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Abstract—We proposed task Classifying Model based on Data 

Traits (CMDT) and conducted experiments using this model. 

CMDT classifies tasks from user taking account of its own data 

traits. The classified tasks are allocated to each of the nodes 

which can process them as fast as possible. In conclusion, 

CMDT improves a service throughput which is the index of 

efficiency on cloud. 
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I.  INTRODUCTION 

Raising user-level has led to increase the demand for 
processing highly complex tasks. Service providers meet 
their demand using high performance computing which is 
composed of diverse computing resources on cloud 
service[1]. Clients and providers contract a Service Level 
Agreement (SLA) for high performance computing service. 
According to a SLA, a client pays a specific fee and a 
provider ensures parameters matching agreement[2]. A low 
expense for task processing is economic to the client. On the 
other hand, a high performance for service is profitable to the 
provider. In cloud Infrastructure as a Service (IaaS)[3], a 
SLA should be guaranteed by allocating physical computing 
resources efficiently. 

Users request processing tasks which include the data. 
The data comes in a lot of types such as videos, images, 
audios, texts, logs, etc. The task including data has a 
dependency on nodes. The nodes are physical computing 
resources for processing tasks; their performances are closely 
related with the efficiency of whole system. If the system 
classifies the tasks regardless of its own data traits, most of 
tasks may be processed slowly in a long time[4]. This 
situation results in breach of a SLA. 

In this paper, we propose a task Classifying Model based 
on Data Traits (CMDT) to increase a resource efficiency on 
cloud environment. CMDT classifies the requested task with 
its own data traits. The classified task is allocated to the node 
which has a dependency on the data. CMDT can increase the 
efficiency by reducing turnaround time at each node and also 
ensure a SLA degree for stakeholders. 

The rest of this paper is structured as follows: In Section 
2, we describe our key idea for task classifying in cloud 
environment. Section 3 explains the experiment settings and 
results. Finally, we conclude the paper in Section 4. 

II. TASK CLASSIFYING METHOD BASED ON DATA TRAITS 

We introduce CMDT in this section. CMDT classifies a 
task according to its own data traits and allocates the task to 
highly relevant physical resource. Figure 1 shows a designed 
architecture of the proposed CMDT. 
 

 
Figure 1. CMDT Architecture 

 
CMDT consists of three modules for resource allocation. 

These modules take roles as follows. First, Task Classifier 
stores a requested task from user to each queue according to 
its own data traits. The data traits depend on the metadata of 
tasks. Second, Resource Allocator distributes tasks from 
Task classifiers to each queue according to their physical 
properties to process efficiently. Third, Task Processor 
receives tasks from Resource allocators and processes them. 

 These phases perform on each of the modules as 
follows: 

A. Task Classifier 

There are various requests in cloud services. Some tasks 
include complex applications which need high powered 
computing. Others are just based on web services. Task 
classifier stores every task with many purposes referring to 
its own data traits, three roles of which are as follows. 
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Figure 2. Process for Task Classification 

 

1) As shown in Figure 2, Task classifier stores every 

task from users in each queue. The tasks is classified by its 

own data traits. Classified tasks are stored to pre-deployed 

queues. We use four queues for each trait. Table 1 shows 

detailed criteria for classification. 

TABLE I.  QUEUE IN TASK CLASSIFIER MODULE 

Queue Description Data 

Q_Video 
Enqueue the User-Request 
Job including Video-Data 

.avi, .mkv, .mp4, .
wmv, etc. 

Q_Image 
Enqueue the User-Request 

Job including Image-Data 

.jpg, .png, .gif, .tif

, etc. 

Q_Audio 
Enqueue the User-Request 
Job including Audio-Data 

.wav, .ogg, .mp3, .
wma, etc. 

Q_etc 
Enqueue the User-Request 

Job including Other data 
.txt, .log, etc. 

 

2) Task classifier sends stored tasks when Resource 

allocator requests new task as shown in Figure 3. The 

request occurs when its queue size downs to less than a 

certain amount. This amount can be adjusted as high or low 

depending on the maximum length of the queue. 

