
A Novel MILP Model to Solve Killer Samurai Sudoku Puzzles

José B. Fonseca

Department of Electrical Engineering and Computer Science
Faculty of Sciences and Technology, New University of Lisbon

Monte de Caparica, Portugal
e-mail: jbfo@fct.unl.pt

Abstract— A Killer Samurai Sudoku puzzle is a NP-Hard
problem and very nonlinear since it implies the comparison of
areas or cages sums with their desired values, and humans
have a lot of difficulty to solve these puzzles. On the contrary,
our mixed integer linear programming (MILP) model, using
the Cplex solver, solves easy puzzles in few seconds and hard
puzzles in few minutes. We begin to explain why humans have
such a great difficulty to solve Killer Samurai Sudoku puzzles,
even for low level of difficulty ones, taking into account the
cognitive limitations as the very small working memory of 7-8
symbols. Then, we briefly review our previous work where we
describe linearization techniques that allow solving any
nonlinear problem with a linear MILP model. Next we
describe the sets of constraints that define a Killer Sudoku
puzzle and the definition of the objective variable and the
implementation of the solution of a Killer Samurai Sudoku
puzzle as a minimization problem formulated as a MILP
model and implemented with the GAMS software. Finally, we
present the solutions of a hard Killer Samurai Sudoku puzzles
with our MILP model using the Cplex solver.

Keywords-intelligence; MILP; puzzles

I. INTRODUCTION

The first problems solved by Artificial Intelligence (AI)
and Operations Research (OR) were toy problems, games
and more recently puzzles. In the eighties, there were annual
tournaments of chess computer programs and Kasparov was
even defeated by one of these chess programs. More
recently Sudoku appeared in Japan and then Kakuro and
Killer Sudoku puzzles that were rapidly disseminated
through the rest of the world. More recently arose the Killer
Samurai Sudoku puzzles that consist of five Killer Sudoku
puzzles with the fifth puzzle overlapping over the remaining
four puzzles. As an alternative approach to AI, in this work
we formulate the Killer Samurai Sudoku puzzle problem
solution as an optimization problem with constraints in the
framework of a Mixed Integer Linear Program (MILP)
model and then solve it using the Cplex solver with the
GAMS software and using the linearization techniques
developed in our previous work [1]. A Killer Sudoku puzzle
consists of a matrix of dimension 9x9 where each line and
column must be a permutation of integers between 1 and 9,
each sub-matrix 3x3 must be a permutation of these
numbers and there are a set of colour areas or cages that
must have a predefined sum. The runtimes of the solution of
a black belt Killer Samurai Sudoku puzzle from [2] using
our MILP model were very small, just some few seconds.

To our knowledge this is the first proposal to solve a Killer
Samurai Sudoku puzzle with a MILP model. Although
exists a site to solve Killer Samurai Sudoku puzzles online,
we believe that our solution is faster and can be understood
by non specialists of computer science. Nevertheless in a
previous work [3] we solved Kakuro puzzles with a MILP
model and the runtimes showed to be much lower than then
the runtimes of previous proposals [4-5].

Next we describe the structure of our paper. In Section 2,
we give a brief overview of what mathematical
programming is, the MILP models and their implementation
with the GAMS software and solution with the Cplex
solver. In Section 3, we describe our MILP model giving a
detailed presentation of the main sets of constraints and their
implementation with the GAMS software. In Section 4, we
present the main conclusions and possible evolution of our
work.

II. WHAT IS MATHEMATICAL PROGRAMMING? WHAT IS

A MILP MODEL?

