Allocator reclassifies and allocates each

task depending on the computing resource. This module is a

queue-processor model.

4) Node processes a task and sends it to Task classifier.

This module is a processor model. It is also called a node.

5) Performance Evaluator evaluates a throughput of the

task processing. This module is a transducer model.

We define the performance of nodes for our experiment

as shown in Table 3. The higher value it is, the better
performance it has.

TABLE III. NODE PERFORMANCE

Node CPU RAM NetResp.

Node #0 9 8 8

Node #1 8 9 8

Node #2 8 8 9

Node #3 9 8 6

Node #4 8 9 7

Node #5 7 8 9

In our experiment, we measure a service throughput with

increasing 300 to 3000 for finished time. A service
throughput is a performance index which is a total amount of
services of each model during designated experiment time.
This index is calculated by dividing the number of service
response to a finished time as given by (2).

Throughput =
The Number of Service Response / Finished Time

(2)

We select two algorithms for applying CMDT because
CMDT is an adjunctive method which can be applied to all
the task scheduling algorithms. First model is a round robin
scheduling algorithm (RR)[9]. RR sequentially allocates
tasks to all nodes. In other words, the task is allocated in the
order of nodes. Finished tasks are also returned in the order.
Second model is a minimum load first scheduling algorithm
(MLFS)[10]. MLFS allocated tasks to the node which has
the minimum number of task among all nodes on cloud. This
model has the merit of load balancing. We applied CMDT to
those algorithms.
 We finally conduct two comparative experiments. One
experiment is comparing RR with RR-CMDT. RR means an
original round robin scheduling algorithm. RR-CMDT
means an improved round robin scheduling algorithm which

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

CMDT has been applied to. The other experiment is
comparing MLFS with MLFS-CMDT. MLFS means an
original minimum load first scheduling algorithm. MLFC-
CMDT means an improved minimum load first scheduling
algorithm which CMDT has been applied to.

B. Experiment Results

We measure the service throughput in order to compare
performance between four scheduling algorithms. They are
RR, RR-CMDT, MLFS and MLFS-CMDT. In our
experiments, the user requests the tasks which have random
sizes. The sizes are based on the Amazon Access Samples
Data Set [11], which is opened through UCI Machine
Learning Repository. The purpose of these experiments are
to verify that CMDT ensures a SLA by increasing the service
throughput.

Figure 7. Service Throughput of RR and RR-CMDT

As shown in Figure 7, RR records 0.308 and RR-CMDT

records 0.332. This resulting value is an average of the
service throughput. It is seen that when CMDT has been
applied, a service throughput increased.

RR allocates the requested tasks in order. This method
not only classifies the tasks regardless of its own data traits,
but it also does not consider the state of nodes. These cause
an overload problem at each node. On the contrary, RR-
CMDT classifies the tasks taking account of the physical
relevance between data and nodes. This method enables the
system to process more tasks using limited resources by
reducing turnaround time at each node. Service providers can
ensure a SLA more easily when the service throughput
increases.

Figure 8. Service Throughput of MLFS and MLFS-CMDT

As shown in Figure 8, MLFS records 0.310 and MLFS-
CMDT records 0.326. This resulting value is an average of
the service throughput. We see that when CMDT has been
applied, a service throughput increased.

MLFS allocates the requested task to the node which has
the least number of tasks in its queue. This method balances
the load of whole system, but it does not consider the
physical relevance between data and nodes like RR.
Meanwhile, MLFS-CMDT classifies the tasks taking account
of the physical relevance between data and nodes like RR-
CMDT. Finally, RR-CMDT and MLFS-CMDT improves the
efficiency and ensure a SLA by managing the tasks taking
account of the physical relevance between data and nodes.

IV. CONCLUSION

Cloud services provide a high performance computing
which can process a large-scale data and complex tasks.
There is an outstanding issue ensuring a SLA with the
limited resources available on cloud.

We propose a task Classifying Model based on Data
Traits (CMDT). This method increases the efficiency of
computing resources by applying its own process to the usual
scheduling algorithms. CMDT classifies tasks according to
its own data traits and allocates tasks depending on relevance
between data and physical properties of nodes. It ensures a
SLA through improving the service throughput.

Future work will concentrate on applying CMDT to the
other task scheduling algorithms. We think CMDT can be
applied to more diverse algorithms.

ACKNOWLEDGMENT

This work was supported by Defense Acquisition
Program Administration and Agency for Defense
Development under the contract UD140022PD, Korea.

REFERENCES

[1] G. Kim, W. Lee, and C. Jeon, “Virtualization Technology for
Cloud Computing”, Journal of the Korea Society of Computer
and Information, Vol. 18, No. 1, 2010, pp. 25-33.

[2] H. Kang, J. Koh, and Y. Kim, “A SLA-based VM Auto-
Scaling Method in Hybrid Cloud Computing for Scientific
Computational Applications”, Journal of KIISE, System and
Theory, Vol. 40, No. 6, 2013, pp. 266-273.

[3] J. K. Kim and J. S. Lee, “Fuzzy Logic-driven Virtual Machine
Resource Evaluation Method for Cloud Provisioning Service”,
Journal of the Korea Society for Simulation, Vol. 22, No. 1,
2013, pp. 77-86.

[4] B. S. Kim, S. D. Lee, T. G. Kwon, and S. H. Lee, “Design and
Implementation of the Unformatted Data Manager for
Multimedia Storage System”, Journal of KIISE, Vol. 20, No.
2, 1993, pp. 191-194.

[5] S. J. Lee, E. J. Lee, S. W. Hong, H. N. Choi, and Y. W.
Chung, “Secure and Energy-Efficient MPEG Encoding using
Multicore Platforms”, Journal of the Korea Institute of
Information Security and Cryptology, Vol. 20, No. 3, 2010,
pp. 113-120.

[6] H. S. Oh, “Tiled Image Compression Method to Reduce the
Amount of Memory Needed for Image Processing in Mobile
Devices”, Journal of Korea Game Society, Vol. 13, No. 6,
2013, pp. 35-42.

[7] B. J. Kim, “Service Quality Criteria for Voice Services over a
WiBro Network”, The Journal of the Korea Institute of

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

Electronic Communication Sciences, Vol. 6, No. 6, 2011, pp.
823-829.

[8] Bernard P. Zeigler, H. Praehofer, and T. G. Kim (2000),
“Theory of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems”,
Academic Press, 2000, pp. 76-96.

[9] S. Pooja and P. Mishra, “Analysis of variants in Round Robin
Algorithms for load balancing in Cloud Computing”,
International Journal of Computer Science and Information
Technologies, Vol. 4, No. 3, 2013, pp. 416-419.

[10] T. Janaszka, D. Bursztynowski, and M. Dzida, “On
popularity-based load balancing in content networks”,
Teletraffic Congress (ITC 24), 24th International. IEEE, 2012,
pp. 1-8.

[11] Amazon Access Samples Data Set. [Online]. Available from:
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Sampl
es
2015.12.17

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)