 

 
Figure 3. Process for Task Selection 

 

3) Task classifier receives finished tasks from Task 

processor and returns them to the users. Users can request 

their tasks if uncompleted. 

B. Resource Allocator 

Resource allocator manages new tasks taking account of 
acceptable workloads and throughputs of the computing 
resource on cloud. Two roles of this module are as follows. 

1) Resource allocator receives the task which was 

classified by its own data traits. These tasks are reclassified 

in view of the performance ratio of Task processor. A 

classification criteria is described in the following reasons. 

 A task including videos and dynamic images: 
Most of tasks need real-time encoding, decoding and 
storing for large-scale data. Because of this, CPU 
utilization is extremely high for these kinds of 
tasks[5]. 

 A task including graphics and static images: 
Most of tasks need preview and storing images. 
RAM utilization is high for these kinds of tasks[6]. 

 A task including audios and voice speech: 
Most of tasks are streaming service and real-time 
transmission. These kinds of tasks need minimizing 
of the network delay[7]. 

 
Equation (1) presents a priority rule for allocation of each 

task to physical computing resource because of the reasons 
mentioned above. 
 

Video-Data : Q_CPU > Q_NetResp. > Q_RAM > Q_All 
Image-Data : Q_RAM > Q_CPU > Q_NetResp. > Q_All 

Audio-Data : Q_NetResp. > Q_RAM  Q_CPU > Q_All 
(1) 

 
The tasks are allocated into each queue in this module. 

Resource allocator has four specified queues as described in 
Table 2. 

TABLE II.  QUEUE IN RESOURCE ALLOCATOR MODULE 

Queue Description Property 

Q_CPU 
Enqueue the Job to be assigned 

Node which has High-Level CPU 

Job including 

Video-Data 

Q_RAM 
Enqueue the Job to be assigned 

Node which has High-Level RAM 

Job including 

Image-Data 

Q_NetResp. 
Enqueue the Job to be assigned 

Node which has High-NetResponse 
Job including 
Audio-Data 

Q_All 
Enqueue the Job to be assigned 

Node on Low-Load 

Job including 

Other data 

 

2) Resource allocator sends a task according to 

requests from Task processor. This module estimates how 

much time Task processors would finish the tasks because 

the processors have different performances. Resource 

Allocator operates for allocating the tasks as shown in 

Figure 4.  
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Figure 4. Process for Resource Allocation 

 

C. Task Processor 

Task processor, called ‘node’ on cloud, is a physical 
computing resource. This module processes the allocated 
tasks and sends a finished task to Task classifier. Task 
processor operates for processing the tasks as shown in 
Figure 5. 
 

 
Figure 5. Process for Task Process 

III. EXPERIMENT DESIGN AND RESULT 

We designed the cloud environments in order to verify a 
performance of CMDT. This is a virtual distributed 
environment based on Discrete Event System Specification 
(DEVS) formalism[8]. We experiment and measure a 
throughput as a performance index. 

 

 
Figure 6. Virtual Environment based on DEVS Formalism 

A. Experiment Scenario 

In this paper, we build a virtual distributed environment 
for CMDT using DEVS formalism. This experiment is built 
to verify the performance of CMDT. Figure 6 shows a test 
bed and the description is as follows. 

1) User generates and requests a task. It also receives a 

finished task. This module is a generator model. 

2) Task Classifier has queues to classify and store a 

generated task according to its own data traits. This module 

is a queue model. 

3) Resource Allocator reclassifies and allocates each 

task depending on the computing resource. This module is a 

queue-processor model. 

4) Node processes a task and sends it to Task classifier. 

This module is a processor model. It is also called a node. 

5) Performance Evaluator evaluates a throughput of the 

task processing. This module is a transducer model. 

 
We define the performance of nodes for our experiment 

as shown in Table 3. The higher value it is, the better 
performance it has. 

TABLE III.  NODE PERFORMANCE 

Node CPU RAM NetResp. 