A mathematical program is a set of inequalities and
equalities defined in terms of the model variables, one of
them defining the objective variable that must be maximized
or minimized. In a linear model all constraints are linear and
it cannot be applied any nonlinear operation over a model
variable neither exists the product between two model
variables. A mixed integer linear program (MILP) is a linear
model with integer, binary and continuous variables. In this
work we used the GAMS modeling language to formulate
the puzzle as an optimization problem and solve it with an
algorithm, the Cplex solver. For example the simplified code
that implements a MILP model to obtain the maximum and
minimum of a given array would be:

sets i /1*20/;
parameter a_p(i);
a_p(i)=ord(i)-10;
variable a(i), minimum, maximum, obj;

**CONSTRAINTS**
**set the array elements:
set_a(i).. a(i)=e=a_p(i);
**the minimum is less or equal to all
elements of a(i):
calc_min(i).. minimum =l= a(i);

12Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)



**the maximum is greater or equal to all
elements of a(i):
calc_max(i).. maximum =g= a(i);
**to prevent trivial solutions we must
maximize the minimum and minimize the
maximum:
calc_obj.. obj=e= minimum - maximum;
Model MaxMin /all/;
Solve MaxMin using MIP maximizing obj;
display a.l, obj.l, maximum.l,
minimum.l;

The constraint calc_max(i) implements the set of
inequalities (1).

∀�,������� ≥ �(�) (1)

The output of this small MILP model using the Cplex
solver looks like the following:

GAMS Rev 229 WIN-VIS 22.9.2 x86/MS Windows
03/09/16 17:01:32 Page 6
G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m
E x e c u t i o n

---- 26 VARIABLE a.L

1 -9.000, 2 -8.000, 3 -7.000, 4 -6.000, 5 -5.000,
6 -4.000 7 -3.000, 8 -2.000, 9 -1.000, 11 1.000,
12 2.000, 13 3.000 14 4.000, 15 5.000, 16 6.000,
17 7.000, 18 8.000, 19 9.000 20 10.000

---- 26 VARIABLE obj.L = -19.000
VARIABLE maximum.L = 10.000
VARIABLE minimum.L = -9.000

III. DESCRIPTION OF OUR MILP MODEL TO SOLVE

KILLER SAMURAI SUDOKU PUZZLES

The main element of our Killer Samurai Sudoku MILP
model is an indexed binary variable with three indexes that
defines the 9x9 matrix which must be filled with integer
numbers between 1..9. The first and second indexes
represent the line and column of the matrix element,
respectively, and the third index represents the value of the
matrix element, i.e., there is only one value of the third
index for which the binary variable is one and all the
remaining are zero for a given line and column. This way
the order of the last index of this indexed binary variable is
translated into the value of the Killer Samurai Sudoku
matrix element. The use of this indexed binary variable is
the main idea to linearize this so nonlinear problem. With
this approach the constraints, like the all different
constraints, are very elegant and simple and the runtimes are
very small.

First we must impose that each matrix element has only
one value, which seems obvious but must be declared since

the value of the matrix element is expressed by the order of
the third index of the indexed binary variable a_bin(l,c,v), l
and c, being the line and column of the matrix element and
the order of index v its value. This condition is expressed by
(2).
                        ∀�, �, ∑ �_���(�, �, �) = 1� (2)

The set of constraints (2) can be implemented with
GAMS syntax as:

only_one(l,c).. sum(v, a_bin(l,c,v))=1=1;

Next, we must impose that there are no repetitions in each
line l, the all different constraint, i.e., for each pair of values
(l,v) summing the binary indexed variable a_bin(l,c,v) over
all columns c, this sum must be equal to 1, since in a Killer
Samurai Sudoku puzzle each line is a permutation of integer
numbers between 1 and 9. This set of logical conditions or
constraints is expressed by (3).

∀�, �, ∑ �_���(�, �, �) = 1� (3)

The set of constraints (3) can be implemented with
GAMS syntax as:

all_different_line(l,v).. sum(c, a_bin(l,c,v))=e=1;

In other words (3) ensures that each line is a permutation
of integers between 1 and 9. And there must not exist
repetitions in each column, which is expressed by the similar
set of logical conditions or constraints (4), the all different
constraint for each column c.

∀�, �, ∑ �_���(�, �, �) = 1� (4)

The set of constraints (4) can be implemented with
GAMS syntax as:

all_different_column(c,v)..
sum(l, a_bin(l, a_bin(l,c,v))=e=1;

Next we impose that each sub-matrix 3x3 must be a
permutation of integers between 1 and 9. To express this set
of logical conditions we created an auxiliary indexed
parameter, square(l1,c1,l,c) which is initialized by (5).

∀��, ��, �, �, ������(��, ��, �, �, ) = �� ≥ �(�� − 1)����� +

1�� �� ≤ �(� � − 1)������ + ������ (� ≥ (�� −

1)����� + �����)) (5)

In (5) the multiplication of inequalities must be
interpreted as the logical AND of the logical values of the
inequalities. The scalar Order defines the dimension of the
Killer Sudoku puzzle sub-matrix and for the classical Killer
Sudoku puzzles Order=3. Then the set of logical conditions

13Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)



or constraints that impose that each sub-matrix
Order x Order must have no repetitions is expressed by (6).

       ∀��, ��, ��, ∑ �_���(�, �, ��)(�,�):������(��,��,�,�)�� = 1 (6)

The set of equations (6) can be written using GAMS
syntax as:

all_different_square(l1,c1,v1)..
sum((l,c)$(square(l1,c1,l,c)), a_bin(l,c,v1))=e=1;

The dollar operator has the meaning of restriction to the
values for which the expression next to $ is true. Then we
impose that each colour segment must has a predefined sum
saved in an auxiliary indexed parameter sum_colour(col).
Each colour segment is defined by a logical auxiliary
indexed parameter colour_bin(col,l,c) which has the value 1
when the Killer Sudoku element (l,c) belongs to the colour
segment of order col. This set of conditions or constraints is
expressed by (7).

       ∀���, ∑
� �_���(�, �, �) =

���_������(���)�,(�,�):������_���(���,�,�)�� (7)

The set of equatons (7) can be written using GAMS
syntax as:

sum_colour_segment(col)..
sum((l,c,v1)$(colour_bin(col,l,c)),ord(v)*a_bin(l,c,v1))=e=
sum_colour(col);

Finally to prevent trivial solutions with all values of
a_bin(i,j,v)=1 we must minimize the objective variable
defined as the number of matrix elements, which is
expressed by (8).

��� = ∑ �_���(�, �, �) (8)�,�,�

Equation (8) can be implemented in GAMS code as:

calc_obj.. obj=e=sum((i,j,v), a_bin(i,j,v));

In Figure 1, we show a hard Killer Samurai Sudoku
puzzle taken from [2] that we solved with our MILP model
showed in appendix A in just few seconds in a PC with
2GHz clock and in appendix B we show the output of the
GAMS software code that corresponds to the solution of the
puzzle. Note that in this hard Killer Samurai Sudoku puzzle,
each different area of matrix elements whose sum must be
equal to the number printed in the region. Moreover this
puzzle has two regions with four elements which contribute
to the combinatorial explosion in the ways the matrix
elements may be filled.

IV. CONCLUSIONS AND FUTURE WORK

We showed that our MILP model to solve Killer
Samurai Sudoku puzzles is very efficient and elegant. In a
near future, we plan to expand our MILP model to solve
variants of Killer Sudoku like Killer Sudoku Greater Than
and then adapt them to develop a MILP model to make
production planning based on a MILP model and the Cplex
solver.

Figure 1. Killer Sudoku puzzle solved by our MILP model.

REFERENCES

[1] J. Barahona da Fonseca, “Solving any nonlinear problem with
a MILP model,” Proceedings of Escape-19 Conference,
pp.647–652, 2009.

[2] D. J.. Ape, .Killer Sudoku and other puzzle variants,
Createspace, 2010.

[3] J. Barahona da Fonseca, “A novel linear MILP model to solve
Kakuro puzzles,” Proceedings of Controlo 2012 Conference,
pp. 185-190, 2012.

[4] R. P. Davies, An investigation into the solution to, and
evaluation of, Kakuro puzzles, MSc thesis, 2009.

[5] H. Simonis,, “Kakuro as a constraint problem,” Proceedings
of Modref Conference, pp. 201-216, 2008.