Node #0 9 8 8 

Node #1 8 9 8 

Node #2 8 8 9 

Node #3 9 8 6 

Node #4 8 9 7 

Node #5 7 8 9 

 
In our experiment, we measure a service throughput with 

increasing 300 to 3000 for finished time. A service 
throughput is a performance index which is a total amount of 
services of each model during designated experiment time.  
This index is calculated by dividing the number of service 
response to a finished time as given by (2). 
 

Throughput =  
The Number of Service Response / Finished Time 

(2) 
 

We select two algorithms for applying CMDT because 
CMDT is an adjunctive method which can be applied to all 
the task scheduling algorithms. First model is a round robin 
scheduling algorithm (RR)[9]. RR sequentially allocates 
tasks to all nodes. In other words, the task is allocated in the 
order of nodes. Finished tasks are also returned in the order. 
Second model is a minimum load first scheduling algorithm 
(MLFS)[10]. MLFS allocated tasks to the node which has 
the minimum number of task among all nodes on cloud. This 
model has the merit of load balancing. We applied CMDT to 
those algorithms. 
 We finally conduct two comparative experiments. One 
experiment is comparing RR with RR-CMDT. RR means an 
original round robin scheduling algorithm. RR-CMDT 
means an improved round robin scheduling algorithm which 
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CMDT has been applied to. The other experiment is 
comparing MLFS with MLFS-CMDT. MLFS means an 
original minimum load first scheduling algorithm. MLFC-
CMDT means an improved minimum load first scheduling 
algorithm which CMDT has been applied to. 

B. Experiment Results 

We measure the service throughput in order to compare 
performance between four scheduling algorithms. They are 
RR, RR-CMDT, MLFS and MLFS-CMDT. In our 
experiments, the user requests the tasks which have random 
sizes. The sizes are based on the Amazon Access Samples 
Data Set [11], which is opened through UCI Machine 
Learning Repository. The purpose of these experiments are 
to verify that CMDT ensures a SLA by increasing the service 
throughput. 
 

 
Figure 7. Service Throughput of RR and RR-CMDT 

 
As shown in Figure 7, RR records 0.308 and RR-CMDT 

records 0.332. This resulting value is an average of the 
service throughput. It is seen that when CMDT has been 
applied, a service throughput increased. 

RR allocates the requested tasks in order. This method 
not only classifies the tasks regardless of its own data traits, 
but it also does not consider the state of nodes. These cause 
an overload problem at each node. On the contrary, RR-
CMDT classifies the tasks taking account of the physical 
relevance between data and nodes. This method enables the 
system to process more tasks using limited resources by 
reducing turnaround time at each node. Service providers can 
ensure a SLA more easily when the service throughput 
increases. 
 

 
Figure 8. Service Throughput of MLFS and MLFS-CMDT 

As shown in Figure 8, MLFS records 0.310 and MLFS-
CMDT records 0.326. This resulting value is an average of 
the service throughput. We see that when CMDT has been 
applied, a service throughput increased. 

MLFS allocates the requested task to the node which has 
the least number of tasks in its queue. This method balances 
the load of whole system, but it does not consider the 
physical relevance between data and nodes like RR. 
Meanwhile, MLFS-CMDT classifies the tasks taking account 
of the physical relevance between data and nodes like RR-
CMDT. Finally, RR-CMDT and MLFS-CMDT improves the 
efficiency and ensure a SLA by managing the tasks taking 
account of the physical relevance between data and nodes. 

IV. CONCLUSION 

Cloud services provide a high performance computing 
which can process a large-scale data and complex tasks. 
There is an outstanding issue ensuring a SLA with the 
limited resources available on cloud. 

We propose a task Classifying Model based on Data 
Traits (CMDT). This method increases the efficiency of 
computing resources by applying its own process to the usual 
scheduling algorithms. CMDT classifies tasks according to 
its own data traits and allocates tasks depending on relevance 
between data and physical properties of nodes. It ensures a 
SLA through improving the service throughput. 

Future work will concentrate on applying CMDT to the 
other task scheduling algorithms. We think CMDT can be 
applied to more diverse algorithms. 
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