APPENDIX A

In the following GAMS code the names of constraints
always finish with “..”.

sets l /1*21/;

alias(c, l);

set v1 /1*9/;
alias(v, v1);

set c1 /1*3/;

14Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)



alias(l1, c1);

set col /1*129/;
*121-

*positive variable a(l,c);

binary variable a_bin(l,c, v1);

scalar Order /3/;

Parameter square(l1,c1,l,c), square2(l1,c1,l,c),
square3(l1,c1,l,c), square4(l1,c1,l,c),
square5(l1,c1,l,c), cor_bin(col, l, c),
soma_cor(col);

square(l1,c1,l,c)=(ord(l) ge ((ord(l1)-1)*Order+1)
)*(ord(l) le ((ord(l1)-1)*Order+Order))
*(ord(c) ge ((ord(c1)-1)*Order+1))*(ord(c) le
((ord(c1)-1)*Order+Order));

square2(l1,c1,l,c)=(ord(l) ge ((ord(l1)-
1)*Order+1) )*(ord(l) le ((ord(l1)-
1)*Order+Order))
*(ord(c) ge (12+(ord(c1)-1)*Order+1))*(ord(c) le
(12+(ord(c1)-1)*Order+Order));

square3(l1,c1,l,c)=(ord(l) ge (12+(ord(l1)-
1)*Order+1) )*(ord(l) le (12+(ord(l1)-1)
*Order+Order))
*(ord(c) ge ((ord(c1)-1)*Order+1))*(ord(c) le
((ord(c1)-1)*Order+Order));

square4(l1,c1,l,c)=(ord(l) ge (12+(ord(l1)-
1)*Order+1) )*(ord(l) le (12+(ord(l1)-1)*
Order+Order))
*(ord(c) ge (12+(ord(c1)-1)*Order+1))*(ord(c) le
(12+(ord(c1)-1)*Order+Order));

square5(l1,c1,l,c)=(ord(l) ge (6+(ord(l1)-
1)*Order+1) )*(ord(l) le (6+(ord(l1)-1)
*Order+Order))
*(ord(c) ge (6+(ord(c1)-1)*Order+1))*(ord(c) le
(6+(ord(c1)-1)*Order+Order));

*Next we define the cages of the first puzzle
cor_bin(col, l, c)=0;
soma_cor(col)=0;

cor_bin('1', '1', '1')=1;
cor_bin('1', '2', '1')=1;

soma_cor('1')=6;

*************************************

cor_bin('2', '1', '2')=1;
cor_bin('2', '2', '2')=1;
cor_bin('2', '3', '2')=1;
cor_bin('2', '3', '1')=1;

soma_cor('2')=23;

*************************************

cor_bin('3', '1', '3')=1;
cor_bin('3', '1', '4')=1;

soma_cor('3')=13;

*************************************

cor_bin('4', '1', '5')=1;
cor_bin('4', '1', '6')=1;

soma_cor('4')= 17;

*************************************

cor_bin('5', '1', '7')=1;
cor_bin('5', '1', '8')=1;
cor_bin('5', '1', '9')=1;

soma_cor('5')=8;

*************************************

cor_bin('6', '2', '3')=1;
cor_bin('6', '2', '4')=1;
cor_bin('6', '2', '5')=1;
cor_bin('6', '2', '6')=1;

soma_cor('6')=15;
* snip! some instructions omitted

variable obj;

* CONSTRAINTS:
*only_one(l,c).. sum(v1, a_bin(l,c,v1))=e=1;

only_one(l,c)$( (ord(l) ge 1) * (ord(l) le 9) *
(ord(c) le 9) * (ord(c) ge 1) )..
sum(v1, a_bin(l,c,v1))=e=1;
only_one2(l,c)$( (ord(l) ge 1) * (ord(l) le 9) *
(ord(c) le 21) * (ord(c) ge 13) ) ..
sum(v1, a_bin(l,c,v1))=e=1;

only_one3(l,c)$( (ord(l) ge 7) * (ord(l) le 15) *
(ord(c) le 15) * (ord(c) ge 7) )..
sum(v1, a_bin(l,c,v1))=e=1;

only_one4(l,c)$( (ord(l) ge 13) * (ord(l) le 21) *
(ord(c) le 9) * (ord(c) ge 1) )..
sum(v1, a_bin(l,c,v1))=e=1;

only_one5(l,c)$( (ord(l) ge 13) * (ord(l) le 21) *
(ord(c) le 21) * (ord(c) ge 13) )..
sum(v1, a_bin(l,c,v1))=e=1;

all_different_line(l,v1)$( ord(l) le 9)..
sum(c$(ord(c) le 9), a_bin(l,c,v1))=e=1;
all_different_line2(l,v1)$( ord(l) le 9)..
sum(c$( (ord(c) le 21) * (ord(c) ge 13) ),
a_bin(l,c,v1))=e=1;

all_different_line3(l,v1)$( (ord(l) le 15) *
(ord(l) ge 7) )..
sum(c$( (ord(c) le 15) * (ord(c) ge 7) ),
a_bin(l,c,v1))=e=1;

all_different_line4(l,v1)$( (ord(l) le 21) *
(ord(l) ge 13) )..
sum(c$( (ord(c) le 9) * (ord(c) ge 1) ),
a_bin(l,c,v1))=e=1;

15Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)



all_different_line5(l,v1)$( (ord(l) le 21) *
(ord(l) ge 13) )..
sum(c$( (ord(c) le 21) * (ord(c) ge 13) ),
a_bin(l,c,v1))=e=1;

all_different_column(c,v1)$(ord(c) le 9)..
sum((l)$(ord(l) le 9), a_bin(l,c,v1))=e=1;
all_different_column2(c,v1)$( (ord(c) le 21) *
(ord(c) ge 13) )..
sum((l)$( ord(l) le 9 ), a_bin(l,c,v1))=e=1;

all_different_column3(c,v1)$( (ord(c) le 15) *
(ord(c) ge 7) )..
sum((l)$( (ord(l) le 15) * (ord(l) ge 7) ),
a_bin(l,c,v1))=e=1;

all_different_column4(c,v1)$( (ord(c) le 9) *
(ord(c) ge 1) )..
sum((l)$( (ord(l) le 21) * (ord(l) ge 13) ),
a_bin(l,c,v1))=e=1;

all_different_column5(c,v1)$( (ord(c) le 21) *
(ord(c) ge 13) )..
sum((l)$( (ord(l) le 21) * (ord(l) ge 13) ),
a_bin(l,c,v1))=e=1;

zero_elements(l,c,v)$( (ord(l) le 6)* (ord(l) ge
1) * (ord(c) ge 10) * (ord(c) le 12) +
(ord(l) ge 16) * (ord(l) le 21) * (ord(c) ge 10)
*(ord(c) le 12) + (ord(l) ge 10) *
(ord(l) le 12) * (ord(c) le 6)+
(ord(l) ge 10) * (ord(l) le 12) * (ord(c) ge 16) *
(ord(c) le 21) ).. a_bin(l,c,v)=e=0;

all_different_square(l1,c1,v1)..
sum((l,c)$(
square(l1,c1,l,c) *(ord(l) ge 1) * (ord(l) le
9)*(ord(c) le 9)*(ord(c) ge 1) ),
a_bin(l,c,v1)) =e= 1;

all_different_square2(l1,c1,v1)..
sum((l,c)$(
square2(l1,c1,l,c) *(ord(l) ge 1) * (ord(l) le
9)*(ord(c) le 21)*(ord(c) ge 13) ),
a_bin(l,c,v1)) =e= 1;

all_different_square3(l1,c1,v1)..
sum((l,c)$(
square3(l1,c1,l,c) *(ord(l) ge 13) * (ord(l) le
21)*(ord(c) le 9)*(ord(c) ge 1) ),
a_bin(l,c,v1)) =e= 1;

all_different_square4(l1,c1,v1)..
sum((l,c)$(
square4(l1,c1,l,c) *(ord(l) ge 13) * (ord(l) le
21)*(ord(c) le 21)*(ord(c) ge 13) ),
a_bin(l,c,v1)) =e= 1;

all_different_square5(l1,c1,v1)..
sum((l,c)$(
square5(l1,c1,l,c) *(ord(l) ge 7) * (ord(l) le
15)*(ord(c) le 15)*(ord(c) ge 7) ),
a_bin(l,c,v1)) =e= 1;

sum_color_segment(col)..
sum((l,c,v1)$(cor_bin(col,l,c)=1),
ord(v1)*a_bin(l,c,v1)) =e=soma_cor(col);

calc_obj.. obj=e=sum((l,c,v1), a_bin(l,c,v1));

model KillerSamuraiSudoku /all/;

option IterLim=1000000000;
option ResLim=1000000000;

option optcr=0;
option optca=0;

solve KillerSamuraiSudoku using MIP minimizing
obj;

display a_bin.l, obj.l;

APPENDIX B

Next we show the output of the Cplex solver that results
from a run of the GAMS model that corresponds to the
solution of the puzzle presented in figure 1.

---- 910 VARIABLE a_bin.L

1 2 3 4 5 6

1 .1 1.000
1 .2 1.000
1 .3 1.000
1 .7 1.000
1 .8 1.000
1 .9 1.000
1 .13 1.000
1 .14 1.000
1 .15 1.000
1 .16 1.000
1 .18 1.000
1 .21 1.000
2 .1 1.000
2 .4 1.000
2 .5 1.000
2 .6 1.000
2 .7 1.000
2 .9 1.000
2 .14 1.000
2 .16 1.000
2 .17 1.000
2 .19 1.000
2 .20 1.000
2 .21 1.000
3 .1 1.000
3 .3 1.000
3 .4 1.000
3 .5 1.000
3 .6 1.000
3 .9 1.000
3 .14 1.000
3 .15 1.000
3 .16 1.000
3 .17 1.000
3 .19 1.000
3 .20 1.000
4 .2 1.000
4 .3 1.000
4 .5 1.000
4 .7 1.000
4 .8 1.000
4 .9 1.000
4 .13 1.000
4 .14 1.000
4 .15 1.000
4 .18 1.000
4 .19 1.000
4 .20 1.000
5 .1 1.000
5 .3 1.000
5 .4 1.000
5 .5 1.000
5 .7 1.000
5 .8 1.000
5 .13 1.000
5 .15 1.000
5 .16 1.000
5 .18 1.000
5 .19 1.000
5 .21 1.000
6 .1 1.000
6 .2 1.000
6 .4 1.000
6 .5 1.000
6 .6 1.000
6 .8 1.000
6 .13 1.000
6 .16 1.000
6 .17 1.000
6 .18 1.000
6 .20 1.000
6 .21 1.000
7 .2 1.000
7 .3 1.000
7 .6 1.000
7 .7 1.000

16Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)



7 .8 1.000
7 .9 1.000
7 .10 1.000
7 .11 1.000
7 .12 1.000
7 .16 1.000
7 .17 1.000
7 .18 1.000
7 .19 1.000
7 .20 1.000
7 .21 1.000
8 .2 1.000
8 .4 1.000
8 .6 1.000
8 .7 1.000
8 .8 1.000
8 .9 1.000
8 .13 1.000
8 .14 1.000
8 .15 1.000
8 .17 1.000
8 .18 1.000
8 .19 1.000
9 .1 1.000
9 .2 1.000
9 .3 1.000

9 .4 1.000
9 .5 1.000
9 .6 1.000
9 .10 1.000
9 .11 1.000
9 .12 1.000
9 .13 1.000
9 .14 1.000
9 .15 1.000
9 .17 1.000
9 .20 1.000
9 .21 1.000
10.7 1.000
10.8 1.000
10.9 1.000
10.12 1.000
10.13 1.000
10.15 1.000
11.8 1.000
11.10 1.000
11.11 1.000
11.12 1.000
11.13 1.000
11.14 1.00
**snip! some lines omitted

17Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-478-7

INFOCOMP 2016 : The Sixth International Conference on Advanced Communications and Computation (contains MODOPT 2016)